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Goodness of f i t  tests and tests for indepen- 
dence of hierarchical log-linear models are studied 
for the special ease where samples are obtained 
from complex survey designs with fixed cell and 
marginal design effects. The asymptotic null dis- 
tribution of the X 2 test is derived based on the re- 
sults of Rao and Scott (1981, 1984). It is shown 
that, as a first order approximation, the usual 
X 2 test divided by the common cell and marginal 
design effect has a X 2 distribution. 

X 2 random variables with 1 degree of freedom, that  is, 
~~i=1 6iX 2 where the 6i's are eigenvalues of P o l V .  2 ~  k - 1  

Case  of  c o n s t a n t  des ign  effects 

For a'given sampling design P ( S ) ,  the design effect 
(delt) of an estimate T is defined as the ratio of the vari- 

•ances of the estimate under the design P ($) and under 
s imple  random sampling: 

de f f ( T) = 
var(T)  

var,~,(T)  

A. G o o d n e s s  of  Fi t  Test 

B a c k g r o u n d  

Suppose that  we have a discrete population with k 
categories where Pr(Y i) k ---- - -P i ;  E i = I  Pi -- 1. As- 
sume that  we draw n observations from this population 
using a specific sampling design P (S). Furthermore, as- 
sume that  the sample contains n l observations in the 
first category, . . . ,  nk observations in the k th category 

k 
( E i = I  ni = n). 

It is well known that  the null hypothesis 

Ho " pi = poi i = l , . . . k  

for given Poi can be tested using the Wald statistic 

X~ = n(15 - po) 'V-1  (15- Po) (1) 

where 

Po = (Pox, P02 . . . ,  Pok-x)', 15 = (P l ,P2  . . . , P k - - 1 )  ! 
= _1 (nl,  n2, . . .  , nk-1) '  is an estimate of p based on S 

n 

v is the covariance matrix of t3. and 

For large n, under H0, the Wald statistic will have 
asymptotically a X 2 distribution with k -  1 degrees of 
freedom. However, this statistic requires the knowledge 
of V which may not be readily available, especially for 
complex sample designs. 

Alternatively, the hypothesis H0 can also be tested 
using the Pearson Chi-squared statistic 

X 2 = n(15 -- po) 'PolCl5 - -  Po) (2) 

where P0 = diag(po) - PoPo' .  
We note that ,  under Ho, this statistic can be com- 

puted easily from the summary table. U n d ~  simple 
random sampling, (1) and (2) are equivalent since V = 
var(15) = P0. However, for general sampling designs, 
under H0, the Pearson statistic will asymptotically be 
distributed as a linear combination of k -  1 independent 

where varsrs denotes the variance under simple random 
sampling; d e f f  reflects the effect of the design on the 
variance of the estimate when compared to simple ran- 
dom sampling. 

Suppose that  the design effects of the pi's are con- 
stant, * that  is, 

var(/~i) = 6varsr,(~i) = 6Poi(1 - poi) /n  i = 1 ,2 , . . .  ,k 

then the expected value of Xp 2 is 

k-1 
E (Xp 2) = ~ 8, E (X  2 ) 

i - -1 
k - 1  

= E 6 i l  
i--1 

= t race(P o 1V) 

k 

i•l ll i i .= Poi 

k 
: ~ 6poi (1 - Poi) 

i=1 Poi 
k 

= 6 ~-~(1 - p0i) 
i - - 1  

: 6(k - 1) 

(see Appendix 1) 

Hence, has the same first moment as a X 2 ran- 
dom variable with k -  1 degrees of freedom. Thus, when 
the design effects for cells are assumed to be constant, 
the Pearson statistic will have, as a first order approxi- 
mation, the distribution of a X 2 random variable with 

* It can be shown that  except for the case k = 2, 
these assumptions do not imply that  var(~) is equal to 
6P0 (P0 being the variance of 15 under simple random 
sampling). 
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k -  1 degrees of freedom. In other words, for complex 
sample designs with fixed design effects, tests that  are 
based on X~ can be approximately done using a X 2 table. 

B.  Log-L inea r  M o d e l  

In categorical data analysis, when the observations 
have more than one characteristic of interest, it is often 
the case that  we would like to study how these charac- 
teristics interrelate. The study of these associations and 
interactions can be nicely formulated using a log-linear 
model. 

N o t a t i o n  a n d  b a c k g r o u n d  

Suppose that  we have an r-dimensional contingency 
table with independent variables Xl, x2, . . . ,  xr, each 
having respectively vx, v2, . . . ,  Vr categories. When 
r = 3, the indices i , j , k  can be used to denote a given 
cell in the table. For example ri,i,k will denote the prob- 
ability that  an observation will be in the cell i, j ,  k. This 
notation can be generalized by using a single symbol, 
usually 0, to denote the complete set of subscripts. Thus, 
~r0 will be the probability that  an observation will be in 
an elementary cell O. 

In this paper we will only consider hierarchical mod- 
els as defined by Birch (1963). This means that  the 
cell probabilities are permitted to be log-linearly related 
in such a way that  a suitable set of marginals, usually 
called the minimal set of fitted marginals, is sufficient 
for the parameters. Tables of sums of non elementary 
cells will be called c o n f i g u r a t i o n s  and will be denoted 
by the letter C (Bishop et al. (1975)). For example, in 
a three-way contingency table, the table of partial sums 
xij+ = ~ k  xi,j,k, obtained by summing over the third 
variable, will be denoted by CI2. As the third variable 
has been removed by summing, the subscripts of C re- 
fer only to the remaining two variables. Configurations 
corresponding to the minimal set of fitted marginals, as 
defined above, will be called the sufficient configurations. 

Bishop et al. (1975, page 68) outlined a method to 
derive sufficient configurations for comprehensive, unsat- 
urated and hierarchical models. For such models, if the 
sufficient configurations are given, it is trivial to write 
down the log-likelihood function, log me. Also, it can 
be shown that  the number of independent parameters in 
the model can be expressed in terms of the numbers of 
cells in the sufficient configurations. 

Indeed, when only Co is the sufficient configuration 
of the model, it is clear that  the number of indepen- 
dent variables in the model is equal to the number of 
cells in Co. In other words, if ~/0 is the set of all lin- 
early independent u-terms whose subscripts are subsets 
of 0 (which is, in this case, the set of all linearly inde- 
pendent parameters for the model) then the cardinality 
of U0 is equal to the number of cells in C0. This re- 
sult implies that  if the sufficient configurations are Co~, 
i = 1 , . . . , k  and the ~/0~'s sets are defined as above then 

= ~01 ~J ~102... ~J UOI will be the set of all linearly in- 
dependent parameters and the cardinality of U can be 

found using the inclusion-exclusion principle. For in- 
stance, the three dimensional contingency table with no 
three factor effect, log mijk  = u + Ul(i) + u2(i) + Us(k) + 
u12(ij) + UlS(ik) + Uzz(jk) with i = 1 , . . . , I ,  j = 1 , . . . , J ,  
k = 1 , . . . , K ,  has C12, ClZ and Czz as sufficient con- 
figurations. Let U be the set of all linearly independent 
parameters then 

c a r d ( U ) = l + ( I - 1 ) + ( J - 1 ) + ( K - 1 ) +  

( I -  1)(J- 1) + ( I -  1)(K- 1)+ 
( J -  1 ) ( K -  1) 

= I J  + I g  + J g -  I -  J -  g + 1 

=   ,a(u12) + c a(Ul ) + 

card(Ux2 N Uts) - card(Ux2 n ~/2s)- 

card(U is n U23) -~- card(~/12 N U 13 N U23). 

The formula for the number of independent vari- 
ables will be simpler if the hierarchical log-linear model 
is d e c o m p o s a b l e .  A hierarchical model with sufficient 
configurations Ce~, i - 1 , . . .  , I  is decomposable if and 
only if the class {0i} can be ordered in such a way that  
each 0i is composed of one set of elements which are miss- 
ing in all 08 for s > i and one set ¢i which is contained 
in some 0r, for some r > i (Haberman (1974, chapter5), 
Sundberg (1975)). In other words, we have 

with 

0 ~ N ¢ i = 0 ,  0 ~ * n U 0 i = 0 a n d ¢ i c S ,  for s o m e s > i .  
j>i 

(,) 
Furthermore, it is a fact that  if such an ordering is pos- 
sible, a version may be found in which any prescribed 
set is the last one. For example, 

(i) The three way contingency table with sufficient 
configuration C12 , C13 and C23 is not decomposable 
since the subscripts of any C can not be decomposed 
into two disjoint subsets satisfying (*). 

(ii) The seven dimensional hiearchical log-linear 
model with sufficient configurations C123, C124, C235, 
C136 and C57 is decomposable. An ordering of the 0i 
which has {5, 7} as the last set is 

(1,2,4},  {1,3,6}, (1,2,3},  {2,3,5_}, {5,7} 

where the underlined elements do not belong to any set 
that  follows. An ordering that  has {1,3, 6} as the last 
set is 

{5,7}, (2,3,5_}, {1,2,4}, (1,2,3},  (1,3,6_6_} 

Usually, to obtain a particular ordering, it will be 
easier to start with the last set and work backwards. 
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R e s u l t s  u n d e r  m u l t i n o m i a l  s a m v l i n g  

For completeness, let's first state some basic results 
about the log-linear model under multinomial sampling. 
The standard results for these models are given in Bishop 
et al. (1975) and Fienberg (1980). We will follow closely 
the notation in Rao and Scott's paper (1984). Let r_ = 

(7rl , . . .  , ?rT) T be a vector of cell proportions; ~-~'~ik=l ~ri = 
1. We observe n = ( n l , . . . , n T )  T the counts in each 
cell from a random sample, so that  n has a multinomial 
distribution (~-']~ ni = n). Let p : n / n  and define 

# = log r_ 

The log-linear model assumes that for a parameter vector 
: ( 0 1 , - . . ,  Or) T, we have 

#_(0_) = u(O_)l + X0_, (1) 

where X is a known T × r matrix of full rank r (<_ T -  1) 
a n d X ' l =  0, 1 i s  aT-vec to r  o f l ' s .  I f r  = T - l ,  we 
have a saturated model. 

The maximum likelihood estimate for 0 is obtained 
by solving 

x T  (p _ #_) = 0 

where ~ = r_(~). Now asymptotically, 

7/,1/2(~ - 0_) --+ N[0, ( x T p x ) - I  l 

rtl/2(~ - 7r) ~ N[O, P X ( X T p X ) - I x T p ]  

in distribution. 
Suppose now that  the linear expression X0_ can be 

decomposed as Xl0_ 1 + X20_ 2 where X l  and X2 are full 
rank, X l  is T x s, X2 is T x u, 0_1 is s x 1 and 0_2 is u x 1 
( s + u = r ) .  

We consider the problem of testing 

Ho "0_2 = 0 ,  

against the alternative 

H1 "02 # 0. 

Let 0-1, ~2, ~, etc. be the maximum likelihood estimates 

under the full model H1. Alternatively, let ~-1, ~, denote 
the estimates under Ho. The likelihood ratio statistic for 
the above hypothesis is 

G 2 = 2n E Pt log(i~t/~'t) - 2n E Pt log(~t/~'t). 

Under Ho, this statistic has asymptotically a X 2 distri- 
bution with u degrees of freedom. This statistic is also 
asymptotically equivalent to the Pearson statistic 

and the Wald statistic 

~,T ,, *., 
W~ T : n02 X 2 P X 2 0 2  • 

R e s u l t s  for  o t h e r  s a m p l i n g  schemes  

We still assume that the cell proportions, r__, satisfy 
# = log r__ = u(0_l, 0_2)1 + X10_1 + X20_2 but we now have 
n l / 2 ( P -  K) ~ N(O,V) ,  where p is a survey estimate 
and V is the corresponding covariance matrix of p. Rao 
and Scott (1984) showed that under general sampling 
designs, the test statistic X 2 (=G 2 = Wp = Ww) has 
asymptotically the distribution of the sum of weighted 
independent chi-squared variables with 1 degree of free- 
d o m ,  

u 

X 2 N ~ 6iWi 
i--1 

where the Wi's are independent X21 random variables and 
the 6i's (all greater than 0) are the eigenvalues of 

( ~ [ T p x 2 ) - I  ( x T v x 2 )  

where 

:X2 - ( I -  XI(X1Tpx1)-- Ix1Tp)x2 

P = D,r - r r  T, D~ = diag(r__). 

Rao and Scott also showed that under H0, 

E ( X  2) = E(G 2) 

= E(G 2) - E (G  2) 
u 

= E 6,(1) 
i--1 

U6 

= t r ( ( X T p X ) - ' ( X T V X ) ) -  

t r ( (X~PX1) -a (XTI  V X  - 1)) 

(G 2 and G22 being the loglikelihood ratio under H1 and 
H0 respectively). Hence, as a first order approximation, 
X 2 

can be regarded as a X 2 with u degrees of freedom. 

They also noted that when the models H0 and H1 
admit explicit solutions for ~ and Cr, we have an alter- 
native method of computing 6.. Hierarchical log-linear 
models have closed form expressions for the maximum 
likelihood estimate for r only for decomposable models 
(naberman (1974), Sundberg(1975)). 

Let C01, . . . ,  Cot be the sufficient configurations for 
the model H1 where the 0i's are ordered according to 
the decomposability criterion, Ct = 0t N (us>t08) then 
the mle of r0 under H1 is 

I 

H T r8 i 
i=1 1 

~ 0 =  I--1 H 

H 7rCj k E g - ~  O, 
y=l 

Vk 

where Z = {1, 2 , . . . ,  r} (Haberman (1974) and Sundberg 
(1975)). 
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In the above formula, 0 denotes an arbitrary cell, 
and ro~, rCj are marginal totals of 7r0 summed over in- 
dices not in 0i, ¢i respectively. For example, in a five 
way table, for 0 = {2,4}, ro = ~i,,is,is 7ri,iziai4is 

Results  when  the cell and margina l  design 
effects are equal  

Using a Taylor expansion, we have the following ap- 
proximation for G~, 

E(G 2) - E ( 1 -  ~o)do-  E E (1 - ro , )do ,+  
O i Oi 

E E ( 1  - rcjldcs 

(Rao and Scott, 1984) where the do's, do~'s, d¢i's are 
the cell and marginal design effects. When the cell and 
design effects are all equal to ~, the above expression 
reduces to 

E(G~) = 5 ( E ( 1 -  ~ o ) -  E E (1 - ~o,)+ 
0 i Oi 

E E ( 1 - -  ~¢j)) 
J Cj 

7' 

: 5 ( ( T -  1) - E (  # cells in Co , -  1)+ 
i - -1  

I - - 1  

= E (e  cells in C,j - 1)) 
3"--1 

T I - - I  

= 5 ( T -  E # cells in Co, + E # cells in Ccj) 
i = 1  3"=1 

: ~ ( T -  ~: independent parameters in H1) 

Similarly, 

E(G 2) = ~ ( T -  # independent parameters in H0). 

Thus, 

o r  

E(G 2) = uS. 

= E(G 2) - E(G 2) 

= ~(# ind. parameters in HI - 

# ind. parameters in Ho) 
= ~ u  

X 2 _ X 2 Hence, under Ho, -E-. - T has asymptotically a X 2 
distribution with u degrees of freedom, where u is the 
difference of the number of independent parameters in 
the 2 models. 
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Appendix 1 

Since P0 = diag(15o)- 15o15~, the inverse Po  x is 

1 
e o  I = (diag(po)) -1 + ~ 1 1 '  

Pok 

Hence, 

P o l V  = (diag(po))- lv + 1--~-11'V 
Pok 

trace(Po- 1 V) 

= trace(diag(po))-lv) + trace(p-~k l l ' V )  

k - 1  1 k - l k - 1  
_-  . 

.= Poi Pok i= l ]= l 

k--1 

-- i~1.= poiVi'---ii q_ l__l_var( l p o k  - - / 701  - - ' ' ' - -  P0k-1) 

k--1  

__i~l 1 
- vi---L + ~ v k k  

.= Poi POk 

k 

.= Poi 
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