
AUTOMATIC CODING OF TRANSCRIPT DATA FOR A SURVEY OF RECENT COLLEGE GRADUATES

Daniel J. Pratt and Jennifer W. Mays, Research Triangle Institute
Daniel J. Pratt, P. O. Box 12194, Research Triangle Park, NC 27709

KEY WORDS: Classification, natural language,
computer-asslgned codes

ABSTRACT
Research Triangle Institute collected

transcripts from participating schools as part
of a survey of recent college graduates for the
U.S. Department of Education Center for
Statistics. The task included classifying
nearly one million course records according to
subject matter. An automatic coding system
(autocoder) was developed specifically for this
task, but with the thought of expanding the
general method to other tasks. The system
featured a two-step coding process: first the
course was assigned to a generic department, and
then it was given a code within that department.
An "expert" user developed the coding rules
(dictionaries) for use with the system. The
autocoder then used the rules to process the
coded file; if not, it was set aside for manual
coding. For those records which remained
uncoded, the autocoder provided computer-
assisted coding tools. As a final step, the
course records were reprocessed against the
coding dictlonaires to provide summary
statistics and guarantee consistency of coding.
This project has given its developers insight
into the nature of au£omatlc coding of free-form
text and the assurance that a more general and
flexible automatic coding system could be
efficient and cost-effective for future
projects.

I. INTRODUCTION
Determining efficient methods to interpret

free-form text responses for analysis has been
an interesting issue for survey and computing
professionals for years. One solution has been
to hire personnel to classify the responses
manually, with or without computer assistance,
using a well-defined set of rules for coding the
responses. A recent alternative approach has
been to develop a dictionary of possible
responses and their codes, and use this
dictionary as the basis for an automated coding
system. Research Triangle Institute (RTI) had
to choose between these approaches to classify
college course titles as part of a survey of
recent college graduates (RCG).

RTI contracted with the U.S. Department of
Education Center for Statistics to provide a
public use file of transcripts for students who
received bachelor's degrees between July I, 1985
and June 30, 1986. The eligible sample size was
16,977 students. Transcripts were collected
from degree-granting institutions and other
schools from which students had transferred.
The public access transcript file was to include
a classification for each course title in the
file, such that the course level data could be
used in analysis. RTI used a three digit
numerical coding scheme to distinguish various
types of courses. The first two digits mapped

directly to the two digit Classification of
Instructional Programs (CIP) system developed by
G. S. Malitz (1987). The third digit was used,
as needed, for further specificity. There were
nearly I million course level records.

In selecting the best approach to coding the
transcript data, two alternatives were
considered: computer-assisted manual coding done
by trained staff members, or an automated coding
system using a rules dictionary developed and
updated by an expert or a pool of experts. RTI
had the opportunity to review the transcript
coding methods used in a prior RCG study before
reaching a decision. National Opinion Research
Center (NORC) developed a microcomputer-based
system called the Computer Assisted Data Entry
System (CADE) to combine the tasks of keying the
transcript data and classifying course titles.
There were twenty transcript coder/keyers
trained for the task, and each transcript was
handled as an entity to provide internal
consistency and to reduce the likelihood of lost
data. The major features of this coding system
included extensive training in the use of the
CIP system to code courses properly and the
development of an on-line version of these
coding rules to provide further assistance (C.
Jones et al. 1986). Because a human coder had
to make a decision as to how to classify each
course title, the CADE implementation was a
computer-assisted manual model.

RTI personnel were interested in evaluating
ways of solving the generic, free-form text
problem and decided that this project offered an
opportunity to develop an automated coding
system. The development and implementation
efforts were viewed as a test to see if an
automated coding system could handle the
transcript coding task efficiently. If the
results were favorable, RTI would consider
developing a generalized automatic coding
software system for the classification of free-
form text responses.

II. INITIAL DESIGN FEATURES
The RCG autocoder was developed using the VAX

C programming language in a Digital Equipment
Corporation VAX/VMS environment at RTI. The
initial design involved using standard VMS file
structures. The features of the RCG autocoder
included: processing course records in batch
mode; updating the coding dictionaries; handling
uncoded records through a menu of interactive
options; and reprocesslng the entire set or a
specified subset of the records which had been
processed up to that point.

The coding rules set (dictionary) is the most
important feature of the coding system because
it is the chief determinant of how each record
gets coded. The quality of coding is directly
related to the quality of the rules used in
coding. This set of rules may be developed
using: prior coding efforts; an already
established standard set of rules for the given

796

task; or the use of an expert or pool of experts
to develop appropriate rules and their codes.
The last approach was taken by RTI for the RCG
study. One individual expert was given the
responsibility for determining meaningful rules
based on a review of sample course records and a
thorough understanding of the classification
scheme. As mentioned earlier, the primary
reference for coding rules was the CIP system.

The coding of course records was handled as a
two step coding exercise, and thus there were
two coding dictionaries. First, the original
school department was standardized using a
department rules set. Then, within each
standardized department, there was a set of
rules which provided the final code for the
course. For each course, the listed department
provided meaningful categorical information and
the text field provided specificity within
department. This two-dictionary structure
helped reduce the CPU time spent searching for a
rule to code the course.

Table i. The Order of Autocoding
Processing Steps

I. A batch of course records was processed
overnight.

2. The expert user reviewed uncoded records
using interactive tools.

3. The expert user updated rules base to
enable coding of previously uncoded and
yet-to-be-coded records.

4. The remaining uncoded cases were
reprocessed in batch mode.

Transcripts were handled separately according
to whether they were from the degree-granting
institution or from another (transfer)
institution. The content of the two types of
transcripts differed significantly, and it was
felt that the data entry component would be
better managed if they were handled separately.

The transcript data was defined
hierarchically. There were transcript level
records, term level records, and course level
records, all of which were keyed by RTI data
entry keyers. The course level records
comprised the input for the autocoder. Each
record was of fixed length and contained a
course title and department as well as ancillary
information not needed for coding. The system
itself was divided into two basic components:
the batch processing component and the
interactive component.

A. Batch Processing Steps
Batch processing handled the overwhelming

majority of the course records which were coded
for the recent college graduate study. Batch
processing of each course record involved three
steps. The text was parsed into a standardized
structure. Then the school department was
translated into a uniform department. Finally,

the parsed text was compared with rules for that
department.

During parsing the input record was read and
reformatted into a fixed length output
structure. The original department and course
number, which had been treated as one field for
keying, were split into two fields and the
course number was dropped. Next the 40
character course description was divided into
distinct words.

Certain rules governed this division into
words. The recognized character set was the
alphabet. All other characters were dropped and
viewed as word delimiters. Lower case letters
were converted to upper case for ease in
comparing the words. In addition, a word was
defined as having seven or fewer letters since
it was felt that this was enough to determine
word content. The resident expert defined a
small set of trivial words to ignore during
processing. This set included words such as
"INTRO" an6 "FRESHMAN", which added no meaning
to a course title and were thus deemed
insignificant. The number of parsed words was
limited to the first six non-trivial words.

The example below illustrates the parsing
strategy employed. The input department was
read. All numbers were dropped. The course
title was separated into words by the word
delimiter, in this case "/". "INTRO" appeared
in the list of words to ignore so it was
discarded. Finally, "PROGRAMMING" was stripped
down to the first seven letters for the
resultant parsed text of "PROGRAM".

Table 2. Parsing the Input Course Record

Initial Course Description

School ID Department
Number and Number Course Title

12345 C S 101S INTRO/PROGRAMMING

Parsed Text Output

School ID
Number Department Parsed Course Title

12345 C S PROGRAM

The next step was to standardize the
department. The department and school
identifier were compared with the department
dictionary, which included the original
department, a school identifier (as
appropriate), and a standard department code.
If a school specific conversion existed for a
given department, it was used. Otherwise, the
file was checked for a translation without
reference to any school. Many schools used the
same department abbreviation conventions so
general rules were applicable. However, some
schools had their own abbreviations which were
often in conflict with general rules. An
example is the school department CS. This meant
Computer Science at most schools, but it
referred to Classical Studies at one school so a

797

special rule was necessary for this school. If
no translation was found, the department was set
to NONE. Refer to Table 3 to follow the example
course through the department translation step.
Note that because the school ID did not match
the school specific rule ID, the general
translation to COMP was applied, indicating a
Computer Science offering.

Table 3. Translating the Department

Input Fields Translatlon Rules Output Dept

Sch. Orig Sch. Standard
ID Dept Dept ID Dept.

12345 C S CPS COMP
C S 32109 CLAS
C S COMP

COMP

The final step was coding the course. Once a
standard department was established, the parsed
text was compared with the set of rules for that
department. Each rule included the rule number
within department, the rule words (one or two),
and the associated code. The parsed text had to
include each word in a given rule for a match to
occur. Each word of the parsed text was
compared with each word in the rule. If the
number of matched words was less than the number
of rule words, that rule would fall and the next
rule for the department was read. The rules
dictionary constituted a llst of rules ranked in
order of descending importance. If no rule
matched the parsed text, the record was left
uncoded.

Table 4. Coding the Course

Input Fields
Dept Parsed Text
COMP PROGRAM

Dept/Rule Number

COMM999

COMP001

COMP012

COHP028

COMP999

Rule I Rule 2 Code

090
CLEP 000

DATA 112

PRO 111

I I 0

Result Code: III

Table 4 demonstrates that the example parsed
text, PROGRAM, was compared sequentially with
each rule in the COMP department until a match
was found. It is important to note that the
applicable rule contains fewer letters than the
parsed text. The minimum number of letters were
used in a rule to allow for variant abbreviation
conventions. The root rule words must match,

but the parsed text may contain additional
trailing letters for each rule word. However,
the rule word may not be longer than the parsed
word. Once the appropriate rule was identified,
the code field was assigned the value of III,
and the course record was written to the coded
data file.

Each of the above steps was followed for every
one of the 923,037 records in the set of course
level records. Uncoded records were written to
one output file and coded records were written
to another file. The major coding effort was
devoted to the batch processing phase. However,
the system provided additional tools for the
expert user.

B. Interactive Tools
Each of the dictionaries was equipped with

interactive tools to enable update and query
access. Thus, the user was able to add, delete,
or modify rules in each of the dictionaries. As
the system processed records interactlvely, any
new rules would be compared with previously
uncoded records for a given department. If the
new rule applied to a record, it would be coded
and transferred to the coded data base. If
records continued to be uncoded after
reprocesslng, the user could correct any
mlskeyed input text, or the record could be
coded manually.

Access to the coding dictionaries enabled the
user to modify and expand the rules sets over
the course of the project. The user could
access the dictionaries directly or via the
processing of uncoded records. The three data
dictionaries were: the llst of words to ignore
during parsing; the department standardizations;
and the coding rules within each standard
department.

Each dictionary was accessible for additions,
deletions, updates, and queries. Every change
required confirmation to avoid unintended
updates. Each dictionary had an indexed file
structure which was used for direct (random)
access. As a result, searching for the
appropriate entry was very efficient.

In addition to modifying the rules bases, the
interactive coding menu provided other utilities
for handling uncoded course titles. One option
was to modify the text of the course title or
department. This would be appropriate if a
keying error prevented the course from being
coded. Because this option allowed the user to
change the input data, the old data record was
archived.

In some cases the user needed to code a course
title by manual assignment without modifying the
rules bases. This circumstance arose if the
course title was an isolated occurrence that did
not merit an autocoding rule. Every course that
was coded by thls interactive, manual process
was flagged as a hand-coded record and could
thus be excluded from final reprocesslng.

The interactive processing of uncoded records
was done in one of two ways. The first option
was to process each of the uncoded courses
sequentially. The other method was to handle
the uncoded courses for a specified department.
This latter design would be preferable if there
were different experts for each discipline
performing the coding review tasks. The

798

recommended approach to resolving uncoded
courses was to develop new rules, as
appropriate, so that future batch coding would
be more efficient.

III. RULES BASE DESIGN CONSIDERATIONS
The structure and content of the rules base

dictated the efficiency and accuracy of the
automated coding operation. As mentioned, the
RiG course processing was implemented using two
dictionaries. First, a standard department was
assigned from the department rules base. Then,
the parsed text was compared with the set of
rules for that department. The content of the
course-level coding dictionary changed
significantly over time. This affected the
level of specificity with which each record was
coded.

Certain rules were set up as special default
rules for departments. These rules contained no
rule words and were applied only if no other
specific rules matched the input text but the
department matched. There were 79 such rules in
the coding dictionary. In the original design
of the system, records coded with the default
rule were viewed as "semi-coded" because the
system knew which department offered the course
but the course description did not secure a code
within the current rules base. Using this
scheme, there were three types of records: coded
records, in which a specific rule applied; semi-
coded records, which matched only the default
rule for the department; and uncoded records,
which failed to match any rules.

During the processing of the data, efforts
were made to accelerate the automated process.
This included revising the rules in the coding
dictionary. It was assumed that the default
code for a department was correct in most cases,
and specific rules for that code were thus
unnecessary. It was necessary only to include
rules in that department which mapped to
different codes. Records which previously had
been identified as coded, seml-coded, and
uncoded were now considered exception, default,
and uncoded records, respectively. Thls reduced
the size of the coding dictionary, but it was no
longer possible to distinguish between a "fully
coded" record and a "seml-coded" record.

The majority of records were coded using
default rules. Table 5 shows that 76.4 percent
of the primary course records and 63.6 percent
of the transfer course records were coded
strictly based on the standard department
because exception rules did not apply.

The disadvantage of this method was that the
most commonly used rules no longer appeared
first for a given department, so more processing
time was used before a matching rule was found.
All exception rules were prlorltlzed above the
default rule. This increased the average number
of rules read per course processed. The average
number of rules read was 45.7 for the primary
school file and 38.9 for the transfer file.

However, the new method handled exceptions
nicely because the expert could arrange the
rules in order of descending importance. The
default rule was applied only if all of the
exception rules had failed to match with the

parsed course title.

Table 5. The Impact of Using the
Exceptlon/Default Rule Organization.

Total Records
Coded Records
of General Case Records
Percentage of General Records
Average Number of Rules Read

Per Record

Total Records
Coded Records
of General Case Records
Percentage of General Records
Average Number of Rules Read

Per Record

Primary File

824,291
810,209
619,390

76.4
45.7

Transfer File

98,746
89,760
57,132

63.6
38.9

Even though the rules set was overhauled after
the coding task was in progress, consistency was
not a problem because the entire data file was
reprocessed after the rules set was stabilized.

IV. CONSISTENCY
The issue of consistency in coding is one of

the most persuasive reasons for selecting an
automatic coding system over the computer-
assisted manual coding alternative. Once a set
of rules is established, the computer utilizes
those rules the same way every time. This
cannot be said for human coders, even the most
highly trained and proficient ones. There are
different ways to interpret rules, and inter-
coder discrepancies invariably are part of any
manual coding operation. In fact, the same
individual may make two different decisions for
a given input text field at two different times.

If a rules set does not change during a
project, all automated coding will be
consistent. However, the RiG autocoding
approach allowed for a dynamic set of coding
rules. Therefore, a course could be coded one
way, the pertinent rule changed subsequently,
and the same course coded differently for a
different student. It is always possible in
this environment to recode the entlre'set of
records as a final step to provide complete
consistency. Cost is a major factor in deciding
whether or not this is feasible for a given
study. If a rules base is stable for the
duration of coding, the issue becomes
irrelevant. For the RiG study, the rules set
went through significant transformation during
the coding phase. Final reprocessing guaranteed
consistent coding.

The results showed that 33.,778 of the 923,037
records, or 3.66 percent, had different result
codes as compared with initial coding. A large
percentage of these recoded records were coded
early in the project, prior to the
reorganization of the coding dictionary. The
results indicate that a dynamic rules set may be
subject to inconsistencies over time, and that
it may be necessary to recode records as a final
processing step.

799

V. COST AND EFFICIENCY CONSIDERATIONS
The comparative costs of different approaches

to the task of coding free-form text is worthy
of investigation. We can provide only some very
rough cost comparisons for the RCG study based
on some reasonable, albeit arbitrary,
assumptions. Keying of the data was not a
factor because it was required as part of the
deliverable data file. It is assumed that
keying costs are the same whether a manual or
automated approach is used. The CADE system
provided an efficient mechanism for reducing
overhead associated with tracking records
through data entry and coding by handling all
tasks in one step (C. Jones et al. 1986). On
the other hand, the automated approach requires
the keyed text file only as input since codes
are not manually assigned.

The development and maintenance of the rules
base requires the major investment of human
resources for the autocoder, whereas trained
coding personnel are needed for the manual
method. Assuming that it takes one minute,
including invested training time, to assign a
code by hand to each course, it would have taken
approximately 7.6 years (given 167 hours per
month) for one person-equivalent to code all
923,037 records. In comparison, the autocoder
was implemented by one expert user and all
records were processed in less than eight months
of elapsed time. This included the time spent
developing and maintaining the coding
dictionaries.

Processing costs are another major
consideration in evaluating coding systems. If
the system is too expensive to operate, no
matter how attractive otherwise, it will not be
used. Since the RCG autocoder was developed
specifically for this project, and was not
significantly tested prior to its use, it went
through some evolution as the project went on.
The revisions of the techniques used
dramatically increased the speed of reprocessing
the data.

Table 6. A Comparison of Estimated
CPU Time, Elapsed Time Between Initial

Coding and Final Reprocessing.*

Initial Coding Reprocessing

CPU ~ 30.5 hours ~ 7.5 hours
Elapsed ~ 600 hours ~ 25 hours

* All work was done using the RTI Ragland
Computer Center VAXcluster. Elapsed time is
affected by the number of other users on the
cluster.

As may be seen above, the CPU time for
reprocessing was reduced by a factor greater
than 4. The elapsed time to process records was
much more dramatic--reprocesslng reduced time
required by a factor greater than 20. There
were a few factors responsible for this
tremendous improvement. The original
specifications called for direct access to each
output record based on a unique key. This

prevented the occurrence of duplicate records
and allowe~ immediate query access. Since the
key was 22 characters in length, the cost to
maintain the key structure was not worth the
great sacrifice in efficiency. Second, the
coding dictionaries had been opened and closed
for each course processed. This added a
significant amount to the elapsed time for
processing. During reprocessing, the output
file was sequential rather than indexed and the
dictionaries were opened and closed only once.

Even in the worst-case scenario, the cost of
processing is not significant compared with the
cost of human resources. An automatic coding
implementation should be given serious
consideration for a task such as transcript
coding if there is a choice between two systems
which have already been developed. Despite the
problems related to slow turnaround time, the
RCG autocoder compared favorably with a manual
coding alternative.

VI. RECENT EXPERIENCE
Since the completion of the RCG study, we have

learned more about general automated coding
methods. We have researched various systems
implemented with a number of variations on the
methods used here.

Coding dictionaries have been established in a
number of ways. The ordered rules approach is
just one technique used in automatic coding. A
different way to establish a coding dictionary
is to code a representative sample manually, and
this becomes the basis for later autocoding
decisions. A third method is to use an on-llne
version of a standard coding manual to determine
the coding rules.

Another distinguishing feature of various
coding systems is the algorithm used to
determine what constitutes a match between a
given rule and a text field. Exact matching of
every word in the text to every word in the rule
is one technique. A prioritized set of required
rule words, where some of the words in the text
must match all of the words in the rule, as in
the RCG project, is another. Others have
successfully implemented a weighted scoring
method in which the informational content of
matching words, known as the heuristic weight,
contributes to the overall ranking of possible
solutions.

"Automatic Coding Methods and Practices",
written by Albert Bethke and Daniel Pratt,
provides a historical perspective on this
subject and explains each technique in detail
(Bethke and Pratt 1989). As an excerpt from the
paper illustrates, most coding algorithms can be
reduced to the following steps:

"For each response record, parse the response
into words, standardize this set of words and
match the set of words in the response against a
~coding dictionary ~ to find the best matching
phrase. If the match is good enough, then
assign that code to the response record, else
leave the record uncoded -- it will be manually
coded later."

The RCG coding system evolved significantly as
the project progressed. Though it must evolve
even further to be used for more general coding,
it offered lessons which can be applied to
future automatic coding efforts. It showed that

800

the structure of the rules base is the most
significant factor in both storage and
processing costs. In some cases, both can be
kept to a minimum using the same technique, but
sometimes storage costs must be weighed against
the processing costs in designing a rules base.
In this case, coding courses in two steps
minimized both the storage space and the search
time, keeping storage and processing costs down.
Structuring the rules with most common ones
first increased storage costs and reduced
processing costs. In contrast, structuring the
data base with exceptions first reduced storage
costs significantly, but slightly increased the
per-record processing time. RTI software
developers are utilizing the experience gained
from this project to implement a general, free-
form text, autocoding system for survey research
applications.

REFERENCES

MALITZ, G. S., A Classification of Instructional
ProKrams. Washington, DC: Center for

Education Statistics, US Department of
Education, 1987.

JONES, CALVIN, REGINALD BAKER and ROBERT
BORCHERS, High School and Beyond
Postsecondary Education Transcript Study:
Data File User's Manual. Chicago: National
Opinion Research Center, 1986.

BETHKE, ALBERT and DANIEL PRATT, "Automatic
Coding Methods and Practices", Draft
Article. Research Triangle Park: Research
Triangle Institute, 1989.

ACKNOWLEDGEMENTS

The authors would like to express their
gratitude to certain individuals who contributed
significantly to the success of this project:
Barbara Elliott, the expert system implementer
for the transcript coding application; John
Riccobono and Graham Burkhelmer, leaders of the
recent college graduate study; and Randy Lucas,
who provided software consultation and direction
for the developers.

801

