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I. Introduction 

A variety of procedures currently exist for testing hypotheses 
on categorical data drawn from complex sample surveys, all 
of which are designed to avoid the well-documented problem 
of inflation of test significance levels that is a characteristic of 
the classical multinomial-based procedures.These procedures 
fall into three main classes: (i) methods based on the Wald 
statistic, see for example Koch, Freeman and Freeman(1975); 
(ii) simple first and second order corrections to the classical X 2 
and G 2 tests, see Brier (1980), Fellegi (1980), Rao and Scott 
(1981, 1984, 1987) and Bedrick (1983); (iii) methods based 
on jackknifing the classical X 2 and G 2 tests as proposed by 
Fay (1979, 1985). All three classes represent general solutions 
which have been applied to a wide variety of problems. Vari- 
ants of these techniques have also been proposed. Thomas 
and Rao (1987) used F-based (rather than chi-squared) vari- 
ants of both Wald and adjusted X 2 procedures. Singh (1985), 
developed a general approach for reducing instabilities in the 
covariance matrix of parameter estimates and applied this to 
the Wald procedure to attain better control of Type I error; see 
also Singh and Kumar (1986). Several reviews of the Wald and 
adjusted X 2 procedures have been published, see for example 
Hidiroglou and Rao (1987) and Rao and Thomas (1988). For 
details of the application of the jackknifed X 2 methodology, 
the reader is referred to Fay (1982). 

Since the rationale for all complex survey procedures is 
based on asymptotic theory, it is important that the finite 
sample characteristics of the above methods be thoroughly 
explored. Monte Carlo studies have been reported by Brier 
(1980), Fellegi (1980), Wilson (1986), Fay (1983, 1987), Thomas 
and Rao (1987) and Thomas (1989). In particular, Thomas 
and Rao (1987) conducted a Monte Carlo study of all compet- 
ing procedures (excepting that of Singh, 1985) for the case of a 
goodness-of-fit test under two-stage cluster sampling. Besides 
corroborating Fay's (1985) criticism of the Wald test, these 
authors established that both the second order corrections to 
X 2 (and G 2) and the Fay jackknife procedures performed well 
in practice, the former having a slight edge in terms of control 
of Type I error, particularly, when the "degrees of freedom" 
for variance estimation was small. Despite this research, much 
remains to be done. In fact, do not at present know the extent 
to which the results of Thomas and Rao (1987) can be gener- 
alized to a test of independence on a two-way table, perhaps 
the most heavily used test of all in the context of categori- 
cal data. The remainder of this paper considers in detail the 
design and execution of a Monte Carlo study of procedures 
for testing independence in a two-way table under a model of 
two-stage cluster sampling. 

II. Design Requirements 

1. Some Notation 

For an r × c contingency table having a fixed total of n observa- 
tions, let 7rij, i = 1 , . . . ,  r, j = 1 , . . . ,  c, represent the individ- 
ual cell probabilities, and 7ri., i = 1 , . . . ,  r, and 7r.j, j = 1, ..., c, 
represent the marginal probabilities. In vector form these 
will be denoted 7r = (7r11,... ,Trrc)', 7rR = (7r1.,... ,Trr)', and 
7rc = (Tr.~,...,Tr.~) ~. Let #ij, #i. and #.j represent consis- 
tent estimates of the corresponding probabilities under some 
suitable model of cluster sampling, and let V / n  represent the 

rc x rc (singular) variance-covariance matrix of -k, the (rc x 1) 
vector of estimates of cell probabilities arranged in lexico- 
graphic order. In this report, V, and the corresponding multi- 
nomial quantities defined below will be refered to as scaled co- 
variance matrices. Let V be a consistent estimate of V under 
the model. Also, let P = diag(Tr)- lrTr ~ represent the scaled 
multinomial covariance matrix corresponding to the vector 7r, 
which is consistently estimated by P = diag(-k)-  "k'k ~. Fi- 
nally, denote by PR and P c  the corresponding scaled multi- 
nomial covariance matrices for the marginals, with consistent 
estimates PR and P c .  We will consider models of two-stage 
cluster sampling in which units are drawn independently from 
each of L independent clusters, each cluster characterized by 
a vector of probabilities pe,~ = 1 , . . . ,  L. Following Rao and 
Scott (1981, 1984), we can define several different sets of gen- 
eralized design effect matrices and their corresponding gener- 
alized deffs (eigenvalues), as follows: 

(i) Ak, k = 1 , . . . ,  ( r c -  1). These are eigenvalues (or gener- 
alized deffs) of the matrix DRc = P(t)- lV(t) ,  which give 
a measure of variance inflation for the full vector of esti- 
mates -k. The superscript (t) denotes a trimmed matrix 
obtained by deletion of the last row and column of the 
full matrix in question. These ,kk'S are the relevant deffs 
for a goodness-of-fit hypothesis on 7r. For multinomial 
samples, ,kk = 1 k/ k; under cluster sampling, we expect 
that the mean ~ > 1. 

(ii) AR(k), k = 1 , . . . , r -  1 and he(k), k = 1 , . . . , c -  1. These 

are eigenvalues of the deft matrices DR = P(~)-Iv(~) and 

D e  = P(~)-IVc,  corresponding to marginal estimates 
~'R and ~rc. Again, the superscript (t) denotes a trimmed 
matrix. These are the relevant deffs for a goodness of fit 
test on the table marginals. 

(iii) 5k, k = 1 , . . . ,  ( r -  1 ) ( c -  1). These are the eigenvalues of 
the generalized deft matrix Dx corresponding to the test 
of independence. DI  can be expressed in the form 

D , -  (C'DYrlC) -1 (C'DTa-IVDYn.Ic) 2.1.1 

where C is the completion of the design matrix X for the 
independence form of the loglinear model 

ln(Tr) = Xfi~ 2.1.2 

In other words, X ' C  = 0, where C is of maximum column 
rank. Also, D~ is the diagonal matrix diag(lr), having the 
elements 7rij - 7ri.Tr.j on its diagonal. Under multinomial sam- 
pling, ~k = 1 V k; for cluster sampling (and complex designs 
generally), we expect ~, the mean of the ~k'S, to be greater than 
one. Estimates of these generalized deffs yield the first order 
corrected tests of Rao and Scott (1981), which are asymptot- 
ically exact for constant design effects, i.e. ~ = ~k, Yk. The 
second order Rao-Scott tests account for variations among the 
~k's. 

2. Model Requirements 

The model should be a plausible representation of two stage 
cluster sampling, and should be capable of: 
(i) Modelling different row and column generalized design ef- 

fects, i.e., ~R ¢ ~c. A real example of such a case is given 
by Rao and Thomas (1988). 

763 



(ii) Modelling a range of values of 5 for given values of )~R 
and ~c so that the direct effect of changes in 5 can be 
properly assessed. 

(iii) Modelling unequal design effects, i.e., some ,~R(k) # ~n, 
some /kc(k) # ~c,  some ~ # 6. 

(iv) Providing independent control of CV(6) ,  the coefficient of 
variation of the generalized design effects 6k, k = 1 , . . . ,  
( r -  1 ) ( c -  1), over a range of values of ~n, ~c,  and 
5. Preliminary Monte Carlo results discussed in Section 
4 show that large CV(5) 's  tend to produce liberal test 
significance levels for all but one of the procedures under 
study. 

(v) Modelling patterns of marginal probabilities other than 
the equiprobable case ~r~. = 1/r, ~.J = 1/c, Y i , j .  

(vi) Modelling deviations from Ho "~ri d = ~ri.~r.d, so that the 
powers of the competing procedures can be assessed. 

An additional constraint is imposed by cost, both in terms of 
computer cycles and programming time. Thomas, Singh and 
Roberts (1989), hereafter referred to as TSR, discuss several 
models of two-stage cluster sampling that can be relatively 
easily implemented. These include Brier's (1980) Dirichlet 
multinomial (DM) model and its extension to DM mixtures 
Thomas and Rao, 1987). They also include an extension of 
Brier's model to logistic normal distributions made possible 
by Scott and Rao's (1981) generalization of the method. Un- 
fortunately, these various models all fail to satisfy one or more 
of the above conditions. A new model, based on a "modified 
logistic normal" (MLN) distribution, has therefore been devel- 
oped for use in this study. The MLN model can, in principle, 
satisfy all the design conditions; the preliminary implemen- 
tation described in this paper satisfies every condition except 
condition (iv). 

I I I .  T h e  Mod i f i ed  Logis t ic  N o r m a l  M o d e l .  

1. Introduction 

Given cell probabilities ~ij, i = 1, . . . , r ,  j = 1 , . . . , c ,  the 
MLN model generates (rc × 1) vectors of non integer pseudo- 
counts mt  that  satisfy E ( m t )  = m~r. L independent draws 
of pseudo-counts will be used to represent L clusters, and an 
estimator -k of the vector of probabilities ~r will be found that: 

(i) is consistent (and asymptotically unbiased) as L --+ ~ ;  

(ii) has a covariance matrix that exhibits the variance inflation 
characteristic of two-stage clustering. 

The cell probabilities can be generated, under the indepen- 
dence hypothesis, from preset marginals ~rR and ~rc, or, if 
non-independence is to be simulated, they can be generated 
using the Bahadur representation 

~rid = ~ri.~r.d + Pij {~r.d ( 1  ~r.d)} x/2 {~ri. (1 - 7ri.)} 1/2 3.1.1 

The data generation scheme will be discussed first, followed 
by a description of the sample estimators and their properties. 
For proofs, see TSR (1989). 

2. Data Generation 

Stage I: Let #ij = ln(~rij), i = 1 , . . . , r ,  j = 1 , . . . , c .  Then 
draw a sample of L cluster proportions p~ = (Plxt, . . .P~ct) ' ,  g = 
1 , . . .  L according to the following scheme. 

2 (a) Draw Zidt from N(#id,ai2),  where aid are constants which 

will be chosen to yield desired values of ~R, ~C, and 6. 

(b) Set Yijg = exp{Xij~ - ai~/2}. 

(c) F o r m p i j ~ = y i j ~ / { ~ j  Yij~} =yij~/T~. 

Then we have: 

R e s u l t  1 

3.2.1 

3.2.2 

(a) E E Pidg = 1, ~ = 1, . . . , L .  3.2 .3  

i j 

(b) E(yijg) = 7rij; E(Tt )  = 1; 3.2.4 

(~) v(v~j~) ~ 2 V(T~) -- 7rij,)/ij; 

= E E  2 2. 7rij"[ij , 3.2.5 
i j 

where 72j = exp(a2j) - 1. 3.2.6 

Stage II: For each Pe, select a "modified multinomial 
sample" of non-integer "size" mT~ as follows: 

(a) Draw a multinomial sample of size m conditional on pg and 
denote it m*g, where ~ ~ mi*jg = m, and m is integer. 

i j 

(b) Form mg - Ttm~, so that ~ ~ midg = rnTg. 
i j 

L L 

The total sample "size" is now ~ rnTg = m ~ T~ = n, 
~=1 l=l 

which is random. However, E(n)  = mL.  

R e s u l t  2 

(a) E ( m t )  - rmr; 3.2.7 

(b) V(mt)  m P  + m 2 diag 2 2 ---- (Trij'~ij) , 3.2.8 

where diag(-) denotes a diagonal matrix of order rc × rc, and 
P = diag (r i j )  - 7rlr'. 

3. Estimation 

A natural estimator ofTrij is ~rij = ( ~ m i j ~ ) / m L ,  i 

1 , . . . , r ,  j = 1 , . . . , c ,  for which E(~') = ~r, and V(~') = 
/ T. \ 

( m 2 L ) - l V ( m t ) .  Unfortunately, E E ~ij -- ~ ~ T£) / L =  
i j ~=1 

~ 1. Such an estimator is not acceptable in practice, even 
though E(T)  = 1. An alternative estimator is given by 

¢rij = F, m i j d m E T ~  = ~rij/T 3.3.1 

From the earlier results, ¢rij is a consistent estimator of lrij as 
L ~ ~ .  Also, it can be shown that 

R e s u l t  3 
V(~r) " ( m L ) - I ( P  + mPD~,2P)  3.3.2 

where D,),2 = diag(ff~j), and the error in the Taylor series 
approximation to V ( # ) i s  o (L- i ) .  

The scaled covariance matrix of ~r again demonstrates 
the extra-multinomial variation typical of two-stage cluster 

2 2 sampling. As aij --+ O, 7ij --* 0 and the scaled form of V ( ~ )  
reduces to the multinomial covariance matrix P 

The next task is to develop an estimator of V(-k), which 
can be used in the Monte Carlo study. The estimator ~" can 
be written in the form 

L 

l=l 
where 

f)~ = m ; / m  = m d m T ~ .  3.3.4 

The cluster probabilities f)t are i.i.d., but the weights T t / T  are 
not. The weights are correlated as a result of their common 
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m 

denominator T. The f~e themselves do not, therefore, lead to 
a natural variance estimator. A consistent estimator of V(-k) 
given in Result 3 can, however, be obtained (TSl~, 1989). 

The elements of the model are now in place: (i) a ran- 
dom number generating scheme; (ii) a consistent estimator ~', 
together with a consistent estimator of its variance; (iii) a con- 
venient expression for the asymptotic variance of ~r which can 
be used to design the experiment and define the required pa- 
rameter settings. A drawback of this scheme is that "k is not 
model unbiased for 7r. TSR (1980) show, however, that for the 
cases considered in this study the bias will have a negligible 
effect. 

4. Controlling the Average Generalized Deffs 

As noted in Section 2, the model must allow for experimental 
control of the average generalized design effects 
AR, Ac, and ~, which amounts to finding values for the ele- 
ments 7~j of the vector ~.2 that yield specific values of AR, Ac, 
and ~. One method of achieving this has been developed by 
TSR (1989), based on the asymptotic form of V(Tr). 
After some algebra, closed form expressions for AR, Ac and 

2's. For given val- can be derived that  are linear in the 7ij 
ues of AR and Ac, a set of values of the 7~j's corresponding 
to the maximum attainable value of ~ can then be found by 
linear programming (LP). Values of the 72's corresponding to 
intermediate design settings of ~(< ~max) can be obtained by 
interpolating between sub-optimal "feasible basic" solutions to 
the LP. Details are given in TSI~ (1989). One drawback of this 
LP method is its failure to control variation in the individual 
design effects, as quantified by their coefficients of variation. 
Of particular concern is the value of CV(~), which has a major 
effect on the performance of the test statistics. A method of 

2 's corresponding to specific values of selecting values of the 7ij 
AR, Ac, ~ and CV(,5) is being developed. 

IV  T h e  M o n t e  Car lo  S t u d y  

1. The Statistics Examined 

The following independence test statistics were included in the 
preliminary study. For details see Rao and Thomas (1988). 

(1) The multinomial-based Pearson X 2 test; 

(2) The multinomial-based log-likelihood G 2 test; 

(3) A Wald test X~v = nla'Var(h) -1 h, where la has elements 
(~ i -  ~.~.~). 

(4) An F-based version of the above, defined as F~o = [ L - ( r -  
1) (c -  1) + 1]/[(L - 1)(r - 1 ) ( c -  1)]X~, referred to an F 
distribution on ( r -  1) ( c -  1) and ( L -  ( r -  1 ) ( c -  1)+ 1) 
degrees of freedom. 

(5) The first order Rao-Scott correction to X2; denoted X 2 . 

(6) An F-based version of the first order Rao-Scott correction, 
referred to an F distribution on ( r -  1 ) ( c -  1) and ( r -  
1)(c - 1)(L - 1) degrees of freedom; denoted FX~. 

(7) A conservative version of the above referred to an F on 
( L -  1) denominator degrees of freedom (see Rao and 
Thomas, 1988); denoted F*Xc .2 

(8) The first order Rao-Scott correction applied to G2; denoted 
G~. 

(9) The second order l~ao-Scott (Satterthwaite) correction ap- 
plied to X2; denoted X~. 

(10) The Singh (1985) Q(T) statistic, a stabilized version of the 
chi-square based Wald test, evaluated for several differ- 
ent values of e, the eigenvalue cut off parameter; denoted 
Q(T) . 

(11) An F-based version of the above, defined as FQ(T) = 
[ L -  T + 1 ] / [ (L -  1)T]Q (T), referred to an F distribution 
on T and L -  T + 1 degrees of freedom. 

(12) The Fay jackknifed procedure applied to X2; denoted XJ.  

(13) The Fay jackknifed procedure applied to G2; denoted G~. 

2. Parameter Settings 

This preliminary study concentrated on a single 3 × 3 table 
with cell probabilities, 

7rR = (1/2,1/3,  1/6)' and 7re = (1/6, 1/3, 1/2)'. 

A single experiment generated results for L = 15, 30, 50, 70 
and 100 clusters, with m = 20 conditional multinomial draws 
per cluster. Empirical test significance levels were estimated 
based on 1000 Monte Carlo trims, for three nominal settings 
of 1%, 5% and 10%. The overall strategy followed that used 
by Thomas and Rao (1987); thus 100 clusters were first gen- 
erated for each Monte Carlo iteration, each succeeding sample 
of L clusters then being a subset of the previous one. All 
test statistics were applied to the same data. Estimates of 
significance levels for different statistics for the same number 
of clusters will thus be highly positively correlated; estimates 
for the same statistic for different values of L should also be 
positively correlated, increasing the precision of the compar- 
isons. For value of L, TSR (1989) give detailed results for four 
combinations of AR, Ac, ~, for the case a = 5%, each combi- 
nation exhibiting different degrees of variation among the 5i's 
namely, CV(5) = 0.28, 0.40, 0.58, and 0.80. For lack of space, 
detailed results are given in Table 1 of this paper only for three 
values of VC(5) and for two values of L, namely L = 15 and 
50. Conclusions based on the full set of results will, however, 
be incorporated into the discussion of Table 1. Selected results 
for the different settings of a (1%, 5% and 10%) are shown in 
Table 2. Preliminary results on power are presented in Table 
3. 

3. Discussion of Table 1 and the Results in TSt~ (1989). 

The three panels of Table 1 have CV(5)'s of .28, .40 and .81 
respectively. For the first panel, 5 = 1.77; $ = 2 for the 
remaining two. Values of ~ and CV(5) in this range have been 
reported in the literature. For example, for a 2 × 4 table taken 
from the Canada Health Survey, Hidiroglou and Rao (1987) 
estimated ~ = 1.77 and CV(~) = 0.47. Several conclusions 
can be drawn from Table 1, and the results in TSR (1989). 

(i) X 2 and G2: Significance levels (SL) are severely inflated as 
expected. These procedures were included for reference 
only. 

(ii) Z 2 :  Even for large numbers of clusters (L > 50), signif- 
icance levels are inflated. For small numbers of clusters, 
significance levels are approximately equal to SL(X 2) and 
SL(G2). Again, this result was expected, based on em- 
pirical evidence from earlier studies. 

(iii) Fw: The results confirm Thomas and Rao's (1987) find- 
ings for the goodness-of-fit test. Significance levels are 
much lower than for X~v , though still somewhat inflated 
for small L, and also for large CV($). 
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(iv) X~ G~, FX~ and * 2 , F Xc" Again these results are con- 
sistent with the findings of Thomas and l~ao (1987). For 
small CV(~), X 2 performs adequately; (5.9 _< SL (X 2) <_ 
6.8 for CV(~) = .28). There is little to choose between X 2 
and G 2 for the sample sizes studied here. As CV(~) in- 
creases, X 2 tends to become liberal, particularly for small 
numbers of dusters  (L = 15) as can be seen from Table 
1. Since SL(FX 2) < SL(X 2) everywhere, the F-based 

• 2 version is the better  of the two. F X c is excessively con- 
servative for small L, when CV(~) is small to moderate. 
(SL(F*X 2) = 2.7 for L = 15, and CV(,5) = .28). It is not 
recommended for use with tests of independence unless 
L >_ 30, except when CV(~ i is large (>_ .50). 

(v) Z 2" For small to moderate values of CV(~), the second 
order Rao-Scott statistic yields SL's that  are within two 
Monte Carlo standard errors (4- 1.4%) of the nominal 
5% level (Table 1, and TSR, 1989). For large values 
of CV(~),SL(X~) tends to be somewhat liberal (8.5 
SL (X 2) < 9.8 for CV(~) = .81). For CV(~) as large as 
0.58, X~ performs adequately (TSR, 1989). 

(vi) X~ and G 2" There is little to choose between these two 
versions of Fay's procedure; the discussion will refer to 
Z~.  For small to moderate values of CV(~), X~ provides 
good control for large numbers of clusters. As L decreases, 
SL(X 2) increases, and for L = 15 it is definitely liberal 
as can be seen from Table 1. This characteristic of X~ 
was previously noted by Thomas and Rao (1987) for the 
goodness-of-fit test. 

(vii) Q(T). Significance levels are presented for a range of val- 
ues of e, the eigenvalue cutoff parameter.  The largest val- 
ues of e yield the least inflated SL. For e = .1 and .05, SL's 
are generally inflated compared to the nominal a = 5%, 
and compared to the competing procedures FX 2, X 2 and 
Xj .  For e = .025 and .01, the degree of SL inflation is 
unacceptable. 

(viii) FQ (T)" It is to be expected that  bet ter  control of sig- 
nificance levels will be exhibited when eigenvalue trim- 
ming is applied to the F-based Wald statistic. This is 
confirmed by the results in Table 1 and TSt~ (1989). 
Within the range .05 _< e _< .1, FQ (T) yields good con- 
trol of significance levels across all conditions studied. For 
e = .025 and .01, SL's are close to the nominal 5% level for 
CV(5) < .4, but exhibit some inflation for CV(~) > .58 
(TSI~, 1989, and Table 1). Conclusions regarding the mer- 
its of the FQ family of statistics relative to FX 2, X 2 and 
X j  must await a discussion of their relative powers. 

4. Discussion of Table 2 

Before considering power, it is interesting to see how the statis- 
tics that  provide good SL control at a = 5% perform at 
a = 1% and a = 10% (X 2 is included for comparison only). 
The two panels of Table 2 display this information for the 
minimum and maximum values of CV(~) studied. 

It can immediately be seen that  as nominal a rates de- 
crease, the relative level of control worsens rapidly. For ex- 
ample, SL(X 2) is about ten times the nominal value when 
a = 1%, and about three times its nominal value when a = 
10%. For CV(~5) = .28, the various Rao-Scott procedures do 
somewhat bet ter  than both FX~v and X}, and about as well 
as FQ (T). However, for CV(6) = .81, all procedures except 
FQ (T) do relatively poorly (SL's from 2% - 4% when a =1%). 
There are two main conclusions to be drawn, in addition to 
those previously discussed in detail for the case a =5%. 

(i) For a =10%, the procedures X~ and XJ  which have been 
strongly recommended in other studies provide reason- 
able, though slightly liberal, control across a wide range 
of values of CV(6). The FQ (T) statistic for e = .05 and 
does better ,  and appears to keep SL's very close to the 
nominal 10%. 

(ii For a =1%, the only test statistic that  maintains control 
at the nominal level for both values of CV(~) is FQ (T). 
The best of the competition, other than Q(T), is F*X 2, 
which exhibits SL's of 0.7 and 2.5% for CV($) = .25 and 
.81, respectively. 

For smaller values of e, the degree of SL control exhibited 
by FQ(T) diminishes (results not shown). Unfortunately, as 
will be seen below, the power of FQ (T) is relatively low when 
e >_ .05. For this reason, modified versions of FQ (T) were 
included in which T was controlled at a minimum value To. 
In general, To should be a high fraction (say 4/5) of the length 
of the vector h in the definition of X~v. In the present study, 
has four elements and To was set at 3; thus no more than one 
eigenvalue was deleted. The corresponding test was denoted 
FQ (T). Also, in order that  e might be kept as small as possible 
(in the interests of power), a combined test Fw * FQ (T°) was 
considered which rejects H0 only when both individual tests 
reject. Clearly, the combination test is more conservative than 
either test taken individually. 

5. Discussion of Table 3. 

A preliminary comparison of the powers of the potentially vi- 
able procedures (from the point of view of SL control) is dis- 
played in Table 3. It involves only one setting of ~ and CV(~), 
so that  conclusions are tentative. SL values are given, together 
with empirical powers (percentage rejections) at a nominal a- 
level of 5%, for deviations from H0 of p = .02 (with L = 50) 
and p = .07 (with L = 15). For a definition of p, see equa- 
tion 3.1.1. Also included in Table 3 (in square parentheses) 
are estimated powers corrected for differences in SL's. These 
were obtained by graphing SL against power, for the three val- 
ues of nominal a,  and interopolating to estimate power at SL 
= 5%. These provide a rough but useful guide; final results 
will be based on a more accurate determination of empirical 
cut-offs. In the table, all SL's and powers are based on 1000 
Monte Carlo intervals, except for Fw. In some cases, partic- 
ularly when L = 15 and p = .07, Fw is not defined for all 
iterations due to the presence of zero l?ij's; for Fw, therfore, 
SL and power estimates refer only to cases where Fw was de- 
fined. For computing SL's and power for the combination test 
Fw * FQ (T°), only FQ(T°) was applied wherever Fw was not 
defined. For ease of interpretation, the discussion will focus on 
two broad classes of test statistic: (i) those based on Pearson's 
X 2, namely FX 2, F*Xc ,2 X2s and X j; (ii) those based on the 
Wald test X~,  namely Fw, FQ (T°) and F w ,  FQ (T°). In the 
former class, all statistics show comparable power. However, 
Xs has the best performance overall in view of its better  con- 
trol of SL. In the lat ter  class, F~ does not in general yield good 
SL control, while FQ (T°) and the combination statistic (data 
not shown) do better,  particularly as e increases. Thus it is 
of interest to compare X~ with FQ (T°) (and with the combi- 
nation test). For e = .01, FQ T°) and X~ has similar power 
on the average; on the other hand, SL's are somewhat inflated 
for FQ (T°), while x~ displays excellent control. For e = .025, 
FQ(T°) displays good SL control and reasonable power, though 
in this case its power is lower than that  of X~ for both values 
of p studied. It is worth noting that  the power of FQ (T°) de- 
creases rapidly as e increases. In practice, therefore, FQ (T°) 
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should be used with the smaller values of e. The combina- 
tion test also appears to be potentially useful in controlling 
SL when e is small (data not shown), and it is currently being 
investigated further. 

6. Conclusion 

Most of the conclusions drawn by Thomas and Rao (1987) on 
the basis of goodness-of-fit tests appear to hold for tests of in- 
dependence in two way tables. Of course, only one 3 x 3 table 
has been examined, so the results are preliminary. The simu- 
lation results suggest that for testing independence in R x C 
tables, X 2, the second-order Rao-Scott connected X 2 test has 
the best performance of all test procedures examined. When 
CY(5) is large, Z~ (and most of its competitors its competi- 
tors) is liberal and this situation is currently under further 
investigation. It should be noted that X~ requires full infor- 
mation on V, the covariance matrix of proportions. Given 
only partial variance information, FX2c can be used instead. 

The X 2 procedure uses the full V to correct for the use of a 
working (multinominal) covariance matrix in X 2. The Wald 
test procedure X~, on the other hand, uses the full covari- 
ance matrix directly, resulting in an asymptotically optimal 
test. All Wald-based procedures studied here attempt to sta- 
bilize this asymptotically optimal test, i.e. to combine its high 
asymptotic power with adequate SL control. Interestingly, the 
test X~ appears to give the best-finite sample perfomance, 
even though it is not based on an optimal test. Nevertheless, 
the Wald procedure provides a flexible and widely applicable 
approach to the construction of optimal tests whenever a con- 
sistent estimate of the covariance matrix is available, and it 
is natural to seek modifications to Wald tests whenever their 
stability is in doubt. For the problem studied here, the mod- 
ification F~ corrects to some extent; its power is good but 
its SL control is not fully satisfactory. The test FQ (T°) is an 
improvement on F~; if a Wald-based test is desired, it offers 
reasonable control of significance levels and power. Working 
rules for closing To and e are being investigated further for 
other two-dimensional tables, as well as for three-dimensional 
tables. 
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Table 1 
Test Significance Levels for Nominal a = 5% 

~ R  

~c 
$ 

No. of Clusters 

Procedures 
X 2 

x~ 

Fw 

x~ 
FX~ 

• 2 F X~ 
x~ 

x~ 

Q(T),e = .1 

.05 
.025 

.01 

FQ (T), c - . 1  

.05 
.025 

.01 

2.0 
1.5 

1.77 

15 50 

23.2 23.9 

22.7 8.6 

7.5 6.0 

6.8 6.2 
5.6 5.9 
2.7 4.7 
4.6 4.9 

7.5 6.5 

9.5 7.1 
12.0 7.5 
15.4 8.6 
21.1 8.5 

3.8 5.5 
4.5 5.4 
4.7 6.0 
6.6 6.0 

cv(~)  

1.5 
2.13 
2.0 

15 15 

26.0 30.4 

22.1 10.4 

9.0 7.4 

8.1 6.9 
6.3 6.1 
2.2 4.7 
4.8 4.6 

9.5 7.4 

9.1 7.3 
10.2 7.7 
13.0 8.9 
18.8 10.3 

5.2 5.4 
4.9 6.0 
5.1 6.5 
7.1 7.4 ._ 

3.0 
1.5 
2.0 

15 

19.8 24.1 

26.0 12.6 

10.9 10.0 

11.5 10.0 
10.3 9.8 
6.6 9.2 
9.2 9.3 

11.9 8.8 

9.1 6.7 
12.9 8.7 
18.3 12.4 
25.0 12.6 

4.9 5.3 
6.3 6.2 
7.9 9.8 

10.4 10.0 

Table 2 
Control  of Test Significance Levels (1) as a 

Function of Nominal a-Level: L = 30, 5 = 2. 

Procedure 

X 2 

Fw 

rx: 

• 2 F Xc 

x~ 

Xs 

Q(T), c =.1 

.05 

FQ(T),c =.1 

.05 

cv(6) 
.40 .81 

a-level 
1% 5% 10% 

14.1 27.9 37.7 

2.1 8.0 13.3 

1.5 5.8 10.9 

0.7 4.4 8.8 

0.9 4.8 9.1 

2.7 7.7 13.1 

2.5 8.2 13.9 

3.3 9.3 15.3 

1.3 5.6 10.8 
1.3 5.8 11.5 

a-level 
1% 5% 10% 

11.4 22.9 32.2 

3.1 9.9 16.5 

3.8 9.6 15.6 

2.3 7.9 12.9 

3.3 8.8 14.2 

3.3 8.8 14.7 

2.8 8.0 13.8 

3.8 9.9 16.5 

1.2 5.2 10.0 
1.3 6.0 11.2 

(1) 4000 trials; 95% C.I. on 1%, 4- 0.3%; on 5%, 4- 0.7% 

Table 3 
Comparison of Power of the Viable Procedures; 

Nominal a = 5%, 5 = 2.0, CV(6) = 0.40 

Procedure 

F~ 

FX~ 

* 2 F X c 

x~ 

x~ 

FQ(To ), 

c = .05 
e = .025 
c = .01 

Fw * FQ (T°) 
e = .05 
e = .025 
e = .01 

Number of Clusters 
L=15 L=50 

Power (1) 
SL (p = .o7) 

9.0 99.8 [99](2) 

6.3 96.1 [95]( 1 ) 

2.2 91.5 [95] 

4.8 92.7 [93] 

9.5 99.4 [97] 

5.3 59.4 [59] 
5.1 62.7 [62] 
7.1 80.7 [77] 

3.5 54.3 
4.2 62.6 
7.0 80.6 

Power(D 
SL (p = .02) 

7.4 50.6 [41] 

6.1 36.0 [32] 

4.7 32.6 [33] 

4.6 30.9 [33] 

7.4 40.1 [33] 

6.0 9.0 [8] 
6.5 29.2 [24] 
7.4 50.2 [41] 

4.7 59.3 
6.1 62.6 
7.4 80.6 

(1) First  power est imate is the percentage of rejections for a nom- 
inal a = 5%; estimate in square parentheses is interpolated power 
corresponding to an empirical test level of a = 5%. 

(2) In this case, Fw was computable only for 497 out of 1000 M.C. 
trials. 
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