
T h e  C o m p u t a t i o n a l  C o m p l e x i t y  of  Some  R o u n d i n g  and  S u r v e y  O v e r l a p  P r o b l e m s  

Kirk Pruhs, Computer Science Department 
University of Pittsburgh, Pittsburgh, PA 15260 

KEY WORDS: NP-complete,  Zero-restricted Rounding, Unbiased Rounding, Controlled Rounding 

1. In troduc t ion  
In this paper we examine the computational 

complexity of two classes of problems. The first 
class of problems involves rounding entries in multi- 
way tables subject to certain restrictions. The sec- 
ond class of problems involves maximizing the over- 
lap between several surveys, with stratified design, 
on a common population. In particular, we inves- 
tigate whether efficient algorithms exist for these 
problems. For some of these problems we give ef- 
ficient algorithms. For the other problems, we use 
the theory of NP-completeness to show that it is 
highly unlikely that efficient algorithms exist for 
these problems. 

The rounding problems that we consider are 
the zero-restricted rounding problem and the unbi- 
ased rounding problem. Given a table with ratio- 
nal entries, the goal in the zero-restricted round- 
ing problem is to replace the entries in the ta- 
ble with adjacent integers in such a way that the 
marginals are maintained (this is called a zero- 
restricted rounding). Given a table with rational 
entries, the goal in the unbiased rounding problem 
is randomly generate a zero-restricted rounding in 
such a way that the expected value of the rounding 
of each entry is equal to the value of that entry. 
For applications of these rounding problems see 
[CFGH, Cox, HRF, IK]. Cox [Cox], and Causey, 
Cox, and Ernst [CCE] have given efficient algo- 
rithms for generating unbiased roundings of 2-way 
tables. Their algorithms run in time O(n 3) on n 
by n tables. An algorithm A runs in time O(f(n)), 
for some function f,  if for every sufficiently large 
input, A finishes after at most c. f(n) steps, where 
c is some constant and n is the size of the input. 
An unbiased rounding of a 1-way table of size n can 
be generated in time O(n). 

Causey, Cox, and Ernst [CCE], Hess and 
Srikantan [HS], Waterton [Wat], and Cox [Cox] 
posed the problem of how to generalize these re- 
sults to 3-way tables. The first difficulty encoun- 
tered when generalizing these results is that not all 
3-way tables have zero-restricted roundings [CCE, 
HS]. Given a 3-way table T, one might still hope 
for an efficient algorithm that determines whether 
T has a zero-restricted rounding (or an unbiased 
rounding), and if so, generates such a rounding. At- 

tempts to design efficient algorithms for this prob- 
lem have been unsuccessful [Cox, HS, Wat]. In §3, 
we explain why these attempts were unsuccessful 
by showing that both the problem of determining 
whether a 3-way table has a zero-restricted round- 
ing, and the problem of determining whether a 3- 
way table has an unbiased rounding, are N P-hard. 
We discuss, in §2, the implications of a problem 
being NP-hard .  

An instance of a survey overlap problem con- 
sists of several survey sampling problems, with 
stratified design, on a common population. (We de- 
fine stratification in §2.) It is possible that both the 
stratification and the selection probabilities of the 
sampling units are different in each survey. In sur- 
vey overlap problems we make the assumption that 
the cost of sampling is roughly proportional to the 
total number of units sampled in all of the surveys, 
i.e., it is cheaper to sample the same unit twice 
than it is to sample two distinct units. Minimizing 
the number of distinct units chosen in the different 
surveys would then minimize the cost. Hence, the 
goal in the survey overlap problem is to solve each 
survey in such a way as to minimize the maximum 
number of units in the union of the samples. 

In section 4, we give an O(n 2) time algorithm 
for instances of the survey overlap problem that 
consist of two singularly stratified survey sampling 
problems. This algorithm is optimal, in terms of 
minimizing the total number of elements sampled, 
both in the expected case and in the worst case. 
We then show that if we generalize this problem by 
allowing three singularly stratified surveys, or two 
doubly stratified surveys, then the survey overlap 
problem becomes N P-hard. We also show that the 
survey overlap problem is N P-hard for instances 
consisting of an arbitrary number of unstratified 
surveys. 

2. Def in i t ions  
We assume familiarity with standard defini- 

tions and concepts from graph theory; see for ex- 
ample. An edge 3-coloring of a multigraph is an 
assignment of one of three colors to each edge that 
has the property that each pair of edges incident 
on a common vertex are assigned distinct colors. 
A vertex 3-coloring of a multigraph G is an assign- 
ment of one of three colors to each vertex of G, 
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with the property that  each pair of adjacent ver- 
tices are assigned different colors. For notational 
convenience we will represent the three colors by 
the integers 1, 2, and 3. 

An m-way array, A -  A1 × As × . . .  Am, is the 
Cartesian product of m finite sets. Each A/is called 
a stratum. An m-way table T is an assignment of a 
positive number, T(al, a2, . . . ,  am), to each element 
(a l ,as , . . . , am)  of A. Each ai is called an index, 
and T(a l ,a2 , . . . , am)  is called an entry of T. 

We denote the floor and ceiling of a number 
z by, [zJ and Ix], respectively. An integer k is 
a rounding of rational number z with respect to a 
rounding base B if ~ r -  [~J ,  or ~ r -  [~]" A table 
R is a rounding of T with respect to a rounding 
base B, if R and T have the same underlying array, 
and each entry of R is a rounding with respect to 
B of the corresponding entry in T. From now on 
we assume, without loss of generality, that  B - 1, 
and that  the range of T is [0, 1) [CCE]. A k-way 
hyperplane, 0 < k < m, of A is obtained fixing 
m - k  of the indices, and is denoted in the following 
manner. A(al, ., . ,  a4, .) is the 3-way hyperplane 
derived from A by considering only those elements 
of A whose the first index is al and whose fourth 
index is a4. We call a 1-way hyperplane a line, and 
a 2-way hyperplane a plane. For a table T and a 
hyperplane H, we define # T ( H )  to be ~aeH T(a). 
A rounding R of T preserves a hyperplane H if 
=g=R(g) is a rounding of #T(H) .  

R is a zero-restricted rounding of T if R 
preserves all hyperplanes. A probabilistic proce- 
dure generates a fair rounding R of a table T 
if the expected value of each R(al, a s , . . . ,  am) is 
T(al, a 2 , . . . ,  am). A probabilistic procedure gen- 
erates an unbiased rounding R of a table T if the 
procedure fairly generates a zero-restricted round- 
ing T. 

In the m-way stratified sampling problem the 
population is stratified by m variables that  are 
hopefully correlated with the measure variable. To 
reduce the variance of the measure variable a sam- 
ple whose distribution among the strata mirrors the 
populations distribution as closely as possible. We 
can formally define the m-way stratified sampling 
problem in a manner similar to the way that  we de- 
fined unbiased rounding, the only difference being 
that  each s trata  may have more than one sampling 
unit. 

We now explain the tools that  we use to pro- 
vide evidence that  some problems are computation- 
ally difficult. The class P is defined as the class of 
problems solvable in time O(p(n)), for some poly- 

nomial p(n). The class P is generally regarded as 
the class of problems that  can be solved by compu- 
tationally feasible algorithms [GJ]. The class N P  
is defined as the the class of problems for which it 
is possible to, in polynomial time, guess at a po- 
tential solution and then verify the correctness of 
that  potential solution. As an example of a prob- 
lem in NP,  consider the edge 3-coloring problem. 
Given a trivalent multigraph G, the edge 3-coloring 
problem is the problem of determining whether G 
has an edge 3-coloring. It easy to, in polynomial 
time, guess a color for each edge, and then verify 
that  each vertex has exactly one edge incident to 
it of each color. 

There are many problems, such as the edge 
3-coloring problem, that  are known to be in N P, 
but are not known to be P.  Garey and Johnson's 
book [GJ] contains a 100 page list of such prob- 
lems arising from such diverse areas as graph the- 
ory, network design, algebra, number theory, math  
programming, and logic. The P =?NP problem is 
the problem of determining whether all problems 
in N P  are solvable by polynomial-time algorithms. 
The P =?NP problem is the most important  open 
problem in theoretical computer science, and has 
been cited as one of the ten most famous open prob- 
lems in mathematics.  

An important  concept in the study of the 
P =?NP problem is NP-completeness  (or NP-  
equivalence). A problem 7 ~ is N P-hard if a 
polynomial-time algorithm for 7 ~ implies that  every 
problem in N P has a polynomial-time algorithm. 
A problem is NP-equivalent if it is in N P  and it is 
NP-hard .  Most natural  problems, that  are known 
to be in NP,  but are not known to be in P,  are 
NP-equivalent .  

One way to show that  a problem 7 ~ is NP- 
hard is to exhibit a polynomial-time reduction from 
some known N P - h a r d  problem C to 7 ~. A func- 
tion r from instances of C to instances of T' is a 
polynomial-lime reduclion if: 

1. r(z) can be computed in time polynomial in 
the size of x. 

2. Each instance z of C has a solution if and only 
if the instance r(x) of 7 ~ has a solution. 

If C is polynomial-time reducible to P,  and there is 
a polynomial-time algorithm for deciding whether 
an instance of 7 ~ has a solution, then there is a 
polynomial-time algorithm for deciding whether an 
instance of C has a solution. Holyer [Hol] showed 
that  the edge 3-coloring problem is NP-ha rd .  

It is (almost) unanimously believed that  P 
N P. If this is true, then by definition no N P-hard  
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problem can have a polynomial-t ime algorithm. At 
the very least the fact tha t  a problem P is N P-hard  
implies tha t  one should expect the task of finding 
a polynomial- t ime algori thm for 7) to be extremely 
difficult. 

The following variant of edge coloring is N P- 
hard [Pru]: 
P r o b l e m  2.1: 
INSTANCE: A trivalent mult igraph G and a ver- 
tex 3-coloring f of G. 
QUESTION:  Does G have an edge 3-coloring? 

3. R o u n d i n g  
To show that  the unbiased rounding problem 

and the zero-restricted rounding problems are N P- 
hard for 3-way tables we reduce from problem 2.1. 
R e d u c t i o n  3.1" Given a trivalent mult igraph G - 
(V, E),  and a vertex 3-coloring f of G, we construct  
a 3-way table T from G as follows. Let s t r a tum Aj ,  
j = 1, 2, 3, be defined by: 

Aj - {vilv E V , f ( v )  - j, and i -  1,2,3} U 

{(v, w) E E l f ( v )  5~ J and f ( w )  ¢ j}  

St r a tum Aj consists of three copies of each vertex 
colored j,  and one copy of each edge that  has no 
vertex incident to it colored j. We define [vi, wi, el, 
for e = (v,w) and i = 1, 2, 3, to be the unique ele- 
ment  of A with indices vi, wi and e. More precisely: 

?)i, Wi, e ]  - -  

Vi, Wi, e) 
(Wi, Vi, e) 
(e, Vi, Wi) 
(e, Wi, Vi) 
(vi, e, wi) 
(Wi , e, Vi) 

if f ( v ) =  1 & f ( w ) =  2; 
if f ( v )  = 2 & f ( w )  = 1; 
i f f ( v )  = 2 & f (w) = 3; 
i f f ( v )  = 3 & f (w) = 2; 
i f f ( v )  = 1 & f (w) = 3; 
i f f ( v )  = 3 & f ( w )  = 1. 

For each edge e - (v, w), and each i - 1, 2,3, let 
T[vi, wi, e ] -  -} (rounding this entry to 1 is equiv- 
alent to coloring the edge e the color i). Let all 
other entries in T be 0. | 

L e m m a  3.2: Let T be a table constructed by 
reduction 3.1 from a mul t igraph G and a vertex 3- 
coloring f .  Then T has a zero-restricted rounding if 
and only if G has an edge 3-coloring. Furthermore,  
T has a zero-restricted rounding if and only if T 
has a unbiased rounding. 

T h e o r e m  3.3" Given a 3-way table T, the prob- 
lem of determining whether T has a zero-restricted 
rounding is N P - h a r d .  

T h e o r e m  3.4: Given a 3-way table T, the prob- 
lem of determining whether T has an unbiased 
rounding is N P - h a r d .  

We next show that  various relaxations of these 
rounding problems remain N P - h a r d .  One obvious 
relaxation, that  would still be useful in some ap- 
plications, is to require tha t  only planes, and not 
lines, be preserved by the rounding procedure. Un- 
fortunately, lemma 3.5 implies that ,  in the worst 
case, this relaxation does not make the rounding 
problems any easier. 

L e m m a  3.5" Let T be a table constructed by re- 
duction 3.1. If a rounding R of T preserves planes, 
then R preserves lines. 

C o r o l l a r y  3.6" Given an 3-way table T, the prob- 
lem of determining whether T has a rounding that  
preserves planes is N P - h a r d .  

C o r o l l a r y  3.7: Given an 3-way table T, the prob- 
lem of determining whether T has a fair rounding 
T that  preserves planes is N P-hard .  

We now show that  both zero-restricted round- 
ing and unbiased rounding remain N P - h a r d  for 3- 
way tables that  have the property  tha t  one s t r a tum 
is of size at most six. In other words, these round- 
ing problems remain hard for "flat" tables. We 
reduce from the edge coloring problem. 
R e d u c t i o n  3.8: Given a tr ivalent mult igraph 
G - (V, E),  we construct a 3-way table T from G as 
follows. The s t ra ta  are A1 - {ejle E E ,  j -  1,2}, 
A2 - {vilv E V, i  - 1,2 ,3) ,  and A3 - { 1 , . . . , 6 } .  
For each e - (v,w) E E, and each i - 1,2,3,  let 
T(e l ,  vi, 1) - 1 7, and let T(e2, wi, 1 ) -  -} (the pair- 
ing of v with el was arbitrary,  we could have just  
as easily paired w with el).  Rounding an entry of 
the form T(e l ,  vi, 1) or T(e2, wi, 1), i E {1, 2, 3}, 
to 1 is equivalent to coloring the edge e the color 
i. We then use the following construction to guar- 
antee that  entries of this form are rounded in the 
same direction. 

Sequentially consider the edges. Assume we 
are considering the edge e - (v,w). For each 
i - 1, 2, 3, find a plane of the form A(.., . ,  ki), 
2 < ki < 6, for which none of the entries in the rows 
A( . ,  vi, ki) and A( . ,  wi, ki) have been defined yet. 
It is always possible to find such a ki because each 
of the vertices v and w are adjacent to at most two 
other vertices. Let T(el ,  vi, ki) - T(e2, wi, ki) - 2 5, 

l e t  - k / )  - 

After this construction has been completed for 
each edge, let the unassigned table entries be as- 
signed 0. | 

L e m m a  3.9" Let T be a table constructed by 
reduction 3.8 from a mult igraph G. Then T has a 
zero-restricted rounding if and only if G has an edge 
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3-coloring. Furthermore, T has a zero-restricted 
rounding if and only if T has a unbiased rounding. 

T h e o r e m  3.10" Given a 3-way table T, with the 
size of one s t ra tum being at most six, the prob- 
lem of determining whether T has a zero-restricted 
rounding is NP-hard .  

T h e o r e m  3.11" Given a 3-way table T, with the 
size of one s t ra tum being at most six, the problem 
of determining whether T has a unbiased rounding 
is NP-hard .  

We end this section by noting that all of the 
NP-hardness  results in this section can easily be 
generalized to tables of dimension greater than 
three. 

4. S u r v e y  O v e r l a p  

The 2-overlap problem is a special case of the 
survey overlap problem in which the instance con- 
sists of two 1-way stratified sampling problem in- 
stances. We begin this section with an O(n  2) algo- 
ri thm for the 2-overlap problem. Our algorithm is 
motivated by Cox's [Cox] algorithm for generating 
unbiased roundings of 2-way tables. 

We now define the 2-overlap problem more 
formally. Assume that the population is X - 
{Xl, . . . ,  Xn}. Let the first 1-way stratified sam- 
pling problem instance consist of X, associated se- 
lection probabilities {P l , . . . ,Pn} ,  and a partition 
C of X. Similarly, let the second 1-way stratified 
sampling problem instance consist of X, associated 
selection probabilities {q l , . . . ,  qu}, and a partition 
7) of X. The goal in the 2-overlap problem is to 
probabilistically generate two samples, S and T, 
from X in way such a way that the size of the 
maximum possible size of S t.J T is minimized and 
the following criteria are satisfied" 
Probability Constraints: 

1. Each unit xi E X is included in S with prob- 
ability p~. 

2. Each unit xi E X is included in T with prob- 
ability qi. 

Structural Constraints: 
1. The number of units in S is either the floor of, 

or the ceiling of, u - ~ i n l  Pi. 

2. The number of units in T is either the floor of, 
or the ceiling of, v -  ~ i n l  qi. 

3. The number of units in S fl'om each C E C 
is either the floor of, or the ceiling of, # C  = 

~xi6C Pi. 
4. The number of units in T from each D 6 79 

is either the floor of, or the ceiling of, # D  - 

~ x i 6 D  qi. 

We define the overlap between two samples 
to be the number of units common to both sam- 
ples. In the 2-overlap problem, minimizing the to- 
tal number of units sampled is equivalent maxi- 
mizing the overlap. Each x i E X can appear in 
both S and T with probability at most m i n ( p i ,  qi). 
Hence, an upper bound for the expected overlap is 

n 
d - ~ i = 1  m i n ( p i ,  qi). The expected overlap of our 
algorithm will be d, and the worst case overlap will 
be LdJ. Hence, our algorithm guarantees optimal 
overlap, both in the average case, and in the worst 
case. 

Samples S and T, which satisfy the structural 
constraints, can be viewed as 0/1 solutions to the 
following equations: (A unit x i is included in S if 
~bi- 1, and in T if q i -  1.) 

(1) LuJ _< P, < ru-i. 
(2) L',,J < ,7, < r,v]. 
(3) v c  c L#Cl < P, < r#c]. 
(4) VD e 7) [#DJ s s [#D]. 
(5) ~in_m_l min(pi, qi ) ~_ d. 

We begin the algorithm by letting each [~i - pi, 
and letting each gti - qi. The initial values of the 
/hi's and the ~i's then satisfy the above equations. 
The first phase of the algorithm transforms some 
of the/hi 's and ~i's to 0/1 probabilities, in such a 
way that (1)-(5) remain valid. This transforma- 
tion uses what we call a balanced adjustment. Let 
P and M be two disjoint subsets of the variables 
Pl , . . . ,  Pn and q l , . . . ,  qn that  satisfy the following 
two conditions: 

1) Each variable in P L9 M is non 0/1. 
2) Adding any amount to the value of each vari- 

able in P (M),  and subtracting that same 
amount from the value of each variable in M 
(P), will not affect the veracity of (1)-(5). 

Let a + - m i n ( 1 -  m a x ( P ) , m i n ( M ) ) ,  and a-  - 
ra in ( ra in (P) ,  1 - m a x ( M ) ) .  Given such sets, a bal- 
anced ad jus tment  consists of randomly executing 
one of the following two assignments. With proba- 

a- add a + to the value of each variable bility a++a- ' 

in P, and subtract a + from the value of each vari- 
• a "1" 

able in M With probability ~i++~ , subtract a-  
from the value of each variable in P, and add a -  
to the value of each variable in M. A balanced 
adjustment causes at least one i0i, or one qi, to be- 
come 0/1. The fairness constraints are not violated 
because the expected change of the value of each 
variable is zero. 

Throughout the algorithm we maintain a ver- 
tex labeled bipartite multigraph G. The vertices of 
G are the classes in g, and the classes in 7:). The 
value of the ihi's and the ~i's determine the edges 
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and the labels. A unit  xi is free if exactly one of 
/5i and qi is 0/1. A unit zi is bound if neither of 
/3i or qi is 0/1. For zi E X, with zi E C E C and 
zi E D E 79, edges and labels are added to G in 
the following manner:  

1. If zi is bound, then there is an undirected edge 
(C,D). 

2. If z i is free, with/5i - 0 (1), then a label of 0 
(1) is added to D. In this case, the variable qi 
is called a O-mate (1-mate) of D. 

3. If zi is free, with qi - 0 (1), then a label of 0 
(1) is added to C. In this case, the variable/3i 
is called a O-mate (1-mate) of C. 

Each vertex may be labeled with any number  of O's 
and l 's ,  or may have no label. We will freely switch 
interpretat ions between edges and units, and be- 
tween vertices and equivalence classes. 

The goal of the first phase of the algori thm 
is to simplify G. Each simplification step con- 
sists of a balanced adjustment .  We now define the 
three types of balanced adjus tments  used in the 
first phase. 
C y c l e  S tep"  Let H be a cycle in G, with the 
edges in H al ternately designated odd and even. 
Let P (M)  be the set consisting of the variables/5/ 
and qi, such tha t  xi is an odd (even) edge in H. A 
cycle step then consists of performing a balanced 
ad jus tment  on these sets. 
P a i r  Step" Let a and b be two 0-mates, or two 
1-mates, of some vertex in G. Let P - {a} and let 
M -  {b}. A pair step then consists of performing 
a balanced ad jus tment  on these sets. 
G o o d  P a t h  S t ep :  Let H be a simple path  be- 
tween two vertices y and z in G. Designate the 
edges al ternately as odd and even, with an odd 
edge incident to y. H is then called a good palh if 
it satisfies one following conditions: 

1. H is of odd length, and satisfies one of the 
following conditions: 

a. y has a 1-mate a and z has a 0-mate b. 
b. y has a 1-mate a and z is a vertex of degree 

1 with no label. 
2. H is of even length, and satisfies one of the 

following conditions: 
a. y has a O-mate a and z has a O-mate b. 

b. y has a l-mate a and z has a l-mate b. 

c. y has a O-mate a and z is a vertex of degree 

1 with no label. 

d. Both y and z are vertices of degree 1 with 

no label. 
Let H be a good path  as defined above. If H satis- 
fies more than one condition in the above definition, 
then pick a condition arbi trari ly for the next steps. 

Let P (M)  contain the variables /3i and qi, such 
that  zi tha t  is an odd (even) edge in H. In case 1, 
also add the mate  a, and the mate  b, if it exists, to 
M.  In case 2, add the mate  a, if it exists, to M,  
and add the mate  b, if it exists, to P.  A good path  
step consists of performing a balanced adjus tment  
on these sets. 

The cycle step is applied repeatedly, updat ing 
G after each step, until G becomes acyclic. We now 
assume that  G is acyclic. If y and z are vertices 
in the same connected component  of G, we denote 
the unique path between them as P(y, z). A simple 
path  H is maximal if no other simple path  properly 
contains H. In the following two theorems we give 
sufficient conditions for G to contain a good path. 
These theorems can be proved by exhaustively enu- 
merat ing the possibilities. 

L e m m a  4.1: If H is a tree in G, with at least three 
leaves, z, y, and z, then one of P(z, y), P(z, z), or 
P(y, z) is a good path. 

L e m m a  4.2: Let H be a maximal  simple path  
between vertices x and z in G. If H contains an in- 
ternal labeled vertex y then one of P(z, y), P(y, z), 
or P(z, z) is a good path.  

While G contains trees with at least three 
leaves, or maximal  simple paths with labeled inter- 
nal vertices, the algori thm repeatedly finds a good 
path,  performs a good path  step, and updates  G. 
Next, the algori thm repeatedly finds vertices in G 
that  have two 0-mates, or two 1-mates, performs a 
pair step, and updates  G. 

G is now of the following simple form. It is the 
disjoint union of simple paths and isolated vertices. 
Each vertex has at most one label. No internal 
vertex on a path  can have a label. One consequence 
of this is that  each equivalence class C E C (D E 7)) 
contains at most two units zi and xj with/5i and/3j 
(qi and ~j) being non 0/1. At this point no further 
balanced adjus tments  may be possible, and phase 
1 is finished. Phase 1 requires at most O(n 2) time 
because each simplification step can be performed 
in linear time, and each simplification step makes 
at least one/5i, or one qi, 0/1. 

The second phase of the algori thm is divided 
into two parts.  To begin the first par t  of phase 
two associate with each unit xi E z a probability, 
hi = min(~i, 7ti). To guarantee m a x i m u m  overlap 
we need to include each xi in both samples with 
probabili ty hi. Note tha t  if either/3i or qi is 0, then 
hi = 0 and xi will not be included in both samples. 
Similarly, if both/3i  and qi are 1, then hi - 1 and 
xi will be included in both samples. We call units 
xi and xj in H a C-pair (79-pair) if they share a 
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common equivalence class in g (79), and both ibi 
and/bj (qi and ~j) are non 0/1. A unit x i E g is 
a singleton if it does not occur in a pair. We order 
H so that all pairs x i and xj are consecutive. This 
ordering is possible because of the simple form of 
G. We now use systematic sampling to select the 
units to be included in both samples. 
S y s t e m a t i c  Sampl ing :  Let g i  - -  ~ j < i h j  • Re- 

n member that d -  ~i=1 hi. We conceptually as- 
sociate with each xi a half-open interval, Ii = 
[gi, gi+l). The algorithm first generates a random 
number q in the range [0,1). Let Q = { q + j l j  = 
0 , . . . ,  [d] - 1}. We select a unit x i if Ii contains a 
point in Q. 

In systematic sampling [d] or [d] units are se- 
lected because the sum of the lengths of the inter- 
vals is d. Each unit x i is selected with probability 
hi because the length of interval Ii is hi. For each 
pair xi and xj,  the ordering of H, and the fact that 
hi + hj _< 1, guarantees that both xi and xj will 
not be selected. In the second part of phase two 
we finish the sample generation separately for each 
survey in linear time; we omit the details. 

We next show that the most obvious ways to 
generalize the 2-overlap problem lead to NP-ha rd  
problems. 

T h e o r e m  4.3: Given an instance of the survey 
overlap problem 7 ) , which consists of three 1-way 
stratified sampling problems, and an integer m, the 
problem of determining whether 79 has a solution 
in which no more than m units will be sampled is 
NP-hard .  

T h e o r e m  4.4: Given an instance of the survey 
overlap problem 7 ) , which consists of one 1-way 
stratified sampling problem and one 2-way strati- 
fied sampling problem, and an integer m, the prob- 
lem of determining whether 7 ) has a solution in 
which no more than m units will be sampled is 
NP-hard .  

T h e o r e m  4.5: Given an instance of the survey 
overlap problem 7 ), which consists of an arbitrary 
number of 0-way stratified sampling problems, and 
an integer m, the problem of determining whether 
79 has a solution in which no more than m units 
will be sampled is N P-hard.  

5. C o n c l u s i o n  
Several problems in this paper fall into a class 

of problems called controlled selection problems. 
These problems have the property that not all sam- 
ples are acceptable. See [PM] for a further dis- 
cussion of the computational complexity of these 
problems. 

We are currently working on finding algo- 
rithms for zero-restricted rounding that  are efficient 
on "average", ie. efficient on almost all tables. The 
computational complexity of the problem of gen- 
erating a controlled rounding [Cox] of tables with 
dimension greater than two remains an intriguing 
open problem. 
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