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1. Introduction

In the literature on regression analysis several
approaches for detection and treatment of outliers
have been developed. In addition to methods based on
the mean-shift and variance-inflation models,
estimators based on order statistics such as trimmed
and Winsorized means and M-estimators based on
robust regression methods are available. Regression
diagnostics provide methods for critical examination
of models and measures of influence of individual
outliers and groups of outliers on estimates of
parameters (see Beckman and Cook (1983); Cook and
Weisberg (1982)).

The objective of this paper is to develop outlier
robust estimators for sample surveys, based on
variance-inflation model. This model is a simple
extension of superpopulation model often impliecitly
assumed for the traditional design-based estimators
and more explicitly used in the prediction approach.
Although these estimators are obtained as optimal
estimators of parameters of this model, the results on
the bias and variance of these estimators and optimal
weight reduction for outliers, presented in this paper,
are in the framework of finite population sampling.
These outlier robust estimators are not model
dependent and have not been evaluated by prediction
approach. Qutlier robust estimators in finite
population sampling based on robust regression and
prediction approach have been investigated by
Chambers (1986).

The problem of outliers has been considered in
the literature on finite population sampling in the

context of estimation of mean or total, usually
assuming no auxiliary information in estimation.
Estimators obtained by methods based on order

statisties, such as Winsorization and trimming, and
weight reduction, have been investigated by assuming
simple random sampling (see e.g. Fuller (1970); Ernst
(1980)). [t seems that it is not possible to extend
methods based on order statistics to sample designs
involving stratification and different sampling ratios
and non-response rates between strata and unequal
probabilities of selection, which result in unequal
design weights. Sample surveys are often periodic
with rotation samples designed for estimation of
changes. Moreover, estimates are needed at several
levels such as stratum, group of strata and domains.
Because of these features of sample surveys,
estimators based on reduction of weights of outliers
are more convenient for use in practice.

In Section 2 we introduce the model in which
variance is a funetion of an auxiliary variable x and
assume that outliers have inflated variances. The
optimal estimators of parameter 8§ are derived by
assuming k outliers (lgk<n) in a random sample of
size n. In Section 3 conditional mean square error of
these estimators and optimal weight reduction have
been derived by assuming simple random sampling
from a finite population. In concluding remarks in
Section 4, comments have been made on possible
extensions of outlier robust estimation and the
problem of estimation of wunit variances and
covariances of x and y for outliers and non-outliers.
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2. Variance-inflation Model

Consider a linear model

Y = X
nx1

B + e,
nxp pxl nxl

(2.1)

where e ~ (0, 02 W), 02 unknown, W is a diagonal
varianece-covariance matrix with elements wj

depending on x5, i=1, 2, ..., n, Y is an-vector of
responses of y, X is a design matrix of p auxiliary

variables each with n observations assumed fixed, 8 is
a p-vector of regression coefficients and e is an error

term. Under the model assuming p=1, w1.=x?, ratio

of sample means Yy/X
n
%( I yi/xj) are the best linear unbiased
i=1

and mean of ratios

P o=

estimators of g for g=1 and 2 respectively. The
model 1is appropriate for categorical variables in
socio-economic surveys. It is known that values of g
for many variables lie in the interval [1,2] and more
often closer to 1 than to 2. In practice in multi-
purpose sample surveys with several y-variables and
an auxiliary variable X possibly used for stratification,
ratio estimation, although less than optimal for
variables with g>1, is often used for all y-variables
for convenience of uniform weighting method.

We now consider the variance-inflation model for

k outliers (1g<k<n) which are the last k sample units,
without loss of generality. Thus
Y = X 8 + e, (2.2)
nx1 nxp pxl nx1
where e ~ (0, o2 W(k)) and W(k) is a diagonal

variance-covariance matrix with elements wy, i=1,

2, ..., n-k and wi/w, i = (n-k+l), ..., n; w s
unknown constant {O<wgl). This model is a simple
extention of the variance-inflation model considered

by Pregibon (1981), Cook, Holschuh and Weisberg
(1982) and Thompson (1985).

We consider expression for the best linear
unbiased estimator 8j(w) of 8 under (2.2) for the case

of one outlier, the ith sample unit. Thus

T lo-1 ! -~
~ ~ (X W X) X'i(‘yih‘y"l)(l‘w)
gi(w) =8 - T S R ) BT

(2.3)

where for p=1, (X'W‘IX)_l and X} are scalars
8 = (X'W-Ix)-1(x'w-1Y) is the estimator of 8

under (2.1) and Vjj = wglxi(x'w-lxrlx% is the ith
diagonal element of variance-covariance matrix
V = V(X8), called leverage of Xj. Also, O0<Vjij¢l
when p=1. For large values of Xj, V4i is close to 1,

which makes contribution of 1 to ﬁi(w) very large.

The second term on the right hand side of (2.3) shows

change due to variance-inflation of ith sample unit.

Thus influence of both residual (yj-yi) and leverage



Vji is reduced due to factor (1-w). For k(>1)
outliers and Wi = Xj, the estimator §(1' y (W), where
(1) represents group of k outliers can also be given in
the form which shows weight reduction of outliers, by

oWkt () Ty

. d (2.4)
wkxk + (n-k) Xn-k
2 A S
Whenwj = Xy, 3(1')(w) is given by
~  wkr, + (n-k) r
R n-k (2.5)

wk + (n-k) °
and when x4 = 1for i =1, 2,

e Ny B(4)(w) s
given by

§ - kak+ (n'k) yn-k
wk + (n-k) °®

where yi and Xi are sample means of outliers, Yk

(2.6)

and Xp_k are sample means of non-outliers, ry  and
rnk are sample means of ratios ri = yj/xj for
outliers and non-outliers respectively. When w-0, in

limit these estimators are R = §p_k/Xn_ks T = Pn_k
and Y = }_’n-k’ which can also be obtained as optimal

estimators of 8 under corresponding mean-shift model.
The estimator of the population total can be obtained

from (2.6) as N‘A? and it shows reduction of simple
random sampling weight y‘- of k outliers by factor w

and resulting adjustment of weights of all n units by
factor n/[n-k(l-w)]. From (2.5) and (2.6) it can be

seen that the resuits for r can be obtained from those

for § by substituting vy for y4 for all i.

These estimators have been investigated in the
following Seection 3 using conditional inference given
the number of outliers k assuming simple random
sampling from a finite population. Although it may
be possible to use prediction approach and to obtain
model dependent estimators incorporating design
weights, the results in this paper have been obtained
in the framework of finite population sampling. For
detection of outliers in the case of ratio estimation
and sample mean Cook's distance seems to have good
potential (Cook and Weisberg (1982)).

3. Outlier Robust Estimation

We assume that a finite population of size N
contains an unknown proportion P of outliers. The
population mean X of an auxiliary variable x is
assumed known. A simple random sample of size n is
drawn without replacement from the population and
outliers are identified on the basis of values of some
test statistic. Sample units may be identified as
outliers if the ith unit values (xj,yj) lie in some
region of the sample space determined by the test.
The test could be based on diagnostics such as Cook's
distance (see Ghangurde (1989)).

The outlier robust ratio estimator of
population mean of y's is given by Yg = RX, where

the

737

& . kwyk + (n-k) Y-k

T _ 3.1)
kwx, + (n-k) Xn-k
is estimator of the population ratio R = Y/%, of
population means Y and X. The ratio R can be
expressed as
) P ‘71 + (1-P) YZ (3.2)

R = ]
PRy + (1-P) %,

where X1 and Y{ are unknown population means of

outliers, X5 and Y2 are unknown population means of

non-outliers, P is unknown proportion of outliers in

the finite population of (x,y).

2 2 . . .
Toys °2y are unit variances of non-outliers O%x’ Oiy

and ciy >

We also assume that

. . . 2 2
are unit variances of outliers, Iy > Toy

Also, o and o are unit covariances of

2
C2y* 1xy 2xy
outliers and non-outliers respectively. By substituting

71 = élVZand Xl = 625(2 we have

[1+P(s;-1)1 9,

R_

- ) (3.3)
[1+ P(s,-1)] %,

Since in general, 61 # 62, R # Y2/Xp.  We obtain the
conditional bias B(R(k) by Taylor series linearization

method as

N ka1 + (n-k) 72
B(RIk) = [———] - R
kal + (n-k) 22

-

(52 - 51)

- 2
[T=P(T5,)]

P(n—k) - kW(l—P)}(__
X2

n—k(l-waz)

). (3.4)

When w=0, ﬁ = Yn_k/Xn-k and

(52-51) P ¥

a 2
B(Rik) = 7—sr—-v (—).
Rk = T (i-s,) (Xz)
When w=1, R = Yn/Xn with no weight reduction and
B 1K) - o2l nb-k__y %,
(1-P(1-52)) n-k(1—62) XZ

_ P(n-k) - kw(1-P) .
- M s

monotonic decreasing function of w in (0,1) and f (w)

kw . k
Tk (L= T Hence, if P > )
conditional bias of R for w=0 is in absolute value

greater than that of R for w in (0,1). IfP < %

It can be seen that f(w)

< . >
> 0 according as P <

absolute conditional bias increases as w
[Pgn-k)
(1-P)k?
than that for w=0.

increases in

1] and may not be in absolute value lesser

This analysis of conditional bias



of R is only of theoretical interest; P is not known in

practice. By linearization of (3.4) and taking

expectation over k, unconditional bias of R is given by

~ P(s

) Y
B(R) = 1o 1 y GE

1+P(G )(1_P)

[(1+P) - w(1+P+Ps,) + wPPs,] + 0(L). (.5)
When w=0,
L P(5,-8)(1-P) W,

= _£y 2 : >
B(R) = (1+P(62—l)) 3 < 0 according as PELIR

Also when w=1, B(Ii) =0 to O(%).

outlier robust sample mean Y given in (2.6) can be

The results for

obtained from above results by substitution xj=1 for
i=1, 2, ..., N, and X] = X2 = 62 = 1.

By Taylor series linearization method

VRIK) = RNZ gz« (R g
X X
K _
+<Wﬁvuwm+(”k2vum@m
22
ZRk W Cov(xk,yklk)
X2
2
2R (n-k) S
- 2 Cov(xn_k, yn_klk) , (3.6)

where X = [kwXi+(n-k)} Xol, ¥ = [kwYVi+(n-k) Y2]
and R = ‘?/;(

In order to obtain an optimal value of w the
conditional mean square error of R given k can be

minimized as a function of w. However, if conditional
bias ratio is small an optimum w obtained by
minimizing conditional variance of R can be used. By
equating derivative of conditional variance with
respect tow to zero we have an equation of third

degree in w involving several parameters. An
analytical solution cannot be obtained unless
estimates are substituted for several parameters

involved. An alternative is to minimize limiting value

of V(RIk) for infinite N, which is the same as
minimizing superpopulation variance of R under the
variance-inflation model with ny and uy, means of X

and y respectively. It may be noted that under the
model, bias of R is zero. The optimum w is given by

2 2 2 2

Ioxty * Tpy¥x T 2°2xy“x“_y

w . 3.7)
2 2,22,
“1xMy T “ly¥x I1xy¥xMy

This expression for optimum w obtained by assuming
infinite N is simple and needs estimation of fewer
parameters. The means uy and uy ecan be estimated

by sample means X, and y, respectively. Although

2 2 .
T1ye cly and olxy can be estimated from sample
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outliers, more efficient estimation can be done by an
extension of Minimum Norm Quadratic Unbiased
Estimation (MINQUE) method (see Rao (1970)) to

estimation of heteroscedastic variances and
covariances when x and y are random.
The optimum w, although obtained wunder the

variance-inflation model, can still be used in finite
population sampling and mean square error can be
estimated for values of w close to the optimum given
by (3.7) to decide on choice of another value of w.
However, due to instability of estimates of bias, it
may be preferable to use w given in (3.7).

In the case of sample mean Y the optimum wq
can be obtained by minimizing mean square error and
is given by

n-k 2
W - (1- N(l-P)) 2 + (n-k) P(5 '1) (3.8)
- K 2 2 :
° (1 - ) of, + k(1-P)(s) “1)? v
In the literature several estimators obtained by

weight reduction and which can be considered as
linear combinations of yg and yn_k have been
investigated (see e.g Hidiroglou and Srmath (1981)).

Their k ye + (1 - N) Yn-k  with

obtamed by minimizing mean square

estimator ¥ =
optimal r=rg

error of Y is the same as ¥ with optimal w=w, since
kwg/((n-k) + kwg) = rgk/N. The important
advantage of estimators suggested above is that the
weight reduction can be estimated from survey data

and extensions to other sample designs seem possible.

Thus wgy can be estimated by

n, "2 Ky /= - 2
\:/ ) (1- N) 02L+ k(L - E)(‘yk - yn-k) . (3.9)
° -, k(- B - T

Although, it is possible to obtain estimate Siy
sample outliers, the estimator is unstable for small
values of k. Alternative methods for estimation of
heteroscedastic variances have been proposed in the
literature (see Kleffe (1977)). The MINQUE was
developed for pzl and n unequal variances (see Rao
(1970)).

Assuming that the last k wunits are outliers,
estimators of unit variances obtained by MINQUE
method are given by

from

n N -2
'\2 n z (yi'yn) L (.Y-i'.yn)
o1y = i=n-k+l i=1
Y k(n-2) (n-1)(n-2)
n-k n
=2 = 42
n oz (y-¥,) I (yi-Yy)
~2 _ =1 _i=1 (3.10)
%2y (n“k) (n-2) (n=1){(n=?) .
These estimators are more efficient than the usual
. 2 2 .
estimators of 1y and %2y and also give more
efficient estimators of 8 as compared to those
obtained by weighted least squares (Rao and

Subrahmaniam (1971)).



4. Concluding Remarks

The variance-inflation model seems to be an
appropriate model for outliers in sample surveys. In
the optimal estimator based on the model influence of
outliers with large residuals and high leverage is
reduced due to factor (l-w). Under appropriate
assumptions about dependence of variance on X, it

reduces to outlier robust estimators R, r and Y, in
which weights of outliers are reduced. In the case of
ratio estimator, although the problem of
determination of optimal weight was simplified by
assuming an infinite population, it could still be used
in the case of finite population sampling. Although it
may be possible to use prediction approach and to

obtain model dependent estimators incorporating
design weights, conditional inference in (finite
population sampling framework shows that these

outlier robust estimators have desirable properties.
Extension of these estimators to stratified sampling
incorporating design weights is being investigated.

Implicit in the variance-inflation model for
outliers is the assumption that superpopulation is a
mixture of distributions with the same mean but
different variances. In the case of sampling from
mixture distributions belonging to the exponential
family, maximum likelihood estimators of parameters
have been obtained and sufficient conditions have
been established for outliers to occur in samples from
these distributions (see e.g. Gather and Kale (1988)).
It would be of interest to investigate into the
possibility of establishing similar conditions for
occurrence of outliers in sampling from finite
populations whieh have mixture distributions.

Although wunit variances and covariances for
outliers can be estimated from outliers in the sample,
the estimator could be unstable for small values of k.

In the case of ratio estimation an extension of
MINQUE method for estimation of heteroscedastie
variances and covariances of x and y is needed. The
problem of variance estimation was not discussed
since it does not involve any new methodology, once w
is treated as a component of weights of outliers.
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