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1. Introduction 

In the literature on regression analysis several 
approaches for detection and treatment of outliers 
have been developed. In addition to methods based on 
the mean-shift and variance-inflation models, 
estimators based on order statistics such as trimmed 
and Winsorized means and M-estimators based on 
robust regression methods are available. Regression 
diagnostics provide methods for critical examination 
of models and measures of influence of individual 
outliers and groups of outliers on estimates of 
parameters (see Beckman and Cook (1983); Cook and 
Weisberg (1982)). 

The objective of this paper is to develop outlier 
robust estimators for sample surveys, based on 
variance-inflation model.  T h i s  model is a simple 
extension of superpopulation model often implicitly 
assumed for the traditional design-based estimators 
and more explicitly used in the prediction approach. 
Although these estimators are obtained as optimal 
estimators of parameters of this model, the results on 
the bias and variance of these estimators and optimal 
weight reduction for outliers, presented in this paper, 
are in the framework of finite population sampling. 
These outlier robust estimators are not model 
dependent and have not been evaluated by prediction 
approach. Outlier robust estimators in finite 
population sampling based on robust regression and 
prediction approach have b e e n  investigated by 
Chambers (1986). 

The problem of outliers has been considered in 
the literature on finite population sampling in the 
context of estimation of mean or total, usually 
assuming no auxiliary information in estimation. 
Estimators obtained by methods based on order 
statistics, such as Winsorization and trimming, and 
weight reduction, have been investigated by assuming 
simple random sampling (see e.g. Fuller (1970); Ernst 
(1980)). It seems that it is not possible to extend 
methods based on order statistics to sample designs 
involving stratification and different sampling ratios 
and non-response rates between strata and unequal 
probabilities of selection, which result in unequal 
design weights. Sample surveys are often periodic 
with rotation samples designed for estimation of 
changes. Moreover, estimates are needed at several 
levels such as stratum, group of strata and domains. 
Because of these features of sample surveys, 
estimators based on reduction of weights of outliers 
are more convenient for use in practice. 

In Section 2 we introduce the model in which 
variance is a function of an auxiliary variable x and 
assume that outliers have inflated variances. The 
optimal estimators of parameter 8 are derived by 
assuming k outliers (l.<k<n) in a random sample of 
size n. In Section 3 conditional mean square error of 
these estimators and optimal weight reduction have 
been derived by assuming simple random sampling 
from a finite population. In concluding remarks in 
Section 4, comments have been made on possible 
extensions of outlier robust estimation and the 
problem of estimation of unit variances and 
covariances of x and y for outliers and non-outliers. 

2. Variance- inf lat ion Model 

Cons ide r  a l i nea r  mode l  

Y = X 8 + e , (2.1) 
n×1 n×p p×l n×1 

2 2 
where e ~ (0, o W), unknown, W is a diagonal 

variance-covariance matrix with elements w i 

depending on xi,  i=i,  2 . . . . .  n, Y is a n-vector of 

responses of y, X is a design matrix of p auxiliary 
variables each with n observations assumed fixed, 8 is 
a p-vector of regression coefficients and e is an error 

. -x g term Under the model assuming p=1, wi- i '  ratio 

of sample means y/x and mean of ratios 
n 

1( z Yi/xi ) are the best linear unbiased ?=~i=i 
estimators of 8 for g=l and 2 respectively. The 
model is appropriate for categorical variables in 
socio-economic surveys. It is known that values of g 
for many variables lie in the interval [1,2] and more 
often closer to i than to 2. In practice in multi- 
purpose sample surveys with several y-variables and 
an auxiliary variable x possibly used for stratification, 
ratio estimation, although less than optimal for 
variables with g>1, is often used for all y-variables 
for convenience of uniform weighting method. 

We now consider the variance-inflation model for 
k outliers (1.<k<n) which are the last k sample units, 
without loss of generality. Thus 

Y = X e + e , (2.2) 
n×l n×p p×l n×l 

where e ~ (0, 02 W(k)) and W(k) is a diagonal 

variance-covariance matrix with elements w i,  i=i,  

2 . . . . .  n-k and wi /w,  i = (n -k+ l )  . . . . .  n; w is 
unknown constant (0<w.<1). This model is a simple 
extention of the variance-inf lat ion model considered 
by Pregibon (1981), Cook, Holschuh and Weisberg 
(1982) and Thompson (1985). 

We consider ^expression for the best l inear 
unbiased estimator 8 i ( w ) o f  8 under (2.2) for the ease 
of one outl ier, the i th sample unit. Thus 

I ^ 

^ ^ (X' W-Ix) - I  Xi ( y i - Y i )  ( l -w)  
Bi (w) = ~ w i [ l -  (Z-w) V i i ]  

, ( 2 . 3 )  

I 

where for p=1, (X'N-Ix)-I and Xi are scalars 

= (X'W-IX)-I(x'N-Iy) is the estimator of 8 

-i , ix IX, under(2.1) and V ii = w i Xi(X W- )- i is the ith 

diagonal element of variance-covariance matrix 

V = V(Xs), called leverage of X i. Also, 0.<Vii.<l 

whenp=1. For large values of Xi, Vii is close to i, 

which makes contribution of i to 8i (w) very large. 

The second term on the right hand side• of (2.3) shows 

change due to variance-inflation of i th sample unit. 

Thus influence of both residual (yi-Yi) and leverage 
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Vii is reduced  due to f ac to r  ( l - w ) .  For k (> 1) 

out l iers  and w i = x i,  the  e s t ima to r  B(i ) (w), where  

( i )  r ep re sen t s  group of k out l iers  can also be given in 
the form which shows weight reduct ion of out l iers ,  by 

: wky k + (n-k) Yn-k. (2.4) 

wkx k + (n-k) Xn-k 

When w i = x#, ~ ( i ) (w )  is given by 

^ wkr k + (n-k)  rn -k  
r = wk + (n-k)  ' (2.5) 

and when x i = i for i = I ,  2 . . . . .  N, ~ ( i ) (w )  is 
given by 

^ wky k+ (n-k)  Yn-k 
7 = wk + (n-k)  ' (2.6) 

where Yk and Xk are sample means of outliers, Yn-k 

and Xn-k are sample means of non-outliers, rk and 

rn-k are sample means of ratios ri = Yi/Xi for 

outliers and non-outliers respectively. When w÷0, in 

limit these estimators are ~ = :Yn_k/Xn_k, r = rn-k 

and ? = Yn-k' which can also be obtained as optimal 

estimators of ~3 under corresponding mean-shift model. 

The estimator of the population total can be obtained 

from (2.6)as NC7 and it shows reduction of simple 
N 

random sampling weight n of k outliers by factor w 

and resulting adjustment of weights of all n units by 

factor n/[n-k(1-w) ]. From (2.5) and (2.6) it can be 

seen that the results for r can be obtained from those 

for ? by substituting ri  for yi for all i. 

These estimators have been investigated in the 
following Section 3 using conditional inference given 
the number of outliers k assuming simple random 
sampling from a finite population. Although it may 
be possible to use prediction approach and to obtain 
model dependent estimators incorporating design 
weights, the results in this paper have been obtained 
in the framework of finite population sampling. For 
detection of outliers in the case of ratio estimation 
and sample mean Cook's distance seems to have good 
potential (Cook and Weisberg (1982)). 

3. Outl ier  Robust Est imat ion 

We assume tha t  a f ini te populat ion of size N 
contains  an unknown proport ion P of out l iers .  The 
populat ion mean X of an auxil iary var iable  x is 
assumed known. A simple random sample of size n is 
drawn without  r e p l a c e m e n t  from the populat ion and 
out l iers  are ident i f ied on the basis of values of some 
tes t  s t a t i s t i c .  Sample units may be ident i f ied as 
out l iers  if the 5th unit values (x i ,Y5)  lie in some 
region of the sample  space de t e rmined  by the tes t .  
The tes t  could be based on diagnost ics  such as Cook's 
d is tance  (see Ghangurde (1989)). 

The out l ier  robust  ra t io  e s t i m a t o r  of the 

population mean of y's is given by ^ ?R = R2, where 

^ kwy k + (n-k) Yn-k 
R = (3.1) 

kwx k + (n-k) Xn-k 

is e s t ima to r  of the populat ion ra t io  R = ?/X, of 

populat ion means ? and X. The ra t io  R can be 

expressed as 

R _. 

P ?i + ( l -P)  72 (3.2) 
9 

P 21 + ( I -P)  X 2 

where X 1 and ?i are unknown population means of 

outliers, X 2 and 72 are unknown population means of 

non-outliers, P is unknown proportion of outliers in 

the finite population of (x,y). We also assume that 
2 2 2 2 

O2x, O2y are unit variances of non-outliers ~Ix' °ly 

2 2 2 
are unit variances of outliers, Olx > O2x and Oly > 

2 Also,  oi and are unit covariances of °2y" xy °2xy 
outliers and non-outliers respectively. By substituting 

71 = 6172 and 21 = 6222 we have 

[1 + P(61-1 )] 72 
R = . (3.3) 

[1 + P(cs2-1 )] X 2 

Since in general, 61 # 62 , R ~ 72/22 . We obtain the 

conditional bias B(RIk) by Taylor series linearization 

method as 

kw? + (n-k) 72 
B(P, l k ) "  [ I ]- R 

kwX1 + (n-k) X2 

- ?2 (62 61) P(n-k) kw( l -P)  } (__).  (3.4) 
= [1_--~(1_62)] { n_k(l_w62) X 2 

When w=O, R = Yn-k/Xn-k and 

(62-61) P ? 2 
B(RIR) = ( i_ -~ i162) )  ( X ) "  

2 

When w=l, R = .Vn/Xn with no weight reduction and 

(62-61) nP-k } 72 
B(Rlk) = ( l - P ( l _ ~ 2 ) )  {n_k~l_-~2 ) ~2" 

It can be seen that f(w) P ( n - k ) -  kw(1-P) is a 
= n_k(l_w62) 

monotonic decreas ing  funct ion of w in ( 0 , l )  and f (w) 
kw 

X 0 according as P ~ [n -k (1 -w) ] "  Hence,  if P > k, 
^ 

condit ional  bias of R for w=0 is in absolute  value 
^ k 

g r e a t e r  than tha t  of R for  w in (0 1) I f P  < -  
" n 

absolute  condit ional  bias increases  as w increases  in 

[P (n -k )  1] and may not be in absolute  value lesser  
(l-P)k' 

than that for w=O. This analysis of conditional bias 

737 



of R is only of t heo re t i c a l  in teres t ;  P is not known in 

p rac t i ce .  By l inear iza t ion  of (3.4) and taking 

expec ta t ion  over  k, uncondit ional  bias of R is given by 

P((s2-(s1) ~'2 
B(R) : i+P(~2_1 ) (~2)(1-P) 

i [(I+P) - w(l+P+P62) + w2p(s2 ] + 0(~). (3.5) 

When w=O, 

P(~2-~I  ) ( I -P2)  ?2 > 
B(R) = (l+P(~2-~) (X) ~̀ 0 according as ~2<~i . 

2 

Also when w=l,  B(R) = 0 to 0 (1 ) .  The resul ts  for 

out l ier  robust sample mean ~ given in (2.6) can be 

obtained from above resul ts  by subst i tu t ion x i = l  for 

i = l ,  2 . . . . .  N, and Xl = ~2 = 62 = I .  

By Taylor  series  l inear iza t ion  method 

V(RIk) " (Rkw)2 V(~klk ) + (n-k)R)2~ V(~n_klk ) 
X X 

+ (k_.~w)2 V(~k lk  ) + (n_.~)2 V(~n_klk ) 
X X 

2Rk2w 2 
- ~2 C°V(Xk'Yk I k) 

- 2P'(~2k)2 Cov(Xn_k, Yn_k l k ) ,  (3.6) 

whereX = [kwXl+(n-k  ) X2] ,  ~( = [kwYl+(n-k )  ?2] 

and R = ~(/X. 

In order  to obtain an opt imal  value of w the 

condit ional  mean square e r ro r  of ~ given k can be 
minimized as a funct ion of w. However ,  if condit ional  
bias rat io is small  an opt imum w obtained by 

minimizing condit ional  var iance  o f ~  can be used. By 
equat ing der iva t ive  of condit ional  var iance  with 
respec t  to w to zero we have an equat ion of third 
degree  in w involving severa l  pa rame te r s .  An 
analy t ica l  solution cannot  be obtained unless 
e s t ima te s  are subs t i tu ted  for severa l  p a r a m e t e r s  
involved. An a l t e rna t ive  is to minimize l imit ing value 

of V(~lk)  for infinite N, which is the same as 
minimizing superpopulat ion var iance  of R under the 
var iance- in f la t ion  model with Ux and Uy, means of x 

and y respec t ive ly .  It may be noted tha t  under the 

model, bias of R is zero.  The opt imum w is given by 

2 2 2 2 
°2x~y + °2y~x - 2°2xy~x~Y (3.7) 

w= 2 2 2 2 
Olx~y + OlyU x - 2OlxyUx~y 

This expression for  opt imum w obta ined by assuming 
infinite N is simple and needs es t imat ion  of f ewer  
p a r a m e t e r s .  The means Ux and uy can be e s t i m a t e d  

by sample  means Xn and Yn respec t ive ly .  Although 
2 2 

Olx, Oly and Ol×y can be e s t ima ted  from sample  

outl iers ,  more e f f ic ien t  e s t ima t ion  can be done by an 
extension of Minimum Norm Quadra t ic  Unbiased 
Es t imat ion  (MINQUE) method (see Rao (1970)) to 
es t ima t ion  of h e t e r o s c e d a s t i c  var iances  and 
covar iances  when x and y are random. 

The opt imum w, al though obta ined under the 
var iance- in f la t ion  model,  can still  be used in f ini te  
populat ion sampling and mean square e r ror  can be 
e s t i m a t e d  for  values of w close to the opt imum given 
by (3.7) to decide on choice of another  value of w. 
However ,  due to instabi l i ty  of e s t ima te s  of bias, it 
may be p re fe rab le  to use w given in (3.7). 

In the case of sample  mean ~ the opt imum w o 
can be obta ined by minimizing mean square e r ror  and 
is given by 

n-k 
w : ( i  - N( l_p)  ) o Y + (n-k)  P(aI  - I ) 2  722 (3.8) 
o k l  

In the l i t e r a tu re  severa l  e s t ima to r s  obtained by 
weight reduct ion  and which can be considered as 

_ 

l inear  combinat ions  of Yk and Yn-k have been 
inves t iga ted  (see e.g. Hidiroglou and Srinath (1981)). 

Their  e s t ima to r  ~ = -~  Yk + (1 - -~)  Yn-k with 

opt imal  r = r  o obtained by minimizing mean square 

er ror  of 7 is the same a s ?  with optimalw=wo, since 
k w o / ( ( n - k )  + kwo) = rok/N. The impor tan t  
advantage  of e s t ima to r s  suggested above is that  the 
weight reduct ion  can be e s t ima ted  from survey da ta  
and  extensions  to o ther  sample designs seem possible. 
Thus w o can be e s t ima ted  by 

n ^2 k 2 
^ ( i  - ~) + k ( l  - (Y - Yn- ) w = °2y n ) k k (3.9) 

n ^2 + k(1 k 2" 
o ( i  - ~) Oly - n ) ( y  k - .Yn_k) 

^2 
Although, it is possible to obtain e s t i m a t e  O ly from 

sample  outl iers ,  the e s t ima to r  is unstable  for small  
values of k. A l t e rna t ive  methods  for e s t ima t ion  of 
h e t e r o s c e d a s t i c  var iances  have been proposed in the 
l i t e r a tu r e  (see Klef fe  (1977)). The MINQUE was 
developed for p>.1 and n unequal  var iances  (see Rao 
(1970)). 

Assuming tha t  the last  k units are  outl iers ,  
e s t ima to r s  of unit var iances  obta ined by MINQUE 
method are  given by 

"2 
°ly = 

n n 
n z (yi-Yn)2 z (yi-Yn)2 

i=n-k+l i=1 
k (n-2) (n-l) (n-2) ' 

n-k n 
2 2 

n z (yi-Yn) z (yi-Yn) 
"2 i=i i=1 
°2y = (n-k) (n-2) - (n-l) (n-2) " (3.10) 

These e s t ima to r s  are more e f f ic ien t  than the usual 
2 2 

e s t ima to r s  of Oly and O2y and also give more 

e f f ic ien t  e s t ima to r s  of 6 as compared  to those 

obta ined by weighted  leas t  squares  (Rao and 

Subrahmaniam (1971)). 
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4. Concluding Remarks 

The variance-inflation model seems to be an 
appropriate model for outliers in sample surveys. In 
the optimal estimator based on the model influence of 
outliers with large residuals and high leverage is 
reduced due to factor (l-w). U n d e r  appropriate 
assumptions about dependence of var iance  on x, it 

reduces to out l ier  robust e s t imators  R, r and Y, in 
which weights of out l iers  are reduced.  In the case of 
ra t io  es t imator ,  al though the problem of 
de te rmina t ion  of opt imal  weight was simplified by 
assuming an infinite population, it could stil l  be used 
in the case of f ini te  populat ion sampling. Although it 
may be possible to use predict ion approach and to 
obtain model dependent  es t imators  incorpora t ing  
design weights, condit ional  inference in f ini te 
population sampling f ramework  shows tha t  these 
out l ier  robust e s t imators  have desirable propert ies .  
Extension of these es t imators  to s t ra t i f ied  sampling 
incorporat ing design weights is being invest igated.  

Implici t  in the var iance- in f la t ion  model for 
out l iers  is the assumption tha t  superpopulat ion is a 
mixture of distr ibutions with the same mean but 
d i f ferent  variances.  In the case of sampling from 
mixture distr ibutions belonging to the exponent ia l  
family, maximum likelihood es t imators  of pa rame te r s  
have been obtained and suff ic ient  conditions have 
been establ ished for outl iers  to occur in samples from 
these distr ibutions (see e.g. Gather  and Kale (1988)). 
It would be of in teres t  t o  inves t igate  into the 
possibility of establ ishing similar conditions for 
occur rence  of outl iers  in sampling from finite 
populations which have mixture distr ibutions.  

Although unit var iances  and covar iances  for 
outl iers  can be es t ima ted  from outl iers  in the sample, 
the e s t ima to r  could be unstable for small  values of k. 
In the case of ra t io  es t imat ion  an extension of 
MINQUE method for es t imat ion  of he te roscedas t i c  
var iances  and covar iances  of x and y is needed. The 
problem of var iance es t imat ion  was not discussed 
since it does not involve any new methodology,  once w 
is t r e a t e d  as a component  of weights of outl iers.  
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