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i. Introduction 

In the Canadian Census, in addition to 
the basic demographic questions asked of 
all persons, there are a number of sup- 
plementary questions dealing with cultur- 
al and socio-economic characteristics. 
Except in remote areas of the country, 
these supplementary questions are asked 
of those persons who fall in a 1 in 5 
sample of households selected systemati- 
cally from each Enumeration Area (EA). In 
both Canada and the U.S.A., published 
Census sample data have utilized univar- 
iate Raking Ratio Estimators (RREs). 
RREs generally have smaller mean square 
errors (MSEs) than Horvitz-Thompson (H-T) 
estimators (see Brackstone and Rao 
(1979)). For the basic demographic char- 
acteristics, RREs also reduce or elimi- 
nate inconsistencies between known popu- 
lation counts and the corresponding sam- 
ple based estimates. 

For the 1991 Canadian Census, alterna- 
tives to RREs such as multivariate Gener- 
alized Least Squares Estimators (GLSEs) 
are being examined. GLSEs were first 
described by Deming and Stephan (1940). 
Renewed interest in GLSEs has been gen- 
erated by Bethlehem and Keller (1987) and 
Luery (1986). Articles by authors such 
as Wright (1983) and Sarndal and 
Hidiroglou (1989) are also relevant be- 
cause the GLSE is a multiple regression 
estimator that is approximately design 
unbiased. 

In this paper, the GLSE theory as 
described by Bethlehem and Keller (1987) 
is generalized to allow for poststratifi- 
cation. The multivariate GLSE can then be 
compared more directly to the poststrat- 
ified univariate RREs traditionally 
used in Censuses. The results of a nu- 
merical example are given which indicate 
that the estimated MSEs of Census estima- 
tors can be significantly reduced by 
using the multivariate GLSEs. 

2. Multivariate GLSE and RRE 

Assume a sample of fixed size n is 

selected randomly, without replacement, 

by some method from a population of N 

units. It will be assumed that each unit 

in the population has a non-zero proba- 

bility of being selected in the sample 

and that the joint probability of selec- 

tion for any two units is non-zero. The 

population and sample are partitioned 

into H poststrata or weighting adjustment 

classes. An initial unbiased weight 

Whk (0) is assigned to the kth sampled 

unit (or subunit, as appropriate) that 

belongs to the hth poststratum or weight- 

ing adjustment class. It is desired to 

determine final weights Whk = ChWhk (0) 
such that the loss function 

LGM = (c-l)'V(c-I) ( 2 . 1 )  

is minimized subject to the constraints 

A 

X.i =X i i = 1 to I (2.2) 

where c = [Ch] = [Xh./Xh. (0) ] and 1 = [I] 

are Hxl matrices while V is a HxH symme- 

tric positive definite matrix which is 

not a function of c. In addition, Xhi 

= ~k Xhik while Xhik = WhkXhik and Xhi k 
is the value for the ith type of auxili- 

ary information for the kth unit in the 

in the hth poststratum. Xhi (0) sample 
A 

has the same definition as Xhi except 

that the weight Whk is replaced by the 

weight Whk (0) . For Xhi and Xhi (0) , sum- 
mation over a subscript is indicated by 

replacing it with a dot. Finally, X i 

= Zk Xik where Xik is the value for the 

ith type of auxiliary information for the 

kth unit in the population. It will be 

assumed that the summation in the loss 

function is restricted to those poststra- 

where - Xh. (0) does not equal zero. ta 

With the multivariate GLSE, in con- 
trast to the univariate RRE, there does 
not have to be any relationship between 
the variables used to define the post- 
strata or weighting adjustment classes 
and the variables used to define the 
constraints. The term weighting adjust- 
ment classes is used in this paper to 
indicate that the H categories are de- 
fined using sample information. For 
example, the weighting adjustment classes 
can be defined to each contain a single 
sampled household as was done by 
Bethlehem and Keller (1987). It can be 
shown using Lagrange multipliers that the 
vector c which minimizes equation (2.1) 
subject to the constraints of equation 
(2.2) is 

C = 1 + V- I~z(O)A (2.3) 
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with A :(~(0),V-I~(0))-I(X, IN _ ~(0)'I) 

where ~(0) = [Xhi (0)]- is a HxI matrix, X 

is a N x I matrix with X' = [Xik], A is a 

I x 1 matrix and 1 N is a N x 1 matrix of 

ones. It can be demonstrated that 

~(0) ,V-I~(0) is invertible and hence 

there is a unique solution c if ~(0) is 
A 

of rank I (i.e. the columns of X (0) 

which correspond to the constraints de- 

fined in equation (2.2) are linearly 

independent). It will be assumed in this 

report that the columns of ~(0) are 

linearly independent. This is a reason- 

able assumption to make since columns of 

~(0) that are linearly dependent are 

usually caused by constraints that are 

redundant. In practice, if some of the 
A 

columns of X (0) are found to be linearly 

dependent, they can be eliminated. 

It is possible to determine c by using 

the Gauss-Seidel method (Pizer (1975)) to 

iteratively solve for A. This may be 

more efficient computationally than the 

approximately I3/3 multiplications re- 

quired to perform Gaussian elimination to 

determine A. There will only be a gain 

in computational efficiency, however, if 

the iterative procedure converges reason- 

ably quickly. It can be shown that the 

iterative procedure will converge if ~(0) 

is of rank I and V is a positive definite 

matrix. 

Having determined the adjusted weights 

Whk , they are applied to produce esti- 

mates for characteristics available only 
• A A 

on a sample baszs. Let y(0) = [yh(0)] and 

= [Yh] be Hxl vectors where Yh ~0) 

= ~k Whk(0)Yhk, Yh = ~k WhkYhk and Yhk is 
the value for the characteristic of in- 

terest for the kth unit in the sample in 

the hth post-stratum. Then applying 

equation (2.3) 

A A A A 

Y = ~h Yh = Y'I = y(0)'c 

: ~ ( 0 ) ' i  + ~' (X ' I  N - ~ [ ( 0 ) ' i )  ( 2 . 4 )  

where ~ = (~(0),V-I~(0))-I~(0),V-I~(0) 
A 

= [8i] is an Ixl vector. It can be 

shown that ~ minimizes the loss function 

T GM* : ¢~(0) _ ~(0)~),v-1(~(0) _ ~(0)~) 
(2 .5  

From equations (2.4) and (2.5) , it can be 

seen that the generalized least squares 

estimator Y is a multiple regression 

estimator that is approximately designed 

unbiased. It can be shown using a 

Taylor Series expansion of degree one 

A 

that E(Y) : Y and 

^ ^ ^ ^ (0) MSE(Y) : V(Y) : V(Y (0) -~i #iX.i ) 
n h 

= V(~ h 7. k Whk(0)Uhk ) 

: v(0 (°)) (2.6) 

where Uhk = Yhk - ~i #iXhik and #i = 
E(#i). Thus an approximation of MSE(Y) 

can be determined by numerically calcu- 

lating Uhk and then substituting it into 

the H-T estimator variance formula. An 
A 

estimator of MSE(Y) can be determined by 
A 

replacing the #i with #i when calcu- 

lating Uhk and then substituting the Uhk 

into an estimator of the H-T estimator 

variance formula. 

The definition of the multivariate 
RRE is identical to the definition of 
the multivariate GLSE in terms of assumed 
sample design, poststratification and 
constraints. The only difference is the 
loss function 

LRM = ~h Xh. ( 0 ) c h i n c h  ( 2 . 7 )  

The l o s s  f u n c t i o n  LRM can  be m i n i m i z e d  
s u b j e c t  t o  t h e  c o n s t r a i n t s  o f  e q u a t i o n  
(2.2) by applying Lagrange multipliers. 
This generates a system of non-linear 
equations to be solved. For this reason, 
Darroch and Ratcliff (1972) developed an 
iterative solution. They proved that if 
there is at least one positive solution 
to the constraints, the iterative process 
will converge to the unique positive 
solution which minimizes the LRM loss 
function. 

3. Comparison of GLSE to RRE 

In this section, the multivariate GLSE 

and RRE are compared. Assume that the V 

matrix^ of LGM is a diagonal matrix with 

Xh. (0) h = 1 to H on the diagonal. In 

this situation, LRM is approximately 

equal to LGM times a constant. This can 

be derived from a Taylor series expansion 

around Xh. (0) of degree 2 for LRM. 

Thus, in this case, the multivariate RRE 

and GLSE should give similar results if 

the values of c h are close to i. For 

this V, equation (2.3) shows that 

c h : 1 + ~i AiXhi(0)/Xh. (0) (3.1) 

for the multivariate GLSE. For the mult- 
ivariate RRE, c h is replaced by in(ch) 
in equation (3.1). Thus with the RRE, a 
log linear model is being used. From 
these two equations, it is obvious that 
negative weights are possible with the 
GLSE but not with the RRE. With either 
procedure, weights less than one can be 
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generated. This may indicate that either 
the sample is unrepresentative of the 
population or that too stringent con- 
straints are being applied to the esti- 
mates. If either situation holds, it 
should be investigated and modifications 
made regardless of whether the RRE or the 
GLSE are being used. 

One advantage of the GLSE is that it 

allows greater flexibility than the RRE 

in terms of the loss function used. The 

derivation of a solution for the multi- 

variate RRE becomes very complex if a 

loss function more general than that 

given in equation (2.7) is used. Assume 

that poststrata have been defined and 

that V is a diagonal matrix with 

(Xh.(0)) 2 q -  running down the diagonal and 

0 s q s i. It will be also assumed that 

(Xh.(0)) 2 q -  takes on a large range of 

values, varying from small to large for 

the various poststrata h. In the dis- 

cussion which follows, post-strata with 

small values of (Xh.(0)) 2 q -  will be called 

small poststrata while those with large 

values of (Xh.(0)) 2q will be called large 

poststrata. Because poststrata are 

(Xh.(0)) 2q in loss function weighted by 

LGM , large poststrata will tend to have 

values of c h close to i. Based on this 

Yh = Yh (0) for large poststrata, i.e. ap- 

proximately design based estimators will 

be used. Choosing values of q closer to 

1 rather than 0 will tend to accentuate 

this pattern. If one has faith that the 

model assumed under the multiple regres- 

sion estimator is approximately correct 

for all poststrata, values of q closer to 

0 might be chosen since more reliable 

estimators, particularly for the smaller 

poststrata may result. The use of these 

(Xh.(0)) 2q is similar to that weights 

suggested by Bankier (1988). Oh and 

Scheuren (1987) have suggested using a 

combination of separate and raking ratio 

estimators in this situation instead. 

In the Canadian Census, the iterative 
solution of the univariate RRE person 
weights can take many iterations to con- 
verge. Up to 160 adjustments to the 
weights are done. It was found that 
residual discrepancies still existed be- 
tween the population values and the final 
estimates for a few constraints. Some 
experiments carried out with multivariate 
RRE suggest that it may be even slower to 
converge. For these reasons, the exact 
solution to the GLSE may, in certain 
situations, be computationally more effi- 
cient than the iterative solution to the 
RRE. The exact solution to the GLSE will 
also guarantee the elimination of any 

discrepancies between the population val- 
ues and the final estimates for the con- 
straints. The exact solution to the GLSE 
also offers the possiblity of simpler 
variance calculations than have been 
possible under the RRE ( see Bankier 
(1986) and Binder and Theberge (1988) for 
a description of RRE variances). 

4. Numerical Example 

In this section, multivariate GLSEs 
are calculated using 1986 Canadian Census 
data. The efficiency of these estimators 
is compared to that for estimators simi- 
lar to those used in the 1986 Census. 

The 1986 Census estimators will be 
briefly described. A 1 in 5 sample of 
households was selected systematically 
from each EA in non-remote areas. Adja- 
cent EAs were formed into groups called 
weighting areas (WAs). A WA generally 
contained 2000-7000 persons. Calculation 
of weights was carried out independently 
within each of the 5,347 WAs in Canada. 
Households and persons were poststrati- 
fied separately at the WA level by defin- 
ing two dimensional cross-classification 
(c-c) matrices. The household c-c matrix 
had 25 rows and 4 columns. The first row 
contained two person family households 
with a male head aged 15-24. The first 
column contained households in single 
detached owned dwellings. The person c-c 
matrix had 26 rows and 27 columns. The 
first row contained never married males 
aged 0-4. The first column contained 
husbands without children whose mother 
tongue was English. Other rows and col- 
umns were defined in a similar fashion. 
Rows and columns were combined where 
necessary to ensure that the sample and 
population counts were large enough for 
the weighting algorithm to work well. 
Then univariate RREs were determined such 
that the estimated number of persons or 
households which fell in each collapsed 
row or column agreed with the known popu- 
lation count. Household weights were 
used to produce the household estimates 
while person weights were used to produce 
the person estimates. 

For the numerical example, univariate 
GLSEs (see, for example, Friedlander 
(1961)) based on the above collapsed 
person c-c matrix were calculated. The 
univariate GLSE was used instead of the 
univariate RRE because it was computa- 
tionally more convenient. The estimated 
CVs for the two types of univariate esti- 
mators were found to be almost identical 
for a number of estimates that were com- 
pared. 

The multivariate GLSEs were designed 
to do better, according to two criteria, 
than the 1986 Census estimators for the 
majority of estimates produced. It was 
desired that there be lower coefficients 
of variation (CVs) and smaller discrepan- 
cies between estimates and known popula- 
tion counts, particularly at the EA le- 
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vel. In the 1986 Census, there was no 
control on discrepancies at the EA level, 
which seemed undesirable given the in- 
creased interest in small area data. The 
weighting methodology also had to be 
highly automated and require a minimum 
amount of manual intervention given the 
large amount of data being processed. 

A WA from a rural area of the province 
of Alberta was selected for the numerical 
example. The characteristics of the 
persons and housing in that WA were typi- 
cal of its county. The WA contained 1797 
private households with 4914 persons and 
355 of these households were sampled. 
There were ten EAs in the WA. Four were 
small with between 16 and 26 households. 
The other six EAs had between 245 and 328 
households. 

For the numerical example, it seems 
reasonable that a single weight asso- 
ciated with each household be used to 
produce all person, household and family 
estimates. Besides being computationally 
efficient, a single household weight 
reflects the fact that the units sampled 
are households. Also, if the sample 
is unrepresentative for certain household 
characteristics, person estimates should 
be adjusted to reflect this. 

It was decided to apply the multi- 
variate GLSE twice. The first step of 
the estimation procedure reduced the 
discrepancies between certain estimates 
and the corresponding population counts 
at the EA level. The second step elimi- 
nated the discrepancies between these 
estimates and the corresponding popula- 
tion counts at the WA level and for a few 
other characteristics at the EA level. 
The constraints applied at the EA level 
in the first step were the same con- 
straints applied at the WA level in the 
second step. It was hoped that this two 
step procedure would eliminate discrepan- 
cies at the WA level while generally 
reducing them at the EA level. Weighting 
adjustment classes consisting of single 
sampled households were used rather than 
poststrata. One step GLSEs were tried 
where each EA was poststratified based on 
household characteristics. It was found, 
however, that this was not effective in 
reducing EA level discrepancies and was 
also difficult to automate. 

Sixty constraints were defined for the 
numerical example. It was required that 
the estimated number of persons equal the 
known number at the WA level for various 
values of age, sex, marital status, mo" 
ther tongue and family status. For 
households, the constraints at the WA 
level applied to the age, sex and marital 
status of the head of household. It was 
also required that there be consistency 
at the WA level for household size, ten- 
ure and dwelling type. In addition, the 
estimated numbers of census and economic 
families were required to equal the known 
population counts at the WA level. At 
the EA level, the estimated number of 
households was to equal the known number. 

Also, the estimated and known number of 
persons was to agree for the eight EAs 
with the largest samples. In this nu- 
merical example, constraints were based 
on single characteristics such as age 
rather than two or more crossed charact- 
eristics such as age by sex. In the 1986 
Census, extensive collapsing of rows and 
columns of the c-c matrices caused dis- 
crepancies to remain for both single and 
crossed characteristics. 

More details are provided now about 
the two step GLSE procedure. In the 
first step, initial weights were set 
equal to the inverse of the achieved EA 
household sampling fraction. Four sub- 
sets of the 42 WA level constraints were 
applied separately to each of the six 
largest EAs. The four GLSE weights gen- 
erated for each household were averaged. 
In the second step, these averaged 
weights were used as the initial weights 
when the GLSEs were calculated at the WA 
level using the sixty WA and EA level 
constraints. 

Before creating the four subsets of 
constraints in the first step, any con- 
straints that only applied to a small 
number of sampled households in an EA 
were dropped. It was felt that very 
large or very small weights might other- 
wise result. In addition, any constraints 
that we~ linearly dependent, based on 
the ) matrix for a particular EA 
were dropped. This was done to ensure a 
unique solution. The number of con- 
straints dropped to between 21 and 27 
after these checks. The constraints 
were then subdivided into four overlap- 
ping subsets for each of the six largest 
EAs. Each of the twelve constraints 
with the largest discrepancies between 
the initial estimate and known population 
count at the EA level appeared in two of 
the subsets. There were six of these 
constraints with large discrepancies in 
each of the subsets. Each of the other 
constraints appeared in only one of the 
subsets. Thus there were between two and 
four of the other constraints in each of 
the subsets. This approach was taken 
because it was felt that the number of 
sampled households at the EA level was 
insufficient to allow all of the linearly 
independent constraints to be applied 
simultaneously. Also, reduction rather 
than elimination of the discrepancies for 
these constraints was required at the EA 
level. The constraints were also checked 
at the WA level in the second step for 
linear dependence and for small samples 

The LGM loss function applied in both 
ste~ used a diagonal V matrix with 
Xh.~V) h = 1 to H on the diagonal where H 
equals the number of households in an EA 
or the WA as appropriate. If a household 
had a weight assigned by the GLSE that 
was negative or greater than 25, then the 
size measure Xh (0) for that household 
in the V matrix was doubled and the 
weights were recalculated. This process 
was repeated up to ten times. In step i, 
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two negative weights remained for two of 
the subsets after this was done. When 
averaged, however, none of the weights 
were negative. In step 2, there were 
four negative weights initially. The V 
matrix had to be adjusted eight times to 
achieve positive weights. One household 
had its size ~ctor in the V matrix 

Xh. (vj in order to have its become 16 
weight become nonnegative. 

For the 42 constraints applied at the 
WA level in the second step , it was 
desired to examine the level of discre- 
pancies at the EA level using the two 
step GLSE weights. The percentage in- 
crease or decrease of the absolute value 
of the discrepancies compared to the H-T 
estimator was calculated. For the two 
step GLSEs, 55% of the discrepancies de- 
creased by 10% or more, while 35% in- 
creased by 10% or more for the six larg- 
est EAs. One step GLSEs were also calcu- 
lated where the first step to reduce 
discrepancies at the EA level was elimi- 
nated. In this case, it was found for 
the six largest EAs that 40% of the dis- 
crepancies decreased by 10% or more, 
while 49% increased by 10% or more. Thus 
the two step GLSE does a much better job 
reducing discrepancies at the EA level. 

Estimated CVs of two step multivariate 
GLSEs were calculated assuming that the 
systematic sample selected in each EA was 
equivalent to a simple random sample. 
This was done for 96 estimators of char- 
acteristics such as number of persons 
classified by age and highest degree or 
number of persons classified by census 
family status and total income. Esti- 
mated CVs of one step univariate GLSEs 
based on the 1986 collapsed person c-c 
matrix were also calculated. The esti- 
mated CVs for two step multivariate GLSEs 
when compared to the one step univariate 
GLSEs were lower for approximately 85% of 
the estimators. They were lower by at 
least 10% for 65% of the estimators. 

Estimates of highest degree and income 
cross-classified by EA were calculated 
with the four smallest EAs grouped to- 
gether. Percentage reductions in the 
estimated CVs were the same at the EA 
level as at the WA level. 

5. MSE of Two Step GLSE 

In this section, the approximate MSE 

of the two step GLSE is derived. Assume 

that there are G EAs within the WA. The 

number of households in the gth EA will 

be represented bY Ng while the number 

sampled will be represented by ng~ The 

initial weight for the gth EA is Wg ~0) = 
Ng/ng for g = 1 to G. The gth EA is 

split into Hg weighting adjustment class- 

es which each contain a single sampled 

household. Thus Hg = ng. 
The calculation of the two step GLSE 

weights is described first. Let Ig rep- 

resent the number of constraints that 

remain in the first step for the gth EA 

after constraints are eliminated for 

linear dependence or small samples. Let 

Tgr, r = 1 to 4, represent the four 

overlapping subsets of constraints for 

the gth EA. The number of constraints in 
For each Tg r will be represented by Ig r. (Rr)wg (0) 

subset Tg r, weights Wgh(Rr) = Cg h 

are determined in the first step such 

that the loss function 

^ (Rr) _ 1)2 Lg (Rr) = ~h Xgh. (0) (Cg h (5.1) 

is minimized subject to the constraints 

~g.i (Rr) = Xgi, i = 1 to Ig r (5.2) 

Xghi (Rr) (Rr% ̂  (0) ^ (0) where = Cg h • Xghi , Xghi 
= Wg(0)Xghi , Xghi = the value for the ith 

type of auxiliary information for the hth 

sampled household from the gth EA, Xg i 

-- ~k Xgik and X_ik~ = the value for the 
ith type of auxillary information for the 

kth unit in the population of the gth EA. 

In the above expressions, summation over 

a subscript is indicated by replacing it 

with a dot. Next, the average weight 

(Rr) Wgh(A) = (i/4)Wg (0) ~r Cgh (5.3) 

is calculated. For small EAs which do 

not have the first step applied Wgh(A) 

Wg(°) . 

In the second step, GLSE weights Wg h = 

CghWg h (A) are determined such that the 

loss function 

LGM = ~g~h Xgh. (A) (Cg h _ i)2 (5.4) 

is minimized subject to the constraints 

A 

X.. i = X.i , for i = 1 to I (5.5) 

Xghi = CghX hi (A) ^ (A) _ 
wherewg h (A) Xg~i and X. i = ~g~ Xgi" Xghi - 

Let Y = ~g~h WghYg h represent the 
two step GLSE for the sample characteris- 

tic of interest. It can be shown using a 

Taylor series expansion of degree one 

that 

= ~(A) + 7i ~i(x.i - ~..i(A)) __ 

~(A) + Zi ~i(X.i - ~..i (A)) (5.6) 

A A A ~ A 

where ~ = [~i ] = (x(A) 'V Ix(A) I-I~(A) , 

V-I~(A) and ~i = E(~i). It can then be 
A 

shown that E(Y) = Y and 

^ ^(A) ^ (A) 
MSE(Y) -~ V( g - ~i ~i x''i ) 
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ng 
= V( ~g ~h Wg h(A)ugh) 

= V(0(A) ) (s.7) 

where Ug h : Ygh.-_ ~i  ~iXghi" 
Next, it snou±u be noted that ~(A) = 

(i/4)~ r ~g(Rr). Using a Taylor series 
expanslon of degree one 

Og (Rr) = 

~g(0) + ~i ~gi(Rr) (Xg i _ Xg.i(0)) = 

Og(0) + ~i ~gi (Rr) (Xgi - Xg.i (0)) 

where ~g(Rr) = [~gi(Rr)] = (~gr(0) ~5.8~Vg 

A _ _  A , m  

Xgr(0) ) IXgr(0)'Vg lUg(O) is a I__gz^ x 1 

vector, the ng x Ig r mat r ix  Xg r (O) 
contains columns for those constraints in 
subset ~gr '  the  ng x ng d iagonal  ma t r ix  
Vg has Xgh. (0) h = 1 to n_ running down 
the diagonal and ~gi (Rr) 9= E (~gi (Rr)) . 

Then 

V(O(A) ) 

= V( ~gn (~ g(0) _ ~i ~gi (A)^xg.i(0))) 

= V( ~g~g Wg h(0) Zgh) 

= v(~(°)) (5.9) 

where ~gi (A) = (1/4) ~r ~gi (Rr) and Z~h 
= Ugh - ~i ~ '(A)Xghi " When ~gi (A) is 
calculated, ~ is assumed that ~gi (Rr) = 

0 if constraint i is not in subset T__. ~L 
To calculate a sample based estlmate 

of V(Z(0)), ~i is substituted for ~i 
in the expression for(A~g h while ~gi (A) 
is substituted for ~gi in the expres- 
sion for Zgh. ~ The values of Zg h are 
then substitutea into the unbiased esti- 
mator of the H-T variance formula for 
stratified simple random sampling without 
replacement. 

6. Concluding Remarks 

Based on the numerical example, the 
multivariate GLSE procedure shows great 
potential, when compared to the univar- 
iate RRE procedure, for generating Cen- 
sus estimates with lower CVs and smaller 
discrepancies between estimates and known 
population counts. Further study is re- 
quired, however, before a decision can be 
made on the 1991 Canadian Census weight- 
ing procedure. The procedure implemented 
must be computationally efficient while 
providing lower CVs and smaller discre- 
pancies. It must maintain this perform- 
ance over a large number of WAs with 
varying characteristics. Modified ver- 
sions of the multivariate GLSEs will be 
applied to a number of other WAs. The 

performance of the multivariate RREs will 
also be investigated. Preliminary work, 
however, indicates that the multivariate 
RREs are slow to converge. 
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