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I.INTRODUCTION 

This paper is to serve these purposes: 

(I) to report on our progress to date in 
developing software for empirically studying 
the effects of complex survey designs on 
analyses of health survey data; 

(2) to present some results from a first 
empirical study, in which we examine the 
properties of the BRR and Jackknife variance 
estimators; and 

(3) to outline our approach to a second 
empirical study involving the comparison of 
vector means for subdomains. 

In our earlier paper (Katzoff, et al 1988) we 
listed six major survey-design and analysis tasks 
that we shall expect the software we develop to 
perform: 

(i) construction of primary sampling unit 
(PSU) strata; 

(ii) selection of PSUs; 
(iii) allocation of sample size; 
(iv) generation of sample weights and first 

order estimates; 
(v) computation of variances and their 

sample-based estimates; and 
(vi) creation of empirical distributions of 

estimates, especially, estimates of 
variances, test criteria or other 
statistics of interest. 

At the time of our previous paper, we had 
completed work on one set of options for tasks 
(i), (ii) and (iii) only. Much work to embed more 
investigative options in those portions of the 
software remains. (For example, we expect that 
further development of the software will provide 
for the examination of the consequences of 
applying a probability minimum replacement 
sampling technique (Chromy, 1986) and the unequal 
probability sampling scheme of Saxena, Singh and 
Srivastava (1988). However, we have given highest 
priority to developing at least one software 
option for (iv), (v) and (vi) because we felt that 
it was necessary to demonstrate our approach while 
interest remains high, to further the 
identification of problem areas and to permit 
development of software options in parallel with 
the conduct of some empirical studies. 

2. DESIGN OF GENERAL SYSTEM FOR EMPIRICAL 

EVALUATIONS 

To reflect the structure of current survey 
designs, we created a first design with a large 
number of strata consisting of individual 
counties, groups of contiguous counties and large 
metropolitan areas (SMSAs). Since these 
geographical units are chosen at the first stage 
of sample selection, we refer to them as primary 

sampling units (PSUs). Some PSUs are taken with 
probability one; they are called self-representing 
(SR) PSUs. PSUs chosen with probability less than 
one are called non-self-representing (NSR) PSUs. 
NSR PSUs have been aggregated into strata from 

each of which two PSUs are drawn for each 
simulation. 

Before addressing the problems of computing 
sample weights and first order estimates, we 
considered addition of an option for a self- 
weighting design. For initial empirical work, we 
had originally only allowed for allocation of the 
sample in proportion to the PSU populations. For 
strata where PSUs were not chosen with certainty, 
this would result in a situation where the size of 
the sample drawn from a NSR PSU would depend upon 
which other PSU was included in the sample. It 
was easy to add this option and we felt it was 
important to do so since this would permit us 
comparisons with results from a common survey 
design practice. In general, we expect that 
sample allocation methodology for multistage 
designs for situations where the allocation of 
sample depends upon from which clusters the 
observational units are to be drawn will recieve 
more attention in the future. 

The sample weights are, of course, the 
inverses of the total probabilities of inclusion 
for each unit. They reflect a decision that, at 
the second stage of selection, clusters of housing 
units (called segments) were chosen with equal 
probabilities. To provide for the possibility of 
investigating some item and unit nonresponse 
patterns which depend upon membership in various 
subpopulations, sample weights are assigned to 
individual records. 

Random Selection of PSUs. In the strata of 
NSR PSUs, the PSUs have been chosen with 
probabilities proportional to the amount of 
population in those geographical units according 
to Brewer's method (Brewer, 1985) as recommended 
by Pfefferman (1986). 

In using Brewer's procedure the NSR PSU 
strata have been defined and the proportion of the 
stratum population in the l-th PSU, PI, has been 
calculated for each value of the index I. Let the 
values of PI be stored in a vector VECP of 
dimension D, equal to the number of NSR PSUs in 
the stratum. 

These specifications result in a selection of 
two PSUs per stratum. The operations given in the 
next section must be repeated for each stratum: 

(I) Calculate the entries of a vector VECPI, 
of the same dimension as VECP, as follows: 
a. for each value of 1=1,2 ..... D, compute 
VECPI(1)=PI(I-PI)/I-2P I (Note that 
PI=VECP(1). ) 
b. calculate S, the sum of the coordinates of 
VECPI. 
c. normalize the values of VECPI(1) by 
dividing each value by S; in other words, 
replace the value of VECPI(1) computed (I) a 
with VECPI(1)/S. (2) Select a random number, 
RI, between zero and one and choose unit I if 
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I is the smallest index for which 
RI<VECPI(1)+VECPI(2)+ .... +VECPI(1). 
Record and store the index of the unit 

selected, I0 say. 
(3) Calculate the entries of a vector VECP2 

also of dimension D as follows" 
a. VECP2(1)=VECP(1) if I is not equal to I0" 

when I=I0, VECP2(1)=0. 
b. normalize the values of VECP2(1) by 

dividing each by I-VECP(IO). 

(4) Select a random number, R2, between zero 
and one and choose unit J if J is the 
smallest index for which R2< 
VECP2(1)+VECP2(2)+...+VECP2(J). 
Record and store the index of this unit, the 
second unit selected as the value of JO. 
(5) Compute the joint inclusion probability 
of units I0 and J0 as 
JOINT=VECPI(10)*VECP2(J0) + VECPI(JO)*RATIO 
where RATIO=VECP(10)/{I-VECP(J0)}. 
Allocation of Sample and Selection of 

Segments Under Proportional Allocation to PSUs by 
Size. This section is concerned with the process 
of distributing the sample across strata, PSUs, 
and segments. For our purposes, a sample size of 
5,000 was considered adequate. 
(i) Begin by determining a sample size for each 
stratum according to this formula" 
n(s) = sample size for stratum s 

= (population of stratum) x 5000 
universe population 

(2) Next, proportionately allocate the sample size 
to the two PSUs selected for stratum s; that is, 
compute 

n(I,s)=[PI/(PI+P2)] x n(s), 
the sample size for the first PSU selected from 
stratum s, and 

n(2,s)=[P2/(Pl+P2)] x n(s), 
the sample size for the second PSU selected from 
stratum s, where P1 and Pz are the population 
sizes for the first and second PSUs respectively. 
(3) Finally, for i=1,2, determine the number of 
segments to be selected from each PSU from this 
expression: 

n'(i,s)= [Pi/gi(s)] x n(i,s) 
with n'(i,s) rounded to the nearest integer, where 
gi(s) is the number of segments in the i-th PSU 
chosen from stratum s. 

[When gi(s) is a constant for all i and s]. 
It can be seen that the above allocation scheme 
produces sample weights which are proportional to 
the inverses of the relative sizes of the PSUs 
chosen in each stratum only. In a self weighting 
scheme, where the sample weights would be constant 
throughout, n(i,s)=n(s)/2 if the constant is just 
the inverse of the sample size divided by the 
universe size. 

Self-weighting selection scheme. The purpose 
of this addition is to provide the user with the 
option of examining a self-weighting design. 
Using the earlier notation for SR PSUs n'(s) is 
unchanged. For NSR PSUs, n(i,s) = n(s)/2 and 

n'(i,s)=[g i(s)/P i] x n(i,s). 
Here we use the earlier definitions: (i) gi(s) 
equals the number of segments in the i-th PSU; and 
(2) ei is the population size for the i-th PSU. 
Observe that since n'(i,s) here is not a function 
of which pair of PSUs were selected at the first 
stage, you should always get the same value for 
n'(i,s) for the i-th PSU. Therefore, the bias- 

correction term discussed below should equal zero 
for unbiased variance estimates when the self- 
weighting design option is selected. 

Selection of segments. The procedure for 
selecting segments is method i for sequentially 
selecting a SRS (Sunter, 1977). The procedure is 
to be applied independently to each PSU. 

Let M denote the number of segments in a PSU 
and let m be the number of segments to be selected 
at random (i.e., m=n'(i,s) for some i and s, in 
the previous notation). For clarity suppose that 
the M segments from which we are to draw a sample 
have been serially assigned index values 
1,2 ..... M. (In practice this is not necessary of 
course.) Select the first unit in the PSU with 
probability m/M and, thereafter, select unit j 
with probability 

(m-mj)/(M-j+l), 
where mj denotes the number of units selected 
prior to consideration of the j-th unit. The 
process moves sequentially from one unit to the 
next and terminates as soon as mj=m. 

This sequential procedure can be implemented 
with one pass of the file and without use of lots 
of computer storage. This is important in any 
large scale simulation. 
3. VARIANCE ESTIMATION PROCEDURES 
One standard output of the simulation software is 
linear estimates of finite population parameters: 
weighted sums of the sample values of the 
variables measured. Estimators of population 
parameters that can be expressed as differentiable 
functions of the linear estimates (for example, 
ratio estimates and subdomain means) can use these 
simulation outputs for studies of such estimators. 
Furthermore, since another standard simulation 
output is a covariance matrix for the linear 
estimates, in most cases of interest it should be 
easy to compile variance estimates with the help 
of Taylor series linearization. 

Design based variance. Under the design 
currently programmed, the textbook formula 
(Cochran, 1987 p. 301-2) for the NSR component of 
total variance from NSR-stratum s when the sample 
sizes are nonrandom is given by 

~is~2s - ~12 , s . . . .  

Vls = (Yls-Yzs)(Yls-Yzs)' + A 

~12,s 
where 

= > n'(i's)~is[N'(i's)-n'(i's)] Bi A 

and i=i,2 N'(i,s) [n'(i,s)-l] 

n'(i,s) 

I . . . .  
Bi= (Yiks-Yis/n' (i,s)) (Yiks-Yis/n' (i,s))' 

k=l 

Here, for sample PSU indices i=I,2 , Yiks is the 
weighted sum of the sample values for sample 
segment k of sample PSU i drawn from NSR stratum s 
and 

Yis=~{l<k<n,(i,s)}Yiks • 

=is=2Pis, where Pis is the proportion of 
stratum s population that belongs 
to sample PSU i drawn from stratum 
s 

758 



n ~ s n j ~ { ( 1 - n ~ )  -1 + ( 1 - n j ~ )  -1} 

~ij,s = 

~ [Irrs (2-~rr s )/(l-lrr s ) ] 

r=l 

When the sample sizes at the second stage depend 
upon which PSUs are included in the sample, this 
bias correction term must be added to Vls to 
obtain unbiased variance estimates 

[ n '  ( i , s ) ]  2 

I (2_~s)(fi _~) c 
[n' (i,s)-l] 

i=1,2 

where 

n'(i,s) 

I . . . .  
C = ( Y i k s - Y i s / n ' ( i , s ) ) - ( Y i k s - Y i s / n ' ( i , s ) ) '  

k=l 

where  i f  A ( i ) = { 1 , 2  . . . .  N s ) \ / i }  and  N s d e n o t e s  t h e  
number  o f  PSUs i n  s t r a t u m  s ,  

and 

?~ij , S 
f i = Z  ( 1 / n i  s { i , j  } ) 

j in A(i) ?ris 

~j s 
~is----X (i/ni s { i,j } ) 

2-1ri s j in A(i) 
In the last two formulas nis{i, j} denotes the size 
of the sample drawn from PSU i of stratum s if the 
sample contains PSUs i and j. ~ij and ~js are as 
defined above as is ~ij,s. The component of total 

variance that arises from the SR PSUs is the sum 
over s, as s runs over the SR-strata, of 

n ' ( s )  

I . . . .  
Vzs = D (Yks -Ys/n' (s)) (Yks "Ys/n' (s))'. 

k=l 
where 

n' (s)[N' (s)-n' (s) ] 
D = 

N ' ( s ) [ n ' ( s ) - l ]  

n ' ( s )  i s  t h e  number  o f  s e g m e n t s  d rawn f rom t h e  s -  
t h  SR s t r a t u m  and  N ' ( s )  i s  t h e  t o t a l  number  o f  
s e g m e n t s  c o n t a i n e d  by  t h a t  s t r a t u m .  Yks and  
Ys a r e  s e l f - r e p r e s e n t i n g  a n a l o g u e s  o f  Yiks and 
Yis - -  t h e  s u b s c r i p t  i i s  u n n e c e s s a r y  f o r  t h e  
SR PSUs b e c a u s e  t h e y  a r e  t a k e n  w i t h  c e r t a i n t y  and 
a r e ,  t h e r e f o r e ,  s t r a t a  t h e m s e l v e s .  

I n  some e m p i r i c a l  work  i t  may be n e c e s s a r y  t o  
h a v e  t h e  c o v a r i a n c e  m a t r i x  o f  t h e  e s t i m a t o r s  and  
n o t  j u s t  an  e s t i m a t e  o f  t h a t  c o v a r i a n c e  m a t r i x .  
The c o v a r i a n c e  m a t r i x  o f  t h e  e s t i m a t o r s  i s  

s in NSR s in SR 

strata strata 

w h e r e ,  d r o p p i n g  t h e  s s u b s c r i p t  t o  s i m p l i f y  t h e  
notation, 

N 

= I - I (N i , )2 (fi -I/Ni ' )Si z + QI ~ri 

i=l 

N N 

I I (?riTrj ~ij ) (Iri- IYi -~j- IY" ) - j _ 

• ($ri- iYi _ ~j Iyj ), 
i=l j>i 

and 

Qz=N' (N' -n' ) S 2/(n' ) 

where N is the number of PSUs in the NSR stratum 

~i=2Pi, where (as previously described) Pi 
is the PSU population expressed as 
a fraction of total stratum 

population 

N' or N i ' is the number of segments in an SR- 
PSU or the i-th NSR-PSU of an NSR- 
stratum respectively 

H I is the sample size allocated to an 
SR stratum and 

N 
i 

S 2 or Si2=(Ni'-l)-1 l(yik-Yi/Ni')(yik-Yi/Ni' )' 

k=l 

for Yik equal to the k-th segment total and 

N s 
i 

Yi = lYi k 

k=l 

BRR and Jackknife Variance Estimates. The purpose 
of this first empirical study is to compare the 
distributional properties of the BRR and Jackknife 
estimators with those of the design-based unbiased 
estimates of variance. Our initial study of 
estimators of variance examined those for linear 
estimates of finite population totals. In so 
doing we hoped to avoid the confusion that can 
result from trying to deal with a lot of 
complexity in the very beginning. The variability 
and bias of the different variance estimators are 
of special interest to us. 

Because the variance estimators are quadratic 
forms, we thought it would be useful to summarize 
the numerical results in two ways instead of just 
one" (I) computation of the first few central 
moments of the empirical distributions" and (2) 
finding a Satterthwaite approximation to a 
multiple of a chi-squared variable. 

In producing the BRR and Jackknife estimates, 
we largely followed Rust (1985). To meet the 
requirements for the use of these procedures, the 
segments of the SR-PSUs were randomly assigned at 
each iteration of the simulation to one of two 
groups and the weighted sums of the variables for 
each group were formed. Similarly, for each NSR- 
PSU, a weighted sum of variables was calculated. 
For each stratum, s, we denote the sum for group 

or PSU i by Yis. (Note that for NSR strata, Yis 
is as previously defined.) 

There are several ways of implementing the 
BRR variance estimation procedure. We now 
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describe the approach we used" 
(I) compute the half-sample estimators of 
totals 

Y~= L (26~I,s Yls +25~z,s Yzs) 

s=l 

where 6=2,s=l-6=1,s and 

I, if PSU or group I of stratum s chosen 
6=i,s= for the half-sample 

0, otherwise 

(2) put 

80 

?=I (?I s +?2 s ) 

s=l 

and calculate the variance estimate 

60 

VB~R(?)= __l I (~ _?)z 
60 ~=i 

For the jackknife estimators we define jackknife 

totals 
80 

Y(is)=L (Y1u+Yzu) + 2Yjs 

u~s 

for j not equal to i ; i, j=l, 2 ; and s=l, 2 ..... 60. 
The jackknife estimate of variance is then 

- i 6o 2 

2 (?(is) "Y)2 

s=li=l 

HISTOGRAMS 
Histograms of estimates of totals and 

jackknife estimates of their variances are 
presented for short stay hospital days for 
nonwhite and white persons in the age group 46-57. 
These histograms represent what one might get from 
approximately i000 independent randomly selected 
samples from the universe previously described if 
they are generated according to the survey design 
discussed earlier; for each sample so generated, 
an estimate of total short stay hospital days and 
the estimate of its variance were calculated. The 
estimates of total days for white persons formed a 
histogram that is clearly less skewed than that 
for nonwhite persons. Since the portions of 
samples drawn from the nonwhite subdomain can be 
too small for central effects to show up it is not 
hard to understand the apparent lack of symmetry 
in the histogram for that group. Whether there is 
sufficient symmetry in the histogram of estimates 
of total days for white persons is open to 
question; a nonparametric test for distributional 
shape (for example, a Lillifors test) might be 
useful in this case. The histograms for the 
jackknife variance estimates for white and 
nonwhite persons are not very different and are 
strongly positively skewed. The need for 
comparisons with appropriate parametric 
distribution models is clearly indicated. 

4. COMPARISON OF SUBDOMAIN MEANS 

As an illustrative case, we anticipate 
undertaking a detailed study of the comparison of 
vector means for short-stay hospital days in 
accordance with the age breakdown: 17-25, 26-32, 
33-45, 46-58 and 58+, for white and nonwhite 
groups. The discussion of this section describes 
how we plan to use the basic linear estimates and 
their estimated and expected variances and 
covariances in that study. For now there is a 
limit on the dimensionality or size of vectors 
that can be considered in multivariate 
comparisons. This is due to our limiting the 
number of variables for which we can compute a 
variance-covariance matrix to twenty. However, we 
may later endeavor to circumvent this limitation 
somehow by using the observation that if X and Y 
are vector random variables, all the necessary 
variances and covariances for Z=(X',Y')' can be 
obtained from suitable operations with Var(X), 
Var(Y) and Var(X+Y). 

In what follows we assume that algorithms for 
calculating the basic (or linear) estimates and 
their variances and covariances have been 
developed and are available for use without 
revision. The outputs of those algorithms are 
essential inputs for operations described here. 
In particular, it is assumed that we can now 
quantify the vector of basic estimates 

E'=(W I ..... W 5 ,PW I ..... PW 5 ,01 ..... 0 s ,PO I ..... PO 5) 

and their covariance matrix, V, where for 
i=1,2 ..... 5, W i denotes the estimated number of 
short stay hospital days for white persons in age 
category i; PW i denotes the number of white 
persons in age category i; 0 i denotes the 
estimated number of short stay hospital days for 
nonwhite persons in age category i; and PO i 
denotes the estimated number of nonwhite persons 
in age category i. We will have need of the 20x5 
"multiplier" matrix for the estimates, M, defined 
as four stacked diagonal matrices 

D[ (PW I )- I , (pWz)- i ..... (PW5)- I ] 

D[ -W I (PW I )- 2 ..... _W5 (PW5)- 2 ] 

D[ (PO 1) -  1 . . . . .  ( p 0 5 ) -  1 ] 

D[ -01 (PO I )- z ..... _05 (po5)- z ] 

to make use of the Taylor series linearization 
method. We will also have need of a second 
multiplier matrix ~, which has the same stacked- 
diagonal matrix structure as M but in which the 
estimates have been replaced with population 
values. It is important to note that M is 
calculated at each iterate of the simulation 
whereas Mo is calculated only once for a 
simulation. To assess our choices for nominal 
asymptotic significance levels, we need a 
noncentrality parameter which is to be computed 
only once for the simulation, which, in turn, 
entails additional one-time computations described 
here. For this purpose, define and quantify: 

~w '=(WIo/PWI 0 ,Wzo/PWzo, .... Wso/PW50 ) 

/~o ' = ( 0 1 o / P 0 1 o  . . . . .  0 5 o / P O s o  ) 
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where the additional zero (second) subscript 
indicates a population value not an estimate or 
sample-based value. The covariance matrix of the 
estimators is calculated according to the 
procedure for obtaining V 0 given earlier. 

With these definitions the noncentrality 
parameter is 

8z=(~ -~o )' (So 'V0M0 )- i (~ -~o ) 
For each iterate the approach is to quantify 

the vector of basic estimates E, the matrix M and 
the estimated covariance matrix for the linear 
estimates, V. The next step is to quantify the 
vector 
A'=(DI,D 2 ..... Ds) where Di=Wi/PWi-Oi/POi, and 
compute the value of the statistic tZ=A'(M'VM)-IA. 
Finally we form a histogram of the quantities t z 
and tabulate the 10%, 5%, 2.5% and 1% critical 
values; and compute the mean and variance of this 
empirical distribution of t 2 values. It should be 
informative to compute from an available SAS 
routine the 10%, 5%, 2.5% and 1% upper values for 
a chi-squared distribution with five degrees of 
freedom and with the noncentrality parameter 6 z 
defined above and compare these values to those 
obtained from the empirical distribution function. 
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APPENDIX 

Derivation of the Bias Correction Term 
It is enough to consider the case of one stratum 
from which PSUs i and j are drawn by Brewer's 
method. The problem is appropriately viewed as 
finding a term that will yield an unbiased 
estimate of variance when it is added to 

^ 

Q1 

^ ^ 

= ~i~j- ~ij [Yi _ YJ 1 2 + 
71" i j 71" i 7[j 

71- i- i (N i , )2 . i _ I S2 + 

[ n~ N~ 
^ 

_ 2 

l n~ N~ J 
^ ^ 

where, dropping unnecessary subscripts, Yi and Yj 
are the unbiased estimators of Yi and Yj (defined 

at the end of section 2), n i ' and nj' are 

^2 ^2 
functions of i and j, and S i and Sj are the 

2 2 
unbiased estimators of S i and Sj (also defined at 

the end of section 2). 
^ 

Using the expression for the variance of Yi when 

n i ' is fixed, we have that 

E(Yi z I choice of PSUs)= Y~ + (Ni) 2 I, I, Si 2 

Since sampling within PSUs is independent, we also 

have that 

^ 

E(Y i Yj I choice of PSUs)= Yi Yj" 

Using these facts and collecting terms one can see 

that 

E(Q1]choice of PSUs)= 

71" i j 71" i ~Tj 
i=l j>i 

i ( i , j }  N i ' 

where 

S I, if PSU i is in the sample 

t i L O, if otherwise 
The bias correction term will now follow in the 

form 

k = i ,  " y 7 r k 2  

i f  o n e  now u s e s  t h e  f a c t s  t h a t  

E~ i =  2 ,  E ~ i j  = ~i  

and the definitions for ~i and Ni. The specific 

expression shown in the text follows when the 

unweighted Yik are replaced by the weighted 

values 

_ N i ' 
Yi k--~, Yi k 
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JACKKNIFE VARIANCE F-ST MATES 
Short Stay Days,Nonwhite,46-57 
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