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1. Introduction and Derivation of Mean Square Error

The use of time series methods applied to survey data is a topic
that is receiving renewed interest among statisticians. Early
papers by Scott and Smith (1974) and Scott, Smith and Jones
(1977) demonstrated how times series methods could be applied to
survey data. More recent papers such as Tam (1987), Bell and
Hillmer (1987) and (1989), Eltinge and Fuller (1989), and Tiller
(1989) have expanded on these ideas and stressed the use of state
space model techniques as well as the Kalman filter.

We will consider Kalman filter estimation as applied to the
following situation. Assume that a survey has been conducted at
times t = 1, ..., T , and for each time period { an estimate Y, of

a finite population quantity y, is computed. Define

Yi=y +w (1)

and call w, the sampling error at time ¢t . We will assume that
the sampling errors are independent of the fixed sequence of values
y; , and that the w, have expectation zero for all t. We will also
assume that for each time period ¢ , a set of fixed auxiliary
are available which are contained in the

variables I xp

dimensional row vector X, . It will always be assumed that the
constant 1 appears as the first element of X, for all ¢. In practice
auxillary variables will be selected which are correlated with the
true value y, , but we will not assume the existence of any
particular relationship between y, and X, as is often done in
model-based sampling.

We assume that the primary interest of the survey is to

estimate the y, , and we will consider estimators of the form

9, = 5:{{: , fort=1,.., T, (2)

where 3, is constructed based upon the following iterative formula

Et = Et—l + LY, — )N{tét—l) , (3)

where the L, are functions of the auxillary vectors and are thus
considered to be a fixed sequence of vectors with respect to

sampling variability. Notice that we can write

b= XLV + (1 - /Xt,ét)/x:éz—l . 4

This implies that §, is a weighted combination of the aggregate
estimate Y, and a one-step-ahead prediction L(,ﬁt_l , where the
weights add to 1. The recursive estimation procedure in (3) is a

distinctive feature of the Kalman filter method of estimation, and
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the L, is often referred to as the Kalman gain matrix. There are
many ways of generating the sequence of matrices L, as well as
choosing the initial value é o » and each of these methods produces
its own particular estimator. The methods of ordinary least
squares, weighted least squares, and variable coefficient models all
fit within this iterative framework.

We are interested in obtaining an expression for the mean
We begin by writing the

square error of the estimator in (2) .

prediction error as
Yo — b=y — Z,(tét (5)
= (Y —w) — ),Stét—l = XY, — ),Stét~l)

= —uw + (1 — X, L)Y, — %t(izt—-l) .

~

Notice that an important component of the prediction error is the
quantity (Y, — )'S,Bt_l) which we will call the one-step-ahead

prediction error. We can write the mean square error of §, as

By, — §)}=oby + (6)

(1 = XL E((Y: — X48.-1)%)
—-2(1 - L(t,ét)f’z;t + 2(1 — ?ﬁt,ét)E{wt)N(tét—l} )

where o2, is defined as the variance of w, . Throughout this
paper the symbol E will denote expectation with respect to the
sample design. Notice that by using equation (3) iteratively we

can write

Et =LY+ (Lr — ,ét;)\,(t)ét—l ]

|
o~
=
+
—

-]

|
A~

Xt),ét 1Yt 1

1o

+ (Lp — L:X)(Lp — ,ét—lz,{t—l)ét—z

t=1 j
= A {H1 (,LP = LisinXe i} ,L,t—j Yt—j
j=0 =
3 -
+ {‘H1 (Ly — L iv)}Bo s
1=

where the products above are defined to be [, when the upper
limit is 0 , and [, stands for the identity matrix of dimension p .
If we assume that the w, is uncorrelated with the initial vector é 0
then we can write

(8)

. t=2
E{wt),\,(zﬁt—l} = 'Zo atjE(wtwt—l—j)
i=

where for j = 1, ..., t—2



j
QG = ,)St[ H (,{,p - ,éz-i),\,{z—i)] £t—1-j 9)

a0 = X: L

-

-]
Therefore we can write the mean square error as
E{(y: — gt)z} =2 X:L: — 1)"'?:;: (10)
+ (1 - ),St,ét)zE{(Yt - ;’Stétq)z}

=2
+ 201 — X.Lo) Eo ay B(wyw,_y_j) .
J:

Notice that the second moment of the one-step-ahead prediction
error is a major component of the mean square error. We will
next derive two expressions for E{(Y, — }S,ét_l)z}, We begin
by writing

Y, — Z{Jitézq =w +y - %tét—l (11
= w + ¢— )N(t(gt—l - Et—l) ,
where 8,_; = E{ ét_l } for all ¢, and
q; :yt_,)\,(tgt—lv fort=1,.., T (12)

The quantity ¢, is the expected value of the one-step-ahead
prediction error, and is a function of the true y, values as well as

the estimation method use to construct the é ;. We can write
E{(Y, — )N(tét—l)z} =0l + 4 (13)
+ X ézq }),S: - 2E{wt*’,¥,1(£t—1 — Et-l)}
where V{ E, .1 } is the covariance matrix of é 11y defined as
41 th }= E{(Ez—1 - Et—l)(ét—l - Et—l)’} : (14)
Thus we can write
E{(Y; — Z{:ét—l)z} =0+ dt (15)
+ (X:®X )@ pvech( V{ Et—l )
— 2;2::) atjE(w,wt_l_j) s

where ® stands for Kronecker product and the notation @, and
vech are defined in Fuller(1987). The vector vech( V{ Et'l b,
by definition, contains all of the unique elements of the matrix
Vi fz t—1 } ordered by columns, and is of dimension
1p(1 + p) x L.

Thus we can write the mean square error as
E{(y, - @t)z} = (,)\,(t,ét)zo'ﬁ)t (16)

+ (1= X L)lE + (Xi®X )@ pvech( V{ ét-l il

=2
+ 2X L)L — X.Ly) Eo atjE(wtwt—l—j) .
i=

The term

@+ (Xi®X)@pvech( V{ B, }) )

in the mean square error expression is interesting. If ordinary
least squares estimation is used then under general conditions
{ Et—l } = O(t™") as t- oo, which says that (17) will be
dominated by ¢2 for large values of ¢ . If a variable coefficient
model is used, then under general conditions V{ E o1 1 = 0(1) as
t— oo but it is likely that ¢ will be smaller than in the ordinary
least squares case. This refects the inherent trade-off between bias
and variance when using an estimation scheme which allows the
coefficient vectors to change over time (i.e. the variable coeffients
models) as opposed to ordinary least squares which treats the
coefficients as fixed over time.
We next derive an alternative

B{(Y, — X.B,_,)?}. We begin by noting that

expression  for

Yo — Xefo1 = w0 + @— Xu(foo1 — Bi1) (18)
=2
=q + w — 2 Oy jWyqj -
7=0
Thus the one-step-ahead prediction error can be written as the
sum of two independent terms, the first term being ¢, and the
second term coming from a linear combination of the sampling

errors across time. We can write the second moment of the one-

step-ahead prediction error as
E{(Y, — Z{téz—lf} = ﬂ? -+ Ulzut (19)
=2
-2 Z atjE(wtwt—l—j)
=0
t-2 1-2
+X > 8,500 B(w, 1y wy_y_j)-
j=0k=0
Thus we can write the mean square error as
E{(y: — gt)z} = (%t,ét)%'?ut (20)

g g | 122122
+ (1 - X L)le + Eo Y. 4 B(w_g gy w1 ;)]
J=

-
o ©

+ 2(X L)1 — X\ Ly) 20 ay B(ww, ;) .
i=
In this section we have concentrated on deriving expressions for
the mean square error of §, , but we can also write an expression

for its bias. Namely
E{(§: — 9} = - = XL - (2D

Therefore the bias of §, is a known negative multiple of the

expected value of the one-step-ahead prediction error.



In the next section we examine estimating the mean square
error expressions we have derived in this section, but before doing
that we will first derive lower bounds for the mean square error
based upon expressions (10) and (16). Notice that the second
term is positive in both expressions (10) and (16), therefore it is

natural to define the lower bounds B,(#,) and By(§,) as follows.

By(3:) = (2 XLy — 1)‘73;t (22)

=2
+ 2(1 - X.L,) Eo oy E(wywy_y_5)
5=

By(3:) = (%t,@,t)z”?yt

=2
+ 2(X.L)( — X:L.) Eo ay E(w,w,_1_5)
i=

where B(§;) was obtained by setting the second term of
expression (10) equal to zero, and By(§,) was obtained by setting
the second term of expression (16) equal to zero. Notice that the
bounds are functions of the covariance structure of the sampling
errors w, , and the auxiliary vectors X,

. Finally we can define an

overall lower bound expression B(j;) as

B(§,) = maz{B(§.), B(§,), 0} , (23)

which implies that the mean square error of j, is greater than or

equal to B(§,) for all 1.
2. Estimation of Mean Square Error

In this section we present methods of estimating the mean
square error expressions we calculated in the previous section. The
two main mean square error expressions we calculated were given
in (10) and (16). The estimation of expression (20) will be the
subject of future research. Both expressions (10) and (16) involve
variances and covariances of the sampling errors. For most
surveys we can expect to have a survey-based estimate s2, of o2,
for each time period { = 1, ..., T . For some surveys we may

also have a survey-based estimate s,;(j+1) of the covariance

E(w,w,_;_;) for all tand j =0, ..., =2 If these variance and
covariance estimates are unbiased we can construct an unbiased

estimator of the mean square error from (10) as follows

my(§) = (1 - Z,(z,ét)z(yt - gtét—l)z (24)

+ (2X.L: — sk
=2 )

+ 2(1 — X,L¢) Eo 8w (J+1)
i=

While m(§;) is unbiased we would expect it to have an
unacceptably high variance since we are using (Y, — Qv(tﬁ,_l)Q as
an estimator of its own expectation. This points out the fact that

the main problem in estimating the mean square error is
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accurately estimating E{(Y, — /Xté,_l)z} . In practice we would
use the estimator my (§,) = maz{m,(§,), (3,)} where b(3,) is the
estimated lower bound in (23) .

Alternatively we could try estimating (16) but this involves the
unknown vector vech( V{ ét_l }) as well as ¢, . In general we

would never expect to have survey-based estimates of

veeh( V{ #,_1}) and ¢, as we did for the variances and
covariances of the sampling errors above.

define the

For notational

convenience we equal to

vector 8, to be
vech( V{ ét—l } ) for all components except the first, and define
the first component to be the
vech( V{ B,_1 }) plus ¢; .

estimator 9, of §, then we could consider mean square error

first component of

Thus, if we were able to construct an

estimators of the form

my(§,) = (1 — szb)z(z&@&)gpﬁt (25)

=2
+ (X L) she+ 2(X L)1 — X:L:) ‘Eo 435w (J+1) -
i=

One method of constructing such an estimator ﬁ ; 1s as follows.

Form the random variable Z;, by

Zy = (Y, — Z,(tfth)Z - Sfm (26)

t—2
+ 2 ZO atjswt(]+l) [}
i=
for all ¢ . If we again assume that the variance and covariance

estimates s2,, and s,;(j+1) are unbiased, then by using (15) we

can write

Zyy = (X1®X0)8p8: + nyy, fort=1,.., T (27)

where E(n,,} = 0 for all ¢ . Thus, estimating 6, is equivalent
estimating the regression problem defined by (27) in which the
regression coefficients change over time. There are many different
methods of estimating the coefficients for this problem, and the
performance of any particular method depends upon the behavior
of the sequence of ¢, vectors. One simple solution would be to use
the ordinary least squares estimate ﬁ 7 from the regression of 7,
on (X,®X,)®p for t =1, .., T . In the next section were we
work an example with data taken from the Bureau of Labor
Statistics, we actually use weighted least squares instead of
ordinary least squares. In practice we would use the estimator
m3(§,) = maz{my(§,), b(§,)} where b(§,) is the estimated lower
bound in (23) .

Up to this point we have assumed that estimates of the
covariances as well as the variances of the sampling errors are
available. For many surveys, only variance estimates s2,, will be
available.

Unless the covariance are known to be zero (as in the

case of independent sampling) additional assumptions will have to



be made in order to estimate the mean square error. We will

assurne there exists a constant ! such that
Bwaw,_,) =0 fors>1, (28)

for all ¢ . In general the other covariances will be assumed to be
unknown. Such a covariance assumption could, for instance, be a
reasonable approximation to the covariance structure of a rotating
panel design in which panels of sample units enter a sample
together and stay in for exactly ! time periods before being
removed from the sample. With the assumption in (28) it will be

convenient to define the -dimensional vector v, as follows
Y= (7:(1) 7:(2), .o 7t(l)), ’ (29)

where

74(s) = E(wow,_,)
for all . Also define the I-dimensional vector 4, as follows

A = (a0, 0, - 1) 5 (30)

where the a,; were defined in (9) . Thus, if we were able to
construct an estimator Q . of §, and an estimator 4, of v, then we

could consider mean square error estimators of the form
mg(§,) = (1 — Lft£:)2(£t®£t)ﬁ?,pﬁt + (31)

+ (—K,t,ét)zszzut + 2(X.L)(1 — ,)St,ét)ﬁtit .

~

One method of constructing such estimators ﬁ ; and ¥, is as

follows. Form the random Z,, by
Zy = (Y; — %tét—l)z — st (32)

for all . If we again assume that the variance estimate s, is

unbiased, then by using (15) we can write for { =1, ..., T
Zoy = (Xe®X ol — 2417 + 720 (33)

where E(n,,) = 0 for all ¢ . Thus, estimating §, and T is
equivalent to estimating the regression coefficients in the
regression of Zy, on [(X,®X;)®», —24,] where the coefficients
are allowed to change with ¢. While there are many methods of
estimating the coefficient vector for this problem one simple
solution would be to use ordinary least squares. In the next
section we work an example where weighted least squares is used
instead of ordinary least squares. In practice we would use the
estimator mi(§,) = maz{mz(4,), b(§;)} where b(§,) is the
estimated lower bound in (23) .

Note that given the estimator i T Wwe can construct an

additional estimator of the mean square error, namely

ma(e) = (1 = XL (Y — X.B,00)? (34)
+ (2X.L, — sk, + 2(1 - ét,é:)Atit .

In practice we would use the estimator
my(§;) = maz{my(3,), b(§.)} where b(3,) is the estimated lower
bound in (23).

We next define one last pair of estimators, but in order to do so
we need to define some notation. Define the -dimensional column

vector

L= (p,(l), Pt(Q)v ce Pt(l))’ ) (35)

where

puls) = Corr(wy, w;_,)
—1/2

= 7(%) (Uat‘fﬁ;t—a) »

for all ¢. Also define the l-dimension row vector
172 1/2
Ci = [at()(a?utatzut—l) e a¢1_1(°':2ut°'?uz—1) 1, (36)

for all t. Thus, if we were able to construct estimators ﬁ 1 Pt
and Q : then we could consider mean square error estimators of

the form
ms(i) = (1 — X L)X ®X)Es8: + (1)
+ (XL, 5oy + 2(X, L)1 — ;X,t,ét)gtf:{t .

The estimator Q, we will use is the one which replaces each of the
o'fuj in expression (36) with the sample estimate s?uj forall j. In
order to obtain estimates of §, and £ we recommend using
weighted least squares, regressing Z,, on [(X,®X,)®,, —2 Q:] for
all t . One could also consider using an errors-in-variables
regression procedure which accounts for the fact that we are using
Q ¢ in the regression instead of C, which appears in the mean of

Zy4, namely
E{Zy} = (X:©X)8p8: — 2Cips, fort=1,.., T.

In practice we would use the estimator

mi () = maz{mg(¥,), b(§,)} where b(#,) is the estimated lower
bound in (23).

Finally, given an estimator p, we can construct the estimator
me(§:) = (1 — ,)St,ét)z(yt - ,)Stfth)g (38)
+ (2',‘¥,t£t ~— 1)512ut +2(1 - ,)St,ét)gz’ét -

In practice we would use the estimator

mi(§,) = maz{me(§,), b(§,)} where b(§,) is the estimated lower



bound in (23). In the next section we demonstrate the use of the

estimators presnted in this section.
3. An Example

Each month the Bureau of Labor Statistics (BLS) produces
monthly estimates of the unemployment rate for each of the fifty
states and the District of Coulmbia. For simplicity, we will refer
to these as stale level estimates. The primary source of data for
these unemployment rate estimates is the Current Population
Survey (CPS). The CPS is a national probability sample of
approximately 59,000 households, and is conducted by the Census
Bureau for the Bureau of Labor Statistics. It is possible to
compute estimates of the monthly unemployment rate at the state
level directly from the CPS data, but the reliability of these
estimates can differ greatly because the CPS sample is not
distributed equally among the fifty states and the District of
Columbia. As of January 1989 BLS publishes the direct CPS
unemployment rate estimates for eleven states, while for the
remaining 39 states and the District of Columbia it uses estimates
based upon the Kalman filter which incorporates CPS data along
with auxiliary information. We next describe an estimator which
is closely related to one which BLS uses for the monthly
unemployment rate estimates for one of these states, and we
demonstrate the calculation of the mean square error expressions
derived in Section 2 for this estimator.

We will be using monthly data for a particular state (which

will remain unidentified) covering the period of time from January

1976 to February 1989, which comprises 158 months. In terms of
the notation defined in Section 1 we define the problem for month

t as follows
Y, = Direct CPS monthly state unemployment rate estimate,
¥, = True population monthly state unemployment rate,
w, = CPS sampling error in the direct estimate,

where t =1, .., 158 . The goal is to estimate the true, but

unobservable, monthly unemployment rate y, . The estimator we

will describe makes use of three auxillary variables for month ¢
X,, = CES state employment to population ratio,
X3, = National CPS entrant rate,

X4, = Unemployment Insurance claims rate for the state ,

where by  definition X, =1 for all ¢t , and
X, = (1, Xop, Xayy Xgo) - Tiller (1989) gives an in-depth
description of these variables, as well as the estimation
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methodology used by BLS.

The monthly estimator we will examine §, is given by
9 = XB, for 1=1,..,158

where

Et = Et—l + LY, — %tét—o
L= (B + QX R
fi=1+ XLy + Q);}g

£t =£t—1 + Q_,étl:;ft

where [?0 =0 and Py =« ] , where x is a large positive

number. The matrix @ is a diagonal matrix with diagonal

elements given by

4, = 0.00003612, g5, = 0.00003889,

035 = 0.00003613, g4 = 0.00003634.

The estimator described above is the result of fitting a variable
coefficients model to the data where the regression parameters are
assumed to follow a random walk. The elements of the matrix Q
were actually derived by the method of maximum likelihood under
the variable coefficients model specification and the assumption of
normality. Notice that the matrix Q remains fixed, and does not
depend on ¢ .

Along with the direct CPS unemployment rate estimates Y,
over time we also have estimates s2,; of their variance over time.
These variance estimates are actually calculated from generalized
variance functions, and even though they are not exactly unbiased
estimates we will assume they are unbiased here for the purposes
of illustration. We next demonstrate the calculation of the six
mean square error estimators given in Section 2. Each of these
estimators will make use of the variance estimates s2, .

Unfortunately we do not have direct estimates of the
covariances of the CPS sampling errors w, over time. In order to

demonstrate the calculation of estimators m, we

and m,
calculated indirect estimates of the sampling covariances over time
in the following way. Train, Cahoon and Makens (1978), among
other things, calculated average correlations over time for the CPS

of total As a

approximation we decided to use their estimated correlations for

estimates national

unemployment. rough

the first four lags for our state data, namely
Lag-1 correlation = 0.45 , Lag-2 correlation = 0.28 ,

Lag-3 correlation = 0.17 , Lag-4 correlation = 0.08 ,



and assume that the correlations for higher lags for the state were

zero. We then estimated the sampling covariances over time as
1/2
swi(l) = (0~45)(3|2m312m—1) )

swi(2) = (0.28)(s2.5%,_5)"7

swe(3) = (0.17)(s2,5%,-0)"""

swi(4) = (0.08)(s3,53,_ )",

and the the higher order covariances were set equal to zero. With
these approximations we estimated m; and m,. Estimator m, was
estimated using weighted least squares where the weight for the
th observation is 1. As would be expected estimator m,; appeared
more erratic than m, with the distinction being most evident after
about 100 months. On the average, both m; and m, seem to
indicate that #, has a slightly smaller mean square error over time
than the CPS direct estimate Y, .

Estimators mg and m, were computed using weighted least
squares, where the ?-th observation received a weight of {. In
order to to compute these estimators we made the assumption
that { = 4, which is consistent with the correlation assumption
made in calculating m; and m, . We found that m; was more
variable than m,, and that m, was more variable than m,. One
reason for this is that the estimated lower bound b(§,) used for
both m; and m, often takes on the value zero. This occurred
because the i , estimates tended to be unstable, often taking on
negative values large enough in magnitude to drive the estimated
lower bound to zero. Because of this problem we do not
recommend using estimators mg and m,; , but instead we
recommend using my and mg which we describe next.

Estimators my and mgz were computed using nonlinear weighted
least squares, where the ¢-fh observation received a weight of ¢.
The NLIN procedure of PC SAS was used to compute the
estimates 2 , and 2 ¢ . 'The NLIN procedure allows the user to

place inequality restrictions on the parameters, and we imposed

the following restrictions
6,; >0, forj=1,5,8,10

where 0, = (84, 049, ..., 8419)" and

0<py; <1, forj=1,234

where pr= (Pe1y Przs Pias Pra) - The theta restrictions may
look strange, but these theta parameters correspond to the
diagonal elements of V{E -1} defined in (14) which are positive
by definition. We restricted the elements of pr to be in the

parameter space of positive correlations because based on the

paper of Train, Cahoon and Makens (1978) , as well as intuition
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resulting from an understanding of the CPS sample design and
estimation methodology, we would expect the sampling errors w,
to be positively correlated rather than negatively correlated. The
estimates mg; and mg are much more well behaved than the
corresponding estimates mg and m,. It was also observed that mg
is very similar to m; and mg is very similar to m,, with the main
difference being that m; and mg were alightly larger than m; and
my.

This ends our analysis of the state data. Our primary interest
was demonstrate the calculation of the six mean square error
estimators presented in Section 2 and not to draw conclusions
about either the behavior of the unemployment rate for the state,
or to assess the quality of the estimator §, . Our overall finding is
that my; and mg are superior to my and m, , because by bounding
some of the estimated parameters in the nonlinear regression we
were able to reduce the erratic behavior in the final mean square

error estimates.
Remarks

Any opinions expressed are those of the author and do not

reflect policy of the Bureau of Labor Statistics.
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