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1. INTRODUCTION 
This paper describes a technique for estimation 

from typical sample survey data. Such data is riddled with 
nonresponse due to processes unknown and, in addition, 
may result from poorly implemented or documented sample 
designs. The multivariate structure usually found in sample 
survey data is used to compensate for these data 
deficiencies by building all available relevant information 
into the estimator. This estimator minimizes average error 
with respect to the stochastic structure defined by this 
available information. 

The estimator derived here is a best linear 
unbiased estimator (BLUE). It is a generalization of the 
ordinary regression estimator, Cochran (1977). Regression 
transformations are used to condition on known outcomes 
of auxiliary variables and covariates. This is similar to 
superpopulation prediction theory since both produce 
estimators which are robust against extreme samples by 

conditioning on auxiliary data; see Cassel, Sarndal, and 
Wretman (1977), Royall and Cumberland (1981a) (1981b), 
Royall and Herson (1973). The close tie between estimating 
first moments and estimating second moments parallels the 
similar tie in the EM-algorithm; see Little and Rubin 
(1987), Pfeffermann (1988), Srivastava and Carter (1986). 
The estimation problem that this paper solves is very 
similar to the one that Pfeffermann (1988) discusses. The 
solution is different from his in two major respects. The 
covariance matrix is estimated using an identity derived 
from a superpopulation model and conditioning on sample 
outcomes of covariate/auxiliary variables to remove bias is 
done by response group (to be defined). 

Estimating finite population means is usually done 
by weighting sample responses inversely to their probability 
of selection. This is done item by item resulting in the 
Horvitz-Thompson estimator; see Cochran (1977), Raj 
(1968). In cases where auxiliary variables are available, 
these auxiliaries may be used to derive improved estimators 
for a single item mean. Ratio and regression estimators are 
examples of this, but these estimators remain essentially 
univariate. 

Many different but related items of information are 
collected on sample survey questionnaires. These 
relationships suggest that survey estimators should be 
derived under a multivariate framework, which describes 
these item dependencies. This is particularly true when data 
items are missing due to either nonresponse or designed 
nonavailability, as in the case of rotation sampling. 

The finite population to be sampled is described in 
terms of an Nxk matrix, Z=(A,C,T), of random variables 
where the submatrix of auxiliary Variables, A is Nxm a, the 

submatrix of covariates, C is Nxm c, and the submatrix of 

target variables, T is Nxm t. Let the realization of Z be 

denoted, g'. Let, g'=(a,c,t) where each row of g', g'i = 

(a i,ci,t i) gives the outcomes (realizations) of the 

k=ma+mc+m t random variables attached to the i th member 

of the finite population for l<i<N. 
To illustrate the estimation methodology consider 

a simple example in which N=6 and k=4. The rows of this 
example of Z are normally and independently, identically 
distributed (iid), each with a mean vector, (~a,l.tc,l.tt). 

Some of the columns of g" are known for each 
member of the finite population. These are referred to as 
auxiliary variables. A sampling distribution which is 
usually a function of these auxiliary variables generates a 
sample of n<N rows of g" (n=3 in the example). The 
statistician then attempts to observe the remaining 
components (non auxiliary variables) of g'i for all i in the 

sample. Unfortunately, nonresponse may occur, and only 
some subset of the nonauxiliary components of g'i may be 

observed. Usually, this subset will vary from sample 
member to sample member. 

These nonauxiliary variables may be further 
divided into two groups ~ covariates and target variables. 
The goal of the sample survey is to measure the finite 
population means of each target variable. The target 
variables are observed only for sample members, and they 
suffer the nonresponse. The covariates are observed without 
nonresponse for all sample members. 

For this example, I.t t is to be estimated from the 

following four pieces of information: 1) all the auxiliary 
variable outcomes in g', together with ~a and ~c' 2) all the 

covariate outcomes in g" for the sample members, 3) a 
subset of the target outcomes in g" for the sample members. 
This subset is the result of nonresponse and varies from 
sample member to sample member, and 4) the available 
information on the distribution of the random matrix Z. 

Suppose that rows 2, 3, and 6 were sampled from 
Z. In the interests of simplicity the sampling distribution 
will be ignored in this example. The indicator functions are 
used in the derivation of the BLUE in subsequent sections. 
In row 2, T21 was a nonresponse, as was T32 in row 3, and 

in row 6 no nonresponse occurred. The available sample 
and auxiliary data for this example is summarized in the 
following matrix of random variables and realizations of 
random variables: 

/Covar  i a tes  
AuxilariesNx~ ~ iTarget  V a r i a b l e s  

[a 11 Cll Tll  T12] 
/a21 c21 T21 t221 ~-I 

Zpost sampling = |a31 c 31 t 31 T32| - I |an1 C41 T41 T 4 2 1  Sample 
/a51 C5 1 T51 T521 
/a61 c61 t61 t62J 4- ' 

The second source of information is the 
distribution of the random matrix Z. Since mean square 
error (MSE) is the estimation criterion, the covariance 
matrix of Z will suffice and since the rows of Z are iid the 
covariance matrix of a Z i will suffice. Let ~ denote the 

covariance matrix of a Z i. When Z contains all available 

correlated variables, its rows may be modeled as iid 
random vectors. 

Z is initially a matrix of iid random vectors in 
which some random components are being replaced with 
their realizations. First, the auxiliary data arrives, then the 
sample data. When the auxiliary data is observed, Z 
becomes a mixture of this known auxiliary data, and as yet 
unobserved random variables. Conditional on the observed 
auxiliary data, the rows of Z are no longer iid since this 
auxiliary data will distinguish the distribution of different 
rows of Z. These distributional deviations between rows of 
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Z given the auxiliary data, are generally dealt with in the 
sampling literature by unequal probability sampling 
(stratification and clustering). Then the sample target 
variables are weighted inversely to selection probabilities, 
to get an estimator for the target variable means, which is 
unbiased with respect to the sampling distribution. This is 
the Horvitz-Thompson estimator. 

This example shows a different approach to 
estimating target means which is based on transformations 
of the target components of Z. These transformations 
harness the knowledge contained in the distribution of Z to 
adjust the sample target variables for the auxiliary variable 
and covariate observations in the sample units. 

These transformations are linear regression 
adjustments. They are applied to averages over each 
response group of sample row vectors of Z. A response 
group is a subset of sample units that responded to exactly 
the same target variables. In the example, there are three 
response groups, one for each sample member and the 
response group averages are the trivial averages (averages 
over a single item). To describe these response group 
transformations, partition Y-'z as follows" 

Y-'z = [ Hg Hgt] where H is the covariance 
ntg_ Y't ~ g 

matrix of (Ail ,Cil) , )4 is the covariance matrix of (Til,Ti2) 

and Hg t is the covariance matrix between these two 

subvectors. The transformation to recover iid subsequent to 
observing auxiliaries and covariates gives us a new vector, 
(Wil,Wi2), given by: 

(Wil'Wi2)=(Til'Ti2) - (Ail-i ta 'Cil--itc)Hg 1 Hgt 
for i=2,3, and 6. 

Note that conditional on the auxiliaries and 
covariates, E(Wil,Wi2)=(Ittl,Itt2) and Cov(Wil,Wi2)= ~ -  

HtgH~lHgto = Y-W for i=2,3, and 6. The last equality is the 

definition of ~-W and it implies that 

Var(W..I(A.,C.))=Var(T..I(A.,C.))<Var(T..) for i in the 1.1 1 1 1j 1 1 - 1j 
sample and j=l or 2. Nonresponse resulted in T21 and T32 

being unobserved, and thus, W21 and W32 are 

unobservable. W22, W31, W61, and W62 remain, and they 

are related to Itt by the following expression: 

IW22] 0 1 

Y = t W 3 1 [  = i ~ Itt' + E = X i t t ' + e ,  (*) 
Iw61! 
LW62J 0 1 

where the first and last equalities in this line are definitions 
of Y and X. The covariance matrix of e is the diagonal 
matrix of the appropriate submatrices of ~ .  Let 2 denote 

the covariance matrix of e. Then the least squares BLUE 
, ^ ,  ( X , ~ - l x ) - I x , ~ - I y  for Itt is Itt = and its variance is 

( X , y - l x )  -1.  
The sampling distribution and the nonresponse 

mechanism may be included in this BLUE by including the 
sample indicator function in Z as an auxiliary variable and 
including the response indicator vector in Z as covariates. 
The response indicator vector is a vector of zeros and ones. 
It is the same dimension as the vector o f  target variables, 

and its 1 th component is one if the 1 th component of the 
target vector is observed (a response) and zero if not. The 

sample indicator function is defined for each member of the 
finite population as one if the member is selected and zero 
if not. 

By properly designing Z the effects on the 
available data of stratification and clustering in the 
selection process are removable by conditioning the target 
variables on known auxiliary variables and covariates. 

The reader by wonder why the regression 
adjustments by response group of target variables are 
necessary. In particular, why not delete the unobserved 
components of Z, line up the observed components of Z, as 
was done with the (Wij), (see Pfeffermann 1988) to get a 

version of (*) with It = (ita,itc,itt)' on the fight hand side? 

This version of (*) implies a BLUE for Itt but this estimator 

for Itt is inappropriate for two reasons. 

First, the linear regression equations used in later 
sections to describe the relationship between components of 
a row of Z may induce linear dependencies between 
components of It. Therefore, the desired solution solves a 
restricted minimization problem, but the normal equations 
referred to in the preceding paragraph with It on the fight 
hand side solve the unrestricted minimization. 

The second reason may be more intuitive. It is 
usually desireable to condition decisions on all available 
relevant information (see conditionality in Cox and 
Hinkley, (1974)). 

Note the following pounts about this estimation 
methodology: 

1) there is extreme flexibility for including all 
available relevant data and data relationships 

2) the BLUE is conditioned on all known and 
readily estimable quantities 

3) when the response mechanism is known the 
response indicator vector may be included as a covariate 

4) collapsing the data by response group and doing 
the regression adjustment for auxiliary and covariate means 
by response group may reduce the effect of nonignorable 
nonresponse in cases where the nonresponse mechanism is 
unknown 

5) the sampling distribution may be integrated into 
the estimator by including the sample indicator function in 
Z as an auxiliary variable 

6) a variance estimator for the BLUE is included 

in its derivation and this variance estimator, (X'~-Ix)  -1,  
measures both variance with respect to the distribution the 
BLUE inherits from Z and, in some situations, the variance 
of the BLUE with respect to repeated sampling. 

7) the BLUE derived here will usually outperform 
the Horvitz-Thompson estimator. A model based ratio 
estimator for the estimation problem considered in the rest 
of this paper is compared to the BLUE. This ratio estimator 
has been in use at BLS for several decades and in spite of 
considerable effort to improve it, nothing substantially 
better has been found until the BLUE derived here. 

2. THE LINEAR REGRESSION EQUATION 
FOR AN EMPLOYMENT SURVEY 

The Bureau of Labor Statistics' (BLS) Current 
Employment Statistics Survey (CES) is a monthly survey of 
over 275,000 nonagricultural business establishments. This 
survey produces estimates of total employment, women 
and production workers, and hours and earnings. These 
estimates are made for over 1500 industries. Monthly 
employment level and month to month change are of 
primary importance to the users of this survey. An 
estimator for monthly employment level is derived in 
section 3. This estimator is an upscale version of the 
estimator derived in section 1 and uses the data 
relationships to be defined next. 
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The linear regression equation states that expected 
employment in month j is proportional to actual 
employment during month j-1 for each member of the 
population. The constant of proportionality, [~j, is the same 

for each member of the finite population. A response 
mechanism is hypothesized, which relates the probability of 
response for a target variable to its realized value. This 
response mechanism was introduced as a way to test the 
robustness of the BLUE, derived under ignorable 
nonresponse. A second BLUE, which assumes an 
approximate knowledge of this response mechanism, is also 
derived. This second BLUE serves as a benchmark with 
which to compare the BLUE under ignorable nonresponse 
(or complete ignorance of the response mechanism). 

The linear regression equation relating the 
components of Z i is given next. There is a single auxiliary 

variable, benchmark employment, available for this 
employment survey. The benchmark employment is the 
total establishment employment for the initial month (j=0) 
and is known for every business establishment in the finite 
population. The benchmark employment for establishment i 
is denoted A i for l<i<N. The total employment for 

establishment i during each month after the benchmark 
month are the target variables, denoted Til,Ti2 .... Tim t. 

These are the employments in establishment i for j=l,  2 .... 
,m t months after the benchmark month. The response 

indicator vector is the only set of potential covariates. Thus, 
this vector will be denoted, C i, and not included in Z i until 

later. Under ignorable nonresponse C i is uncorrelated with 

l<i<N, are (Ai,Ti) and the vectors, Zi=(Ai,Til,Ti2... Timt), _ 

iid. The components of Z i are related as follows: 

Let Ai= 130 + Xi0' Til= [31ai + Xil' and 
Tij= ~jtij-1 + ~'ij for j>l (2.1) 

where {(~.i0,~.il . . . . .  kimt)': l<i<N} are iid random vectors 

with mean zero and diagonal covariance matrix. The {[3i} 
J 

are unknown constants, the variance of ~'i0 exists, and the 

variance of ~'ii, given tij_l is proportional to tij-1 
(Var(~'ijltij 1)=rjtij 1 ) where the {rj:l<j<m t} are unknown 

constants (Var(~.il lai)=r 1 ai). 
This conditional variance property for the {~,ii } 

- - j  

has been shown to be appropriate for total employment as 
measured in the CES (West (1981), Royall (1981)). The 
covariance matrix of any Z i, ~ ,  is necessarily of the form 

(b/j) where: 

the diagonal entries are: bll=O 2 for/=0,1,2 .... m t (2.2). 

J 
and the offdiagonal entries are: blj=O~/ 1113 k for l<j<m t 

k ---[¥1 

and where (s 2, for /-0,1,2 .... m t are unknown constants 

(functions of the {r/} and {I]/}). 

Ci=(Cil,Ci2 . . . . .  Cimt) where Cij=l if the data for 

target variable j in unit i is a response and Cij=0 if not. 

A nonignorable nonresponse mechanism is 
introduced next. The BLUE under this additional structure 
is used in the simulation study (section 5) as a benchmark 

with which to compare the estimators to be evaluated there. 
Conditional on t i, it is assumed that the components of C i 

are independent and that: 
P(Cij=llTij=tij)=fjtij+ gj for l<i<N and l<j<m t (2.3). 

m 
. . . . . .  _n: 

41- 

P(C x ullT 1 t x) j P(Cij=u/jlTi=ti), 

where the {(fj,gj)} are defined so that fjtij+g j is between 

zero and one for all tij and where (u/j) is the 2 mt x m t 

matrix with rows that consist of all possible distinct 
mt-tuples of zeros and ones (its last row consists of all 

zeros), u I denotes the lth row of (u/j). Note that when fj=0 

for all j, the nonresponse is ignorable. 
~t c is the expected value under both (2.1) and (2.3) 

of C.. 1 

Let Tot=(1/not)ET / where sot is an arbitrary 

l es  ot 

subset of the first N integers and not is the size of sot. 

Define ~ot and Cot similarly. 

Before considering either sampling or nonresponse, 
the stochastic structure given in (2.1) and (2.3) may be 
summarized for a.rbitr.ary subsets sot as follows: 

E(Aot, Cot,Tot):l.t:(~ta,l.tc,l.t t) and 
[ ,Y---., a EatO X t ]  

Cov(Aot,Ca,Tot)=(1/not)lDZta Zc ~ D  / where: 
[~ta D~t ~ ] 

1) D is the diagonal matrix of (fl'f2 . . . . .  fm t) 

2) [,~--t ~ a  ~ q = ( b / j ) a s  givenin (2.2). ~ a i S  the 

variance of the auxiliary variable, ~ . t i s  the covariance 
matrix of the target variables, and ~ at is the covariance 
matrix between the auxiliary variable and the target 
variables (X'aeX ta) 

3) ,Y_.¢ is the covariance matrix of the covariates 
with respect to both (2.1) and (2.3). It has off diagonal 
elements, which are the same as those of D~ tD, and 

m t jth diagonal elements, {~tcj(1--l.tcj)} j =1 where I.tcj is the 

component of l.t c. (2.4) 

Following the methodology outlined in the 
introduction, 

E(Totl:~ot,Cot)=l.t t + (Aot - ~t a, Cot - ~tc)Hgl Hg r If Wot is 
defined as: 

W---a= T---~ - ( ~ o t  - l.ta, Cot - l.tc)Hgl Hg t, then 

E(WotlAot,Cot)=l.t t , the vector to be estimated. The 

covariance matrix of Wot is (1/not)~. w where ~ v = Z t -  

HtgHglHg t, Hgt=[~i~ ] and Hg=[ Y~a ~tD] DZta 
W-- a and (Xot,Cot) are uncorrelated, therefore, the 

conditional expected value of Wot given (:~ot,Cot)=(aot,cot) 
is approximately I.t t and the conditional covariance matrix 

of Wot given (~ot,Cot)=(aot,cot)is approximately (1/not)~. w 

(if not is large enough so that (Aot,Ca,Tot) is approaching 
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normality, then these approximations approach exact 
equality). 

Now suppose a probability sample is selected 
according to a sampling scheme, which is a function of the 
auxiliary variable. Let r~ i denote the probability of selection 

for the ith member of the finite population (i th row of Z). 
After the sample has been selected and the data 

(minus the nonresponse) has been observed for the m t 

target variables, the sample units are grouped according to 
their response patterns. Let { ~'l } be the set of these groups, 

and ~'/={i:l<i___N and Ci=Ul}. ~'l is the set of sample units 

which have responses for exactly those target variables 
corresponding to the nonzero components of u l. For all l 

such that ~'/~, let W 1 be the Wct defined above with 

stx=~'l and let n l be the number of sample units in ~'l" 

A modest generalization of the methodology 
outlined in the introduction will produce a BLUE for the 
target finite population means. This BLUE is derived in 
section 3 together with estimates of the unknown regression 
equation parameters. 

3. THE BEST LINEAR UNBIASED ESTIMATOR AND 
ESTIMATORS OF THE UNKNOWNREGRESSION 

PARAMETERS 
Let G l be the response indicator matrix for the lth 

response group, ~'l' formed by deleting from the mtxm t 

identity matrix all columns, j, such that u/j=0. Then 

Yl=WiGl consists of only those components of W/, which 

are observable (responses). The observed data and data 
relationships are summarized: 

! 
Y=Xkt t + e (3.1) 

where X'=(G1,G 2 . . . . .  G2m t_l) ,  

Y'=(Y 1'Y2 . . . . .  Y2 m t -1 )" 
and e is the random vector with mean, zero and covariance 
matrix, ~ given as the block diagonal matrix of the 
~_l=(1/nl)Gl'~vGl for all l with nl>0 from l=l in the upper 

left to l=2mt-1 in the lower fight. X, Y, and e contain only 
those arrays {GI, Yl' and (el,~)} such that nl>0. 

A t The BLUE, I.t t is: ( X ' ~ - I x ) - I x ' ~ - I Y  

-1 

= f ~ :  GI~-IGI '  ] ~ 'GI~-lyl,I (3.2) 
Lle~ le~ 

where ~ =  {l:n1>0}. 
Y~ z' D, I.t a, and l.t c are necessary to derive the { yl }' 

A ! Y~ w' and ktt. D is known, kt c, the vector of population 

response indicator means, contains the means of the only 
covariates for tiffs problem and is estimable with the 
Horvitz-Thomoson estimator (recall the covariates suffer 

A 

no nonresponse). Denote this estimator, kt c. ~ is estimated 

by inverting ~ 1 ,  where ~ 1  is estimated by inserting 

estimates of 13j and xj for 0<j_<m t into )-'. z I. Recall the {~j} 

are defined in (2.1). x0=a ~,- and '1:;=o~-152o 2 1 for 
J J J J - -  

2} are defined in (2.2). (2.2) also l<j<m t, where the {~j 

implies that the inverse of ~ is the widiagonal matrix with 

diagonal elements given by: 

2 0<j<m t and with the last (1/xj) + ([Sj+l/Xj+ 1) for _ 

diagonal entry, 1/'r,m ( 
The (j,j+l) th and (j+l,j) th off-diagonal elements of ~ 1  for 

-(J3~+ 1/xi+ 1 ). All other entries of y~l_ are zero. 0-<j<mt a r e  
, J  , J  

130 is estimated with the finite population mean, 

N 
a=~0' of the auxiliary variables {a i} i=l" J31'J32 .... J3mt are 
estimated with the ratio of matched sums of target 

~~ /Y.ti: 1),where isthe variables. For example, ~=(i .ij ies~ J -  sj 

J 

set of sample units with responses for both target ,variable j 
,, J A 

and target variable j-1.  Let 0j=/FI_013/_ for j=0,1 m c 

A A A 0 A A A 
Initially, let kta=00 and ktt = (01,02.. ,0m )" (3.3) 

xj is the expected value of the conditional variance 

of Tij given (ai,til . . . . .  tij_l) for j>l. xj=rjkttj_l for j=l,2 .... 
A A A  

,m t. Let 'l;j=rj0j_ 1 for j=1,2 . . . . .  m t. 

where: ~j=(1/[n(sj)-a]) ~ ( t i j -  ~jtij_a)2/tij_X and n(sj)is 

iesj 

the size of sj. N 
A A ~ - - ~  

2 1/N_I) ~, (a i a)2. x0=o0=( 
i= l  

This completes the estimation of ~'.z, and with this 
A A A A_ 

2z '  gc and kt a the {WI} and )~w may be calculated and in 
A 

turn, I.t t as given in (3.2). With the exception of one 
A 

additional covariate, this is how the BLUE, kt t, was derived 

in the simulation study to be described in section 5. This 
BLUE was calculated in two versions. The first version 
assumes D=0 and would be used when the nonresponse 
mechanism is either ignorable or unknown. The second 
version assumes an approximate knowledge of D to derive 
the BLUE. This second BLUE provides a benchmark with 
which to compare the BLUE under the weakened model 
(assuming D=0). 

A 

If gt varies much from the initial estimate 
A A A A 

gt=(0 ^ 1,02 .... 0m), which is defined above, then this I.t t 
A o  

may be used in place of I.t t to reestimate ~ (and the {W/}) 
^ 

and thus to reestimate ~t t. This may be continued until 

convergence. The simulation results described in section 5 
do not use this iterative reestimation process, which 
characterizes the EM-algorithm. 

4. THE EFFECT OF IGNORING PERTINENT DATA 
The effect of disregarding either useful data or 

known data relationships is quantified next. This is done by 
computing the MSE under the full (or strong) model of the 
BLUE derived under a model (weak) that assumes only 
some proper subset of the full models data and data 
relationships. This MSE is always larger than the variance 
of the BLUE derived under the full model. The bias and 
variance components of this additional MSE are derived 
below. 

Suppose the same subset of the auxiliary variables 
and covariates is deleted from each Z i. Let these random 
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variables be denoted by, Zil. Let the remaining auxiliary 

variables and covariates be Zi2. Then the two random 

vectors, (Zil,Zi2) and (Ai,Ci), contain exactly the same 

random variables but they may be ordered differently. 
Let: E(Zi 1 'Zi2'Ti) =(g 1 'g2'gt  ) and 

[ y'I ~-''12y~lt] 
Cov(Zil,Zi2,Ti )= '~7'~21 ~"~2 ~ 2 t  • 

Y~tX Y~ t2 ~ t 
Ac  

Let g t denote the BLUE under the model where 

the rows of the matrix, Z, are (Zi2,Ti). In this case, W c l = 

T / -  (Z/2 - I.t2)]~lY'.2t = W l + b l, where W l is as defined in 

section 2 and ~ / / i s  its analogue for this weak model. The 

difference between _ _  ~ and W l is b I and given by the 

expression: 
b I = O/1LY~ I t  - -  O/1LM~ 2 t  - -  O/2M'LY. I t  + 

OI2M'LM~2t,  where: 

O/1 = (Z/1  - gl  )' O/2 = ( Z / 2  - g 2  )' 

L = (21 -- ~' 122 ~1~,21) -1  and M = Y~ 122 71 

If y~ denotes the weak model version of Y l' then 

c = W~lGl=WlGl + blGl Yl+blGl . Recall that since all Yl = 
auxiliary variables and covariates are being conditioned 
upon, the conditional variance of b 1 is zero. Cov(Yl) = 

Cov(y~) =(1/nl)Gl'~v Gl. 
AC 

The BLUE under the weak model is: ktt'= 

(X'y.-1X) - 1 X ' ~ - I y c ,  where X and Y.are exactly as eiven 
C C C C 

in section 3 and Y =(yl,y 2 .... Y 2 m t _  1 )'. This weak 

model BLUE is related to the BLUE under the full model 
ACt A t 

by: g t = gt + HB where 

H - (X '~ '71X)-Ix '~  "--1 and 
B=(blGI,b2G 2 . . . . .  b2mL1G2mL1  )'. Since HB is 

A c A 
constant under the full model, g t and l.t t differ, only by this 

constant bias, HB. 
A t A 'H' MSE(gt ') = Cov(gtt') + HBB and this implies 

^C that the MSE of each component of g t is larger than the 
A 

MSE (variance) of the corresponding component of gt" 

Just as ignoring pertinent covariates or auxiliary 
variables will add only bias to the BLUE, it can be shown 
that ignoring pertinent target variables adds only variance 
to the BLUE. 

5. SIMULATION STUDY 
The empirical MSEs of four estimators are 

compared here. The four estimators are: 
A 

1) l.t t under (2.1) and (2.3), D~0 
A c ^ 

2) the BLUE, g t '  under (2.1) alone ( = l.t t with 

D=0) 
3) HT, the Horvitz-Thompson estimator for the 

target variables adjusted for nonresponse. The nonresponse 
adjustment factor is the ratio of total sample weights to 
total responding unit weights for each target variable 

4) LR, the link relative estimator given by (3.3), A A A A 
(02,03,04,05). This is the estimator currently used by the 

BLS for the employment survey referred to in the 
introduction. 

The populations used for this study were derived 
from a BLS data base with data for six consecutive months 
from 1110 establishments. Zi=(Ai,Til,Ti2 .... Ti5), where 

the components of Z i are related by (2.1) and lie in the 

interval (0,1000). For this simulation Til is treated as a 

covariate (no nonresponse) and conditioned upon by using 
the Horvitz-Thompson estimator to estimate I.ttl. The 
vector, (t2,t3,t4,t5), is to be estimated where, tj is the finite 

population mean of the jth target variable, j=2,3,4,5. A 
sample of size n=200 is selected for each of the 500 
replications. Sampling is by probability proportionate to 
size as measured by the {a i}. 

The target variables are subjected to three different 
response mechanisms. A separate table is given for each of 
these response mechanisms. For each target variable and 
response mechanism an interval is tabulated. The lower 
limit is the probability of response when the target variable 
is 0, and the upper limit is the probability of response when 
the target variable is 1000. For a target value between 0 
and 1000 the probability of response is the linear 
interpolation between these two endpoints. 

Response Mechanisms 
RMkTargets 2 3 4 5 
1 ( . 5 , 1 . 0 )  ( . 4 , 1 .0 )  ( .2 , .9 )  ( . 2 , 1 .0 )  
2 (.9,.9) (.8,.8) (.65,.65) (.5,.5) 
3 (.8,1.0) (.75,1.0) (.6,1.0) (.5,.7) 

For each target variable and estimator in the tables, 
the estimated MSE is the average squared difference 
between the target variable estimator and the finite 
population mean for that target variable. This average is 

Table 1. Estimated MSEs, Biases, and Variances. 
MSE/(Bias) for Response Mechanism 1. 

Target Variable 2 3 4 5 
Estimator 
HT 66.9 83.0 213.1 228.7 

(6.6) (7.3) (12.6) (13.3) 
LR 4.1 11.5 15.1 22.3 

(.55) (1.17) (1.5) (1.89) 
^c 3.4 7.6 7.8 10.9 
gt 

(.38) (.71) (.80) (1.07) 

121. t 3.2 7.1 7.1 9.7 
(.18) (.39) (.09) (-.06) 

from (X']~ -1~  X) -1. Its C The Variance Estimator of l.t t~ 
Estimated Expected Value and Its Estimated Standard Error. 
t~(V(~tc)) 3.8 5.8 9.4 

L 

.5 .7 1.2 
Table 2. Estimated MSEs, Biases, and Variances. 
MSE/(Bias) for Response Mechanism 2. 

12.6 
1.5 

Target Variable 2 3 4 5 
Estimator 
HT 9.4 17.2 34.2 55.8 

(.13) (-.12) (.59) (-.31) 
LR 3.0 6.9 9.4 15.3 

(.12) (.10) (0.0) (-.14) 
,,C gt 2.8 6.1 7.0 10.7 

(.15) (.15) (.09) (-.04) 
from (X,~;-1X)~ -1. Its The Variance Estimator of I.t t 

Estimated Expected Value and Its Estimated Standard Error. 
t~(~'(~tc)) 3.3 5.2 8.4 

.2 .5 0.9 
12.5 
1.4 
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Table 3. Estimated MSEs, Biases, and Variances. 

MSE/(Bias) for Response Mechanism 3. 

Target Variable 2 3 4 
Estimator 

HT 16.1 21.3 48.0 49.9 
(2.3) (2.69) (4.81) (2.75) 

LR 3.1 7.3 8.0 11.7 
(.25) (.44) (.55) (.51) 

^c 2.9 6.3 6.4 9.3 
~t 

(.19) (.27) (.24) (.11) 

#t 2.8 6.3 6.3 9.3 
(.14) (.20) (.07) (-.09) 

^ c from (X'~ -1X) -1. Its The Variance Estimator of ~t 
Estimated Expected Value and Its Estimated Standard Error. 

t~(V(~t) ) 3.3 5.1 7.9 11.5 

t~ .4 .5 .3 .5 
over the 500 replications of the sampling and estimation 
process. This number of replications gives the MSE 
estimates (upper entry - unbracketed), relative errors of 
around 5% and nearly always less than 10%. 

The lower portion of each table evaluates 

(X'~ -1X) -1 as a variance estimator. The results of section 
4 say that this estimated covariance matrix may be used to 

"C "C 
estimate the variance of both I.t t and ~t (recall that kt t and 

(t t differ only by the covariates in Ci). The average of the 

diagonals of the { ( X ' ~ - I x )  -1} from the 500 replications 
is displayed in the first row. The estimators of standard 

error for the diagonal of a single ( X ' ~ - 1 X ) - I  is given 
below each of these estimated means. 

AC 
In Table 2, the estimated MSE of I.t t for target 

variable 5 is 10.7, and the variance estimator for the 
estimator of target variable 5 is in the 2~-interval, 
12.5 + 2(1.4), with high probability, (if normality holds, 

AC 
=.95). For Table 2, MSE and variance of kt t are the same 

A A 
because nonresponse is ignorable and c t.t t=kt t • 

In Table 1, where the nonignorability is most 
^C extreme, I.t t still does relatively well. As predicted in 

A AC 
section 4, the differences in MSE between l.t t and ~t appear 

to be mostly bias. Squaring the biases (bracketed entries) 
^C for I.t t and subtracting these from the corresponding MSEs 

A 
gives results that are very close to the MSEs of ktt. For 

A c 
example, the MSE of l.t t for target variable 5 is 10.9, its 

bias is 1.07, and 10.9 - (1.07) 2 = 9.8 ___- MSE for target 

variable 5 of (t t (9.7). 
AC 

The performance of I.t t in all of the tables is only 
A 

slightly inferior to I.t t. Other simulations were done on test 

populations with different amounts of correlation between 
adjacent months. The results on these populations were 
similar to those tabled here. 

6. CONCLUSIONS 
^C The BLUE, I.t t, is a generalization of the ordinary 

regression estimator (Cochran (1977)). The close tie in this 
methodology between estimating first and second moments 
parallels the similar tie in the EM-algorithm. This 
dependency between estimates of first and second moments 
implies that estimates of variance for the BLUE are 
produced as a fallout of these procedures. 

The potential computional complexity of this 
BLUE presents few problems. Computer languages like 
SASPROC MATRIX, SAS IML, GAUSS, and APL can 
make quick work of the matrix arithmetic. The simulation 
results in section five cost about $50.00 per table for 500 
replications of the sampling and estimation on an IBM 
main frame. 

For the example presented here the sampling was 
pps. This allowed the use of the Horvitz-Thompson 
estimator as a second benchmark for comparison with the 
BLUE. Although its relative error was small, it still 
provided a fairly gross upper bound of MSE compared to 

Ac 
the other estimators. The precision of ~t may be further 

improved by selecting a best sample with respect to the 
distribution of Z. This type of sampling may be dangerous 
in cases where the distribution of Z is erroneously 
specified, but the procedures suggested here are to be used 
when a long history of sampling experience confirms the 
correct form of this distribution. For reasons beyond 
statistics, probability sampling will always be a necessary 
part of applied sampling theory. Therefore, it may be useful 
to think of the sampling distribution as the unique case of a 
known nonignorable nonresponse mechanism acting on the 
sampling universe. 
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