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ABSTRACT 
Research Triangle Institute collected 

transcripts from participating schools as part 
of a survey of recent college graduates for the 
U.S. Department of Education Center for 
Statistics. The task included classifying 
nearly one million course records according to 
subject matter. An automatic coding system 
(autocoder) was developed specifically for this 
task, but with the thought of expanding the 
general method to other tasks. The system 
featured a two-step coding process: first the 
course was assigned to a generic department, and 
then it was given a code within that department. 
An "expert" user developed the coding rules 
(dictionaries) for use with the system. The 
autocoder then used the rules to process the 
coded file; if not, it was set aside for manual 
coding. For those records which remained 
uncoded, the autocoder provided computer- 
assisted coding tools. As a final step, the 
course records were reprocessed against the 
coding dictlonaires to provide summary 
statistics and guarantee consistency of coding. 
This project has given its developers insight 
into the nature of au£omatlc coding of free-form 
text and the assurance that a more general and 
flexible automatic coding system could be 
efficient and cost-effective for future 
projects. 

I. INTRODUCTION 
Determining efficient methods to interpret 

free-form text responses for analysis has been 
an interesting issue for survey and computing 
professionals for years. One solution has been 
to hire personnel to classify the responses 
manually, with or without computer assistance, 
using a well-defined set of rules for coding the 
responses. A recent alternative approach has 
been to develop a dictionary of possible 
responses and their codes, and use this 
dictionary as the basis for an automated coding 
system. Research Triangle Institute (RTI) had 
to choose between these approaches to classify 
college course titles as part of a survey of 
recent college graduates (RCG). 

RTI contracted with the U.S. Department of 
Education Center for Statistics to provide a 
public use file of transcripts for students who 
received bachelor's degrees between July I, 1985 
and June 30, 1986. The eligible sample size was 
16,977 students. Transcripts were collected 
from degree-granting institutions and other 
schools from which students had transferred. 
The public access transcript file was to include 
a classification for each course title in the 
file, such that the course level data could be 
used in analysis. RTI used a three digit 
numerical coding scheme to distinguish various 
types of courses. The first two digits mapped 

directly to the two digit Classification of 
Instructional Programs (CIP) system developed by 
G. S. Malitz (1987). The third digit was used, 
as needed, for further specificity. There were 
nearly I million course level records. 

In selecting the best approach to coding the 
transcript data, two alternatives were 
considered: computer-assisted manual coding done 
by trained staff members, or an automated coding 
system using a rules dictionary developed and 
updated by an expert or a pool of experts. RTI 
had the opportunity to review the transcript 
coding methods used in a prior RCG study before 
reaching a decision. National Opinion Research 
Center (NORC) developed a microcomputer-based 
system called the Computer Assisted Data Entry 
System (CADE) to combine the tasks of keying the 
transcript data and classifying course titles. 
There were twenty transcript coder/keyers 
trained for the task, and each transcript was 
handled as an entity to provide internal 
consistency and to reduce the likelihood of lost 
data. The major features of this coding system 
included extensive training in the use of the 
CIP system to code courses properly and the 
development of an on-line version of these 
coding rules to provide further assistance (C. 
Jones et al. 1986). Because a human coder had 
to make a decision as to how to classify each 
course title, the CADE implementation was a 
computer-assisted manual model. 

RTI personnel were interested in evaluating 
ways of solving the generic, free-form text 
problem and decided that this project offered an 
opportunity to develop an automated coding 
system. The development and implementation 
efforts were viewed as a test to see if an 
automated coding system could handle the 
transcript coding task efficiently. If the 
results were favorable, RTI would consider 
developing a generalized automatic coding 
software system for the classification of free- 
form text responses. 

II. INITIAL DESIGN FEATURES 
The RCG autocoder was developed using the VAX 

C programming language in a Digital Equipment 
Corporation VAX/VMS environment at RTI. The 
initial design involved using standard VMS file 
structures. The features of the RCG autocoder 
included: processing course records in batch 
mode; updating the coding dictionaries; handling 
uncoded records through a menu of interactive 
options; and reprocesslng the entire set or a 
specified subset of the records which had been 
processed up to that point. 

The coding rules set (dictionary) is the most 
important feature of the coding system because 
it is the chief determinant of how each record 
gets coded. The quality of coding is directly 
related to the quality of the rules used in 
coding. This set of rules may be developed 
using: prior coding efforts; an already 
established standard set of rules for the given 
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task; or the use of an expert or pool of experts 
to develop appropriate rules and their codes. 
The last approach was taken by RTI for the RCG 
study. One individual expert was given the 
responsibility for determining meaningful rules 
based on a review of sample course records and a 
thorough understanding of the classification 
scheme. As mentioned earlier, the primary 
reference for coding rules was the CIP system. 

The coding of course records was handled as a 
two step coding exercise, and thus there were 
two coding dictionaries. First, the original 
school department was standardized using a 
department rules set. Then, within each 
standardized department, there was a set of 
rules which provided the final code for the 
course. For each course, the listed department 
provided meaningful categorical information and 
the text field provided specificity within 
department. This two-dictionary structure 
helped reduce the CPU time spent searching for a 
rule to code the course. 

Table i. The Order of Autocoding 
Processing Steps 

I. A batch of course records was processed 
overnight. 

2. The expert user reviewed uncoded records 
using interactive tools. 

3. The expert user updated rules base to 
enable coding of previously uncoded and 
yet-to-be-coded records. 

4. The remaining uncoded cases were 
reprocessed in batch mode. 

Transcripts were handled separately according 
to whether they were from the degree-granting 
institution or from another (transfer) 
institution. The content of the two types of 
transcripts differed significantly, and it was 
felt that the data entry component would be 
better managed if they were handled separately. 

The transcript data was defined 
hierarchically. There were transcript level 
records, term level records, and course level 
records, all of which were keyed by RTI data 
entry keyers. The course level records 
comprised the input for the autocoder. Each 
record was of fixed length and contained a 
course title and department as well as ancillary 
information not needed for coding. The system 
itself was divided into two basic components: 
the batch processing component and the 
interactive component. 

A. Batch Processing Steps 
Batch processing handled the overwhelming 

majority of the course records which were coded 
for the recent college graduate study. Batch 
processing of each course record involved three 
steps. The text was parsed into a standardized 
structure. Then the school department was 
translated into a uniform department. Finally, 

the parsed text was compared with rules for that 
department. 

During parsing the input record was read and 
reformatted into a fixed length output 
structure. The original department and course 
number, which had been treated as one field for 
keying, were split into two fields and the 
course number was dropped. Next the 40 
character course description was divided into 
distinct words. 

Certain rules governed this division into 
words. The recognized character set was the 
alphabet. All other characters were dropped and 
viewed as word delimiters. Lower case letters 
were converted to upper case for ease in 
comparing the words. In addition, a word was 
defined as having seven or fewer letters since 
it was felt that this was enough to determine 
word content. The resident expert defined a 
small set of trivial words to ignore during 
processing. This set included words such as 
"INTRO" an6 "FRESHMAN", which added no meaning 
to a course title and were thus deemed 
insignificant. The number of parsed words was 
limited to the first six non-trivial words. 

The example below illustrates the parsing 
strategy employed. The input department was 
read. All numbers were dropped. The course 
title was separated into words by the word 
delimiter, in this case "/". "INTRO" appeared 
in the list of words to ignore so it was 
discarded. Finally, "PROGRAMMING" was stripped 
down to the first seven letters for the 
resultant parsed text of "PROGRAM". 

Table 2. Parsing the Input Course Record 

Initial Course Description 

School ID Department 
Number and Number Course Title 

12345 C S 101S INTRO/PROGRAMMING 

Parsed Text Output 

School ID 
Number Department Parsed Course Title 

12345 C S PROGRAM 

The next step was to standardize the 
department. The department and school 
identifier were compared with the department 
dictionary, which included the original 
department, a school identifier (as 
appropriate), and a standard department code. 
If a school specific conversion existed for a 
given department, it was used. Otherwise, the 
file was checked for a translation without 
reference to any school. Many schools used the 
same department abbreviation conventions so 
general rules were applicable. However, some 
schools had their own abbreviations which were 
often in conflict with general rules. An 
example is the school department CS. This meant 
Computer Science at most schools, but it 
referred to Classical Studies at one school so a 
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special rule was necessary for this school. If 
no translation was found, the department was set 
to NONE. Refer to Table 3 to follow the example 
course through the department translation step. 
Note that because the school ID did not match 
the school specific rule ID, the general 
translation to COMP was applied, indicating a 
Computer Science offering. 

Table 3. Translating the Department 

Input Fields Translatlon Rules Output Dept 

Sch. Orig Sch. Standard 
ID Dept Dept ID Dept. 

12345 C S CPS COMP 
C S 32109 CLAS 
C S COMP 

COMP 

The final step was coding the course. Once a 
standard department was established, the parsed 
text was compared with the set of rules for that 
department. Each rule included the rule number 
within department, the rule words (one or two), 
and the associated code. The parsed text had to 
include each word in a given rule for a match to 
occur. Each word of the parsed text was 
compared with each word in the rule. If the 
number of matched words was less than the number 
of rule words, that rule would fall and the next 
rule for the department was read. The rules 
dictionary constituted a llst of rules ranked in 
order of descending importance. If no rule 
matched the parsed text, the record was left 
uncoded. 

Table 4. Coding the Course 

Input Fields 
Dept Parsed Text 
COMP PROGRAM 

Dept/Rule Number 

COMM999 

COMP001 

COMP012 

COHP028 

COMP999 

Rule I Rule 2 Code 

090 
CLEP 000 

DATA 112 

PRO 111 

I I 0  

Result Code: III 

Table 4 demonstrates that the example parsed 
text, PROGRAM, was compared sequentially with 
each rule in the COMP department until a match 
was found. It is important to note that the 
applicable rule contains fewer letters than the 
parsed text. The minimum number of letters were 
used in a rule to allow for variant abbreviation 
conventions. The root rule words must match, 

but the parsed text may contain additional 
trailing letters for each rule word. However, 
the rule word may not be longer than the parsed 
word. Once the appropriate rule was identified, 
the code field was assigned the value of III, 
and the course record was written to the coded 
data file. 

Each of the above steps was followed for every 
one of the 923,037 records in the set of course 
level records. Uncoded records were written to 
one output file and coded records were written 
to another file. The major coding effort was 
devoted to the batch processing phase. However, 
the system provided additional tools for the 
expert user. 

B. Interactive Tools 
Each of the dictionaries was equipped with 

interactive tools to enable update and query 
access. Thus, the user was able to add, delete, 
or modify rules in each of the dictionaries. As 
the system processed records interactlvely, any 
new rules would be compared with previously 
uncoded records for a given department. If the 
new rule applied to a record, it would be coded 
and transferred to the coded data base. If 
records continued to be uncoded after 
reprocesslng, the user could correct any 
mlskeyed input text, or the record could be 
coded manually. 

Access to the coding dictionaries enabled the 
user to modify and expand the rules sets over 
the course of the project. The user could 
access the dictionaries directly or via the 
processing of uncoded records. The three data 
dictionaries were: the llst of words to ignore 
during parsing; the department standardizations; 
and the coding rules within each standard 
department. 

Each dictionary was accessible for additions, 
deletions, updates, and queries. Every change 
required confirmation to avoid unintended 
updates. Each dictionary had an indexed file 
structure which was used for direct (random) 
access. As a result, searching for the 
appropriate entry was very efficient. 

In addition to modifying the rules bases, the 
interactive coding menu provided other utilities 
for handling uncoded course titles. One option 
was to modify the text of the course title or 
department. This would be appropriate if a 
keying error prevented the course from being 
coded. Because this option allowed the user to 
change the input data, the old data record was 
archived. 

In some cases the user needed to code a course 
title by manual assignment without modifying the 
rules bases. This circumstance arose if the 
course title was an isolated occurrence that did 
not merit an autocoding rule. Every course that 
was coded by thls interactive, manual process 
was flagged as a hand-coded record and could 
thus be excluded from final reprocesslng. 

The interactive processing of uncoded records 
was done in one of two ways. The first option 
was to process each of the uncoded courses 
sequentially. The other method was to handle 
the uncoded courses for a specified department. 
This latter design would be preferable if there 
were different experts for each discipline 
performing the coding review tasks. The 
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recommended approach to resolving uncoded 
courses was to develop new rules, as 
appropriate, so that future batch coding would 
be more efficient. 

III. RULES BASE DESIGN CONSIDERATIONS 
The structure and content of the rules base 

dictated the efficiency and accuracy of the 
automated coding operation. As mentioned, the 
RiG course processing was implemented using two 
dictionaries. First, a standard department was 
assigned from the department rules base. Then, 
the parsed text was compared with the set of 
rules for that department. The content of the 
course-level coding dictionary changed 
significantly over time. This affected the 
level of specificity with which each record was 
coded. 

Certain rules were set up as special default 
rules for departments. These rules contained no 
rule words and were applied only if no other 
specific rules matched the input text but the 
department matched. There were 79 such rules in 
the coding dictionary. In the original design 
of the system, records coded with the default 
rule were viewed as "semi-coded" because the 
system knew which department offered the course 
but the course description did not secure a code 
within the current rules base. Using this 
scheme, there were three types of records: coded 
records, in which a specific rule applied; semi- 
coded records, which matched only the default 
rule for the department; and uncoded records, 
which failed to match any rules. 

During the processing of the data, efforts 
were made to accelerate the automated process. 
This included revising the rules in the coding 
dictionary. It was assumed that the default 
code for a department was correct in most cases, 
and specific rules for that code were thus 
unnecessary. It was necessary only to include 
rules in that department which mapped to 
different codes. Records which previously had 
been identified as coded, seml-coded, and 
uncoded were now considered exception, default, 
and uncoded records, respectively. Thls reduced 
the size of the coding dictionary, but it was no 
longer possible to distinguish between a "fully 
coded" record and a "seml-coded" record. 

The majority of records were coded using 
default rules. Table 5 shows that 76.4 percent 
of the primary course records and 63.6 percent 
of the transfer course records were coded 
strictly based on the standard department 
because exception rules did not apply. 

The disadvantage of this method was that the 
most commonly used rules no longer appeared 
first for a given department, so more processing 
time was used before a matching rule was found. 
All exception rules were prlorltlzed above the 
default rule. This increased the average number 
of rules read per course processed. The average 
number of rules read was 45.7 for the primary 
school file and 38.9 for the transfer file. 

However, the new method handled exceptions 
nicely because the expert could arrange the 
rules in order of descending importance. The 
default rule was applied only if all of the 
exception rules had failed to match with the 

parsed course title. 

Table 5. The Impact of Using the 
Exceptlon/Default Rule Organization. 

# Total Records 
# Coded Records 
# of General Case Records 
Percentage of General Records 
Average Number of Rules Read 

Per Record 

# Total Records 
# Coded Records 
# of General Case Records 
Percentage of General Records 
Average Number of Rules Read 

Per Record 

Primary File 

824,291 
810,209 
619,390 

76.4 
45.7 

Transfer File 

98,746 
89,760 
57,132 

63.6 
38.9 

Even though the rules set was overhauled after 
the coding task was in progress, consistency was 
not a problem because the entire data file was 
reprocessed after the rules set was stabilized. 

IV. CONSISTENCY 
The issue of consistency in coding is one of 

the most persuasive reasons for selecting an 
automatic coding system over the computer- 
assisted manual coding alternative. Once a set 
of rules is established, the computer utilizes 
those rules the same way every time. This 
cannot be said for human coders, even the most 
highly trained and proficient ones. There are 
different ways to interpret rules, and inter- 
coder discrepancies invariably are part of any 
manual coding operation. In fact, the same 
individual may make two different decisions for 
a given input text field at two different times. 

If a rules set does not change during a 
project, all automated coding will be 
consistent. However, the RiG autocoding 
approach allowed for a dynamic set of coding 
rules. Therefore, a course could be coded one 
way, the pertinent rule changed subsequently, 
and the same course coded differently for a 
different student. It is always possible in 
this environment to recode the entlre'set of 
records as a final step to provide complete 
consistency. Cost is a major factor in deciding 
whether or not this is feasible for a given 
study. If a rules base is stable for the 
duration of coding, the issue becomes 
irrelevant. For the RiG study, the rules set 
went through significant transformation during 
the coding phase. Final reprocessing guaranteed 
consistent coding. 

The results showed that 33.,778 of the 923,037 
records, or 3.66 percent, had different result 
codes as compared with initial coding. A large 
percentage of these recoded records were coded 
early in the project, prior to the 
reorganization of the coding dictionary. The 
results indicate that a dynamic rules set may be 
subject to inconsistencies over time, and that 
it may be necessary to recode records as a final 
processing step. 

799 



V. COST AND EFFICIENCY CONSIDERATIONS 
The comparative costs of different approaches 

to the task of coding free-form text is worthy 
of investigation. We can provide only some very 
rough cost comparisons for the RCG study based 
on some reasonable, albeit arbitrary, 
assumptions. Keying of the data was not a 
factor because it was required as part of the 
deliverable data file. It is assumed that 
keying costs are the same whether a manual or 
automated approach is used. The CADE system 
provided an efficient mechanism for reducing 
overhead associated with tracking records 
through data entry and coding by handling all 
tasks in one step (C. Jones et al. 1986). On 
the other hand, the automated approach requires 
the keyed text file only as input since codes 
are not manually assigned. 

The development and maintenance of the rules 
base requires the major investment of human 
resources for the autocoder, whereas trained 
coding personnel are needed for the manual 
method. Assuming that it takes one minute, 
including invested training time, to assign a 
code by hand to each course, it would have taken 
approximately 7.6 years (given 167 hours per 
month) for one person-equivalent to code all 
923,037 records. In comparison, the autocoder 
was implemented by one expert user and all 
records were processed in less than eight months 
of elapsed time. This included the time spent 
developing and maintaining the coding 
dictionaries. 

Processing costs are another major 
consideration in evaluating coding systems. If 
the system is too expensive to operate, no 
matter how attractive otherwise, it will not be 
used. Since the RCG autocoder was developed 
specifically for this project, and was not 
significantly tested prior to its use, it went 
through some evolution as the project went on. 
The revisions of the techniques used 
dramatically increased the speed of reprocessing 
the data. 

Table 6. A Comparison of Estimated 
CPU Time, Elapsed Time Between Initial 

Coding and Final Reprocessing.* 

Initial Coding Reprocessing 

CPU ~ 30.5 hours ~ 7.5 hours 
Elapsed ~ 600 hours ~ 25 hours 

* All work was done using the RTI Ragland 
Computer Center VAXcluster. Elapsed time is 
affected by the number of other users on the 
cluster. 

As may be seen above, the CPU time for 
reprocessing was reduced by a factor greater 
than 4. The elapsed time to process records was 
much more dramatic--reprocesslng reduced time 
required by a factor greater than 20. There 
were a few factors responsible for this 
tremendous improvement. The original 
specifications called for direct access to each 
output record based on a unique key. This 

prevented the occurrence of duplicate records 
and allowe~ immediate query access. Since the 
key was 22 characters in length, the cost to 
maintain the key structure was not worth the 
great sacrifice in efficiency. Second, the 
coding dictionaries had been opened and closed 
for each course processed. This added a 
significant amount to the elapsed time for 
processing. During reprocessing, the output 
file was sequential rather than indexed and the 
dictionaries were opened and closed only once. 

Even in the worst-case scenario, the cost of 
processing is not significant compared with the 
cost of human resources. An automatic coding 
implementation should be given serious 
consideration for a task such as transcript 
coding if there is a choice between two systems 
which have already been developed. Despite the 
problems related to slow turnaround time, the 
RCG autocoder compared favorably with a manual 
coding alternative. 

VI. RECENT EXPERIENCE 
Since the completion of the RCG study, we have 

learned more about general automated coding 
methods. We have researched various systems 
implemented with a number of variations on the 
methods used here. 

Coding dictionaries have been established in a 
number of ways. The ordered rules approach is 
just one technique used in automatic coding. A 
different way to establish a coding dictionary 
is to code a representative sample manually, and 
this becomes the basis for later autocoding 
decisions. A third method is to use an on-llne 
version of a standard coding manual to determine 
the coding rules. 

Another distinguishing feature of various 
coding systems is the algorithm used to 
determine what constitutes a match between a 
given rule and a text field. Exact matching of 
every word in the text to every word in the rule 
is one technique. A prioritized set of required 
rule words, where some of the words in the text 
must match all of the words in the rule, as in 
the RCG project, is another. Others have 
successfully implemented a weighted scoring 
method in which the informational content of 
matching words, known as the heuristic weight, 
contributes to the overall ranking of possible 
solutions. 

"Automatic Coding Methods and Practices", 
written by Albert Bethke and Daniel Pratt, 
provides a historical perspective on this 
subject and explains each technique in detail 
(Bethke and Pratt 1989). As an excerpt from the 
paper illustrates, most coding algorithms can be 
reduced to the following steps: 

"For each response record, parse the response 
into words, standardize this set of words and 
match the set of words in the response against a 
~coding dictionary ~ to find the best matching 
phrase. If the match is good enough, then 
assign that code to the response record, else 
leave the record uncoded -- it will be manually 
coded later." 

The RCG coding system evolved significantly as 
the project progressed. Though it must evolve 
even further to be used for more general coding, 
it offered lessons which can be applied to 
future automatic coding efforts. It showed that 
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the structure of the rules base is the most 
significant factor in both storage and 
processing costs. In some cases, both can be 
kept to a minimum using the same technique, but 
sometimes storage costs must be weighed against 
the processing costs in designing a rules base. 
In this case, coding courses in two steps 
minimized both the storage space and the search 
time, keeping storage and processing costs down. 
Structuring the rules with most common ones 
first increased storage costs and reduced 
processing costs. In contrast, structuring the 
data base with exceptions first reduced storage 
costs significantly, but slightly increased the 
per-record processing time. RTI software 
developers are utilizing the experience gained 
from this project to implement a general, free- 
form text, autocoding system for survey research 
applications. 
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