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1. In t roduct ion  and Derivat ion of Mean Square Error 

The  use of t ime series methods  applied to survey da ta  is a topic 

tha t  is receiving renewed interest among  statisticians. Early 

papers by Scott and Smi th  (1974) and Scott, Smi th  and  Jones 

(1977) demons t ra ted  how t imes series methods  could be applied to 

survey data.  More recent papers such as T a m  (1987), Bell and 

Hil lmer (1987) and (1989), Elt inge and Fuller (1989), and Tiller 

(1989) have expanded on these ideas and stressed the use of state 

space model  techniques as well as the Ka lman  filter. 

We will consider Ka lman  filter es t imat ion as applied to the 

following si tuat ion.  Assume tha t  a survey has been conducted at  

t imes t --  1, .... T , and for each t ime period t an es t imate  Yt of 

a finite popula t ion quan t i ty  Yt is computed.  Define 

Yt = Yt + wt (1) 

and call wt the sampl ing  error at t ime t . We will assume tha t  

the sampl ing  errors are independent  of the fixed sequence of values 

Yt , and tha t  the wt have expectat ion zero for all t . We will also 

assume tha t  for each t ime period t , a set of fixed auxil iary 

variables are available which are contained in the 1 × p 

dimensional  row vector X t • It will always be assumed tha t  the 

constant  1 appears as the first element of X t for all t .  In practice 

auxil iary variables will be selected which are correlated with the 

true value Yt , but  we will not assume the existence of any 

par t icular  relat ionship between Yt and X t as is often done in 

model-based sampling.  

We assume tha t  the p r imary  interest of the survey is to 

es t imate  the Yt , and we will consider est imators  of the form 

~tt = X t f 3 t  , for t =  1 . . . . .  T, (2) 

where/3  t is constructed based upon the following i terative formula  
e~ 

~. = ~._~ + ~ , ( Y ,  - x , ~ , _ ~ ) ,  (3) 

where the L t  are functions of the auxil iary vectors and are thus 

considered to be a fixed sequence of vectors with respect to 

sampl ing  variabil i ty.  Notice tha t  we can write 

~lt  - -  ( X t L t ) Y t  + (1 -- X t L t ) X t ~ t _  x . (4) 

This  implies tha t  ~tt is a weighted combinat ion  of the aggregate 

es t imate  Yt and a one-step-ahead prediction X t f 3 t _  1 , where the 

weights add to 1 . The recursive es t imat ion procedure in (3) is a 

dist inctive feature of the Ka lman  filter method  of est imation,  and 

the L t is often referred to as the Ka lman  gain matr ix .  There  are 

many  ways of generat ing the sequence of matrices L t as well as 

choosing the ini t ial  value fl 0 , and each of these methods  produces 

its own par t icular  es t imator .  The methods  of ordinary least 

squares, weighted least squares, and variable coefficient models all 

fit wi thin this i terat ive framework.  

We are interested in obta in ing an expression for the mean  

square error of the es t imator  in (2) . We begin by writ ing the 

prediction error as 

Yt - ~lt "= Yt - X t[3t (5) 

= _ _ 

= - w t  + (1 - X t L t ) ( Y t  - X t ~ t _ l ) .  

Notice tha t  an impor t an t  component  of the prediction error is the 

quan t i ty  ( Y t -  X t ~ t - 1 )  which we will call the one-step-ahead 

predic t ion  error. We can write the mean  square error of Yt as 

E{(y t  ~t) 2} 2 - = ~ ,  + (6) 

(1 X t L t ) 2 E { ( Y t  ^ 2 - - x , £ , _ l )  

--2(1 -- X t L t ) ~ r ~ t  + 2(1 -- X t L t ) E { w t X t ~ t _ l } ,  

where a~ot2 is defined as the variance of w t . Throughou t  this 

paper the symbol  E will denote expectat ion with respect to the 

sample design. Notice tha t  by using equat ion (3) i terat ively we 

can write 

~ t  -- L t Y t  + ( I p  -- L t X t ) ~ t _ l  (7) 

= ~ ,  v ,  + ( Z ~  - £ , x , ) £ , _ ~  Y,_~ 

+ (Z. - _L.x.)(L, - L._~x._~)~._~ 

t - 1  J 

= E { r I  ( I p  - L t _ i + l x t _ i + l )  } L t _ j Y t _  j 
j = O  i = 1  

+ ( f i  ( z .  - _~._.+lX._.+l))~0.  
i----1 

where the products  above are defined to be / v  when the upper 

l imi t  is 0 , a n d / v  s tands for the ident i ty  ma t r ix  of dimension p . 

If we assume tha t  the wt is uncorrelated with the init ial  vector ~ 0 

then we can write 

t - 2  

E(~ .X.~ ._ I}  = E a.~E(w.~._~_~) (S) 
j=0 

where for j = 1 . . . . .  t - 2  
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J 
atj -- Xt[  1-I ( / p  -- L t - i X t - i ) ]  ~Lt - I - j  (9) 

i--1 

a,0 = X,  £ , _ ~ .  

Therefore we can write the mean  square error as 

E{(yt --  ~]t) 2} - -  (2 X t ~  ` --  1)rr~t (10) 

^ 2 + (1 -- XtLt )2E{(Yt  --  X t f l f l , _ l )  } 

t--2 
+ 2(1 -- X t £ t )  ~P, at jE(wtwt_i_j) .  

j=0  

Notice tha t  the second momen t  of the one-step-ahead predict ion 

error is a major  component  of the mean square error. We will 

next  derive two expressions for E{(Y, -- X , ~ , _ 1 ) 2 }  . We begin 

by writ ing 

l i t  - -  X , ~ , ~ , - I  : wt  31- Y , -  X t ~ t - 1  (11) 

- -  Wt ~t. q t - -  X , ( ~  t - 1  -- }~ t-- l) ,  

w h e r e  fl~,-I ~- E{ ,-~t-1 } for all t ,  a n d  

qt - -  Yt - -  X t f l t - 1  , for t = 1 . . . . .  T. (12) 

The  quan t i ty  qt is the expected value of the one-step-ahead 

predict ion error, and is a function of the true Yt values as well as 

the es t imat ion  me thod  use to construct  the fit  • We can write 

trwt + q2 t (13) 

-}- X ,  V{  ~ , - 1  } X :  - 2 E { w t X , ( ~ , _  1 --  ~ , - 1 ) }  

where 1/"{ fl t -1  } is the covariance ma t r ix  of /~ t - l ,  defined as 

V{ fl~,-i } "-- E { ( ~ t - 1 -  ~f l t -1)(~,- i -  ~,-1)1} " (14) 

Thus  we can write 

2 E{(Yt -- X t ~ , - I )  2} -" Gwt Jr" q2t (15) 

+ (x ,®x,)~wch(  v{ .~,_~ } ) 

t--2 
- -  2 ~ at jE(wtwt_l_j) ,  

j=0 

where ® s tands for Kronecker product  and the no ta t ion  ~ p  and 

vech are defined in Fuller(1987).  The  vector vech( V{ ~ t - 1  } ) ,  

by definition, contains all of the unique elements of the ma t r ix  

V{ ~ t - 1  } ordered by columns,  and is of dimension 

½P(1 + p ) x  1. 

Thus  we can write the mean square error as 

2 2 E{(yt -- 9t) 2 } = (X t£ t )  rrwt (~6) 

+ (1 -- Xt£ t )2[q~  + (Xt@Xz)~pvech( V{ ~ t - 1  } )1 

The  te rm 

t - 2  
+ 2 ( X t ~ t ) ( 1  -- X t £ t )  E at jE(wtwt - l - j ) .  

j=0  

q2 t "4- ( Z t @ Z t ) ~ p v e c h  ( V{ ~ t - 1  } ) (17) 

in the mean square error expression is interesting. If ordinary 

least squares es t imat ion  is used then under general condit ions 

V{ fit-1 } = O(t-l) as t - , c o ,  which says tha t  (17) will be e~ 

domina ted  by qt 2 for large values of t . If a variable coefficient 

model is used, then under general conditions V{ fl t-1 } = O(1) as 

t-- ,  co but  it is likely tha t  qt 2 will be smaller  than  in the ordinary 

least squares case. This  refects the inherent t rade-off  between bias 

and variance when using an es t imat ion scheme which allows the 

coefficient vectors to change over t ime (i.e. the variable coeffients 

models)  as opposed to ordinary least squares which t reats  the 

coefficients as fixed over t ime. 

We next  derive an a l ternat ive  expression for 

E{(Yt -- X t ~ t - 1 ) 2 }  • We begin by not ing tha t  

Y, - ~ ,~ ,_~ = ~, + q , -  ~ , ( ~ , - 1 -  ~,-1) (is) 

t - 2  
= qt -F wt --  ~_~ a t j w t _ l _  j • 

j=0 

Thus  the one-s tep-ahead predict ion error can be wri t ten as the 

sum of two independent  terms, the first term being qt and the 

second te rm coming from a linear combinat ion  of the sampl ing 

errors across t ime. We can write the second moment  of the one- 

s tep-ahead predict ion error as 

E{(Yt -- Xt~t -x)2}  _ q2 t + aw t2 

t--2 
--  2 Y~ a t j E ( w t w t _ l _ j )  

j=o 

t -2  t -2  
+ ~ E at jatkE(wt- l -kwt-x- j )  • 

j=0  k=0 

Thus  we can write the mean square error as 

(19) 

2 2 E{(yt -- ~t) 2} = (X tL t )  ¢~,t (20) 

t - 2  t-2 

+ (1 -- XtLt)2[q2t + E E at jatkE(wt- l-kwt- l- j )]  
j=0 k=0 

t -2  
+ 2 ( X t L t ) ( 1  -- XtL t )  E at jE(wtwt- l - j )"  

j=o 

In this section we have concentra ted  on deriving expressions for 

the mean  square error of Y t , but  we can also write an expression 

for its bias. Namely  

E{(~lt - Yt)} --  - ( 1  -- X t L t ) q t .  (21) 

Therefore the bias of Y t is a known negative mul t ip le  of the 

expected value of the one-step-ahead predict ion error. 
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In the next section we examine es t imat ing  the mean square 

error expressions we have derived in this section, but  before doing 

tha t  we will first derive lower bounds for the mean  square error 

based upon expressions (10) and (16). Notice tha t  the second 

te rm is positive in both expressions (10) and (16), therefore it is 

na tura l  to define the lower bounds B 1 (yt)  and B2(yt) as follows. 

Bl(~lt) = (2 X t L t  -- 1)a2wt (22) 

t - 2  
+ 2(1 -- X t L t )  Y~ a t jE(wtwt_ l_ j ) ,  

j = 0  

= ( x , ~ , )  ~ ,  B2(~lt ) 2 2 

t - 2  
+ 2 ( x , £ , ) ( 1  - x , $ , )  E a,~E(w,w,_~_~), 

j = 0  

where BI(y t )  was obtained by set t ing the second te rm of 

expression (10) equal to zero, and B2(~/t) was obtained by sett ing 

the second te rm of expression (16) equal to zero. Notice tha t  the 

bounds are functions of the covariance s t ructure  of the sampl ing 

errors w t , and the auxil iary vectors X t . Finally we can define an 

overall lower bound expression B(~t) as 

B(~tt) =- maz{B(~lt), B(~lt), 0 } ,  (23) 

which implies tha t  the mean  square error of Y t is greater than  or 

equal to B(~ t) for all t .  

2. Es t imat ion  of Mean Square Error 

In this section we present methods  of es t imat ing the mean  

square error expressions we calculated in the previous section. The 

two main  mean  square error expressions we calculated were given 

in (10) and (16). The es t imat ion of expression (20) will be the 

subject of future  research. Both expressions (10) and (16) involve 

variances and covariances of the sampl ing errors. For most  

surveys we can expect to have a survey-based est imate 2 of 2 Swt ~Ywt 

for each t ime period t = 1 , . . . ,  T . For some surveys we may  

also have a survey-based est imate s~ t ( j+l  ) of the covariance 

E(wtwt_l_j )  for all t and j = 0, ..., l - -2  . If these variance and 

covariance est imates are unbiased we can construct  an unbiased 

es t imator  of the mean  square error from (10) as follows 

ml(~lt) - (1 -- X t L t ) 2 ( Y t  -- X t~ t_~)  2 (24) 

+ (2 X t L t  1) 2 $wt 

t--2 
+ 2(1 -- X t L t )  E atjSwt(J-+l)" 

j = 0  

While ml(f/t) is unbiased we" would expect it to have an 

unacceptably  high variance since we are using (Yt  - X t ~ t - 1 )  2 as 

an es t imator  of its own expectation.  This  points out the fact tha t  

the ma in  problem in es t imat ing  the mean square error is 

accurately es t imat ing  E{(Yt  -- X t ~ t _ l ) 2 } .  In practice we would 

use the es t imator  m~(y t )  = max{ m 1 (yt),  b(yt)} where b(yt) is the 

es t imated lower bound in (23) . 

Al ternat ively we could try es t imat ing  (16) but  this involves the 

unknown vector vech( V{ ~ t - 1  } ) as well as qt .  In general we 

would never expect to have survey-based est imates of 

vech( V{ fit-1 } )  and qt as we did for the variances and 

covariances of the sampl ing errors above. For nota t ional  

convenience we define the vector ~ t  to be equal to 

vech( V{ ~ t - 1  } ) for all components  except the first, and define 

the first component  to be the first component  of 

vech( V{ f l t_ l  } ) plus qt 2 . Thus,  if we were able to construct  an 

es t imator  0 t  of 0 t then we could consider mean  square error 

es t imators  of the form 

m2(~tt) -- (1 -- X t L t ) 2 ( X t ® X t ) ~ p ~ t  (25) 

t - 2  )2 2 + ( X t L t  swt+ 2 ( X t L t ) ( 1  -- X t L t )  Y]~ at jswt( j+l  ) .  
j = 0  

One method  of construct ing such an es t imator  ,~t is as follows. 

Form the r andom variable Zlt by 

Z l t  - -  ( Y t  - -  X t f l t - 1 ) 2  _ 8w t 2  

t - 2  
+ 2 E at js~t ( j4-1) ,  

j=0 

(26) 

for all t . If we again assume tha t  the variance and covariance 

est imates s~ot2 and s~ot(j+ 1) are unbiased, then by using (15) we 

can write 

Zlt = ( X t ® X t ) ~ p L t  + t i l t ,  for t = l  . . . . .  T (27) 

where E ( r / l t ) =  0 for all t .  Thus,  es t imat ing  O t is equivalent  

es t imat ing  the regression problem defined by (27) in which the 

regression coefficients change over time. There are many  different 

methods  of es t imat ing  the coefficients for this problem, and the 

performance of any par t icular  method  depends upon the behavior 

of the sequence of O t vectors. One simple solution would be to use 

the ordinary least squares es t imate  ,~T from the regression of Zlt 

on ( X t ® X t ) ~ p  for t =  1 . . . . .  T . In the next section were we 

work an example with da ta  taken from the Bureau of Labor 

Statistics, we actual ly  use weighted least squares instead of 

ordinary least squares. In practice we would use the es t imator  

m~(~/t) -- max{m2(~lt), b(~)t)} where b(~lt) is the es t imated lower 

bound in (23) . 

Up to this point  we have assumed tha t  est imates of the 

covariances as well as the variances of the sampling errors are 

available. For many  surveys, only variance est imates 2 will be 8wt 

available. Unless the covariance are known to be zero (as in the 

case of independent  sampling)  addi t ional  assumptions  will have to 
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be made in order to es t imate  the mean  square error. We will 

assume there exists a constant  1 such tha t  

E(wtwt_s)  -- 0 for s > 1, (28) 

for all t . In general the other covariances will be assumed to be 

unknown.  Such a covariance assumpt ion  could, for instance, be a 

reasonable approx imat ion  to the covariance s tructure of a ro ta t ing  

panel design in which panels of sample units  enter a sample 

together and stay in for exactly l t ime periods before being 

removed f rom the sample. Wi th  the assumpt ion  in (28) it will be 

convenient to define the / -d imens iona l  vector 7 t as follows 

7 t  = (Tt(1), 7t(2)  . . . . .  7t(/))  t , (29) 

where 

7 , ( , )  = E ( ~ , ~ , _ , ) ,  

for all t .  Also define the / -d imens iona l  vector At as follows 

At  -- (ato, at1 . . . . .  a t ,_ l ) ,  (30) 

where the atj were defined in (9) . Thus,  if we were able to 

construct  an es t imator  0t  of O t and an es t imator  7 t  of 7 t then we 

could consider mean  square error est imators  of the form 

t L 2 ) ~ p ~ t  + (31) m3(.~ ) = (1 -- X t ~ t )  ( X t @ X t  

)2 2 + ( X t k t  s~ot + 2(XtL t ) (1  - X t L t ) A t ~ t .  

One method  of construct ing such est imators  .~t and q t is as 

follows. Fo rm the r andom Z2t by 

Z2t = ( r t  -- X t ~ t _ l )  2 -- s~t2 , (32) 

2 is for all t . If we again assume tha t  the variance est imate Swt 

unbiased, then by using (15) we can write for t = 1 ,  ..., T 

Z2t = ( X t ® X t ) ~ p O t  -- 2 A t z t  + ~2t , (33) 

where E(q2t ) = 0 for all t .  Thus,  es t imat ing  Ot and 7 t  is 
e~ 

equivalent  to es t imat ing  the regression coefficients in the 

regression of Z2t on [ ( X t ® X t ) ~ v , - 2 A t ]  where the coefficients 

are allowed to change with t . While there are many  methods  of 

es t imat ing  the coefficient vector for this problem one simple 

solution would be to use ordinary least squares. In the next 

section we work an example where weighted least squares is used 

instead of ordinary least squares. In practice we would use the 

es t imator  m+(~l t )=  max{ma(~lt) , b(~t)} where b(~lt) is the 

es t imated lower bound in (23) . 

Note tha t  given the es t imator  x/' T we can construct  an 

addi t ional  es t imator  of the mean square error, namely  

m4(9,  ) -~ (1 -- X t ~ t ) 2 ( Y t  -- X t ~ t _ l )  2 (34) 

"4- ( 2 X t ~ t  1) 2 
- -  swt -4- 2(1 -- X t ~ t ) A t ~ t .  

In practice we would use the es t imator  

m'~(~lt) -- max{m4(~/t), b(yt)} where b(~t) is the es t imated lower 

bound in (23). 

We next define one last pair of est imators,  but  in order to do so 

we need to define some notat ion.  Define the /-dimensional column 

vector 

P t = ( p t ( 1 ) ,  P t (2 )  . . . . .  p t ( l ) )  t , (35)  
e~ 

where 

P t (s) -= Corr(wt, wt_ s) 

7,(s)  2 2 -1/2  = ( , ~ , , , , , ~ , , , , _ , )  , 

for all ~. Also define the / -d imens ion  row vector 

C t  [ / 2 2 \ 1 / 2  2 2 1 / 2  = ato[cr~,~r~ot_l) . . . . .  att_l(~rwtcrwt_z) 1, (36) 

for all t .  Thus,  if we were able to construct  es t imators  ~ t ,  Pt ,  

and C t then we could consider mean  square error est imators  of 

the form 

mh(~t ) -- (1 -- X t L t ) 2 ( X t @ X t ) ~ p ~ t  + (37) 

+ ( x , L , )  ~ s~ot -4- 2 ( X t L t ) ( 1  - X t ~ t ) ~ t ~ t .  

The es t imator  .Qt we will use is the one which replaces each of the 

2 2 o'wj in expression (36) with the sample est imate Swj for all j .  In 

order to obta in  est imates of 0 t and P t we recommend using 

weighted least squares, regressing Z2t on [ ( X t ® X t ) ~ v  , - 2 ~ t ]  for 

all t . One could also consider using an errors-in-variables 

regression procedure which accounts for the fact tha t  we are using 

C t in the regression instead of C t which appears in the mean of 

Z2t , namely 

E{z=,} = ( x , ® x , ) ~ o ,  - 2 £ , £ , ,  for t = l  . . . . .  T. 

In practice we would use the es t imator  

m+(~/t) = max{ms(g/t), b(~t)} where b(~t) is the es t imated lower 

bound in (23). 

Finally,  given an es t imator  ]~ t we can construct  the es t imator  

^ 2 
m6(~t ) --  (1 -- X t L t ) 2 ( y t  -- X t £ t _ l )  (38) 

+ ( 2 X t L  t -- 1)s2t + 2(1 -- X t L t ) , ~ t ~  t . 

In practice we would use the es t imator  

m+(~lt) -- max{m6(~]t), b(yt)} where b(~lt) is the es t imated lower 
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bound in (23). In the next section we demonstrate the use of the 

estimators presnted in this section. 

3. An Example 

Each month  the Bureau of Labor Statistics (BLS) produces 

monthly estimates of the unemployment  rate for each of the fifty 

states and the District of Coulmbia. For simplicity, we will refer 

to these as state level estimates. The primary source of da ta  for 

these unemployment  rate estimates is the Current Populat ion 

Survey (CPS). The CPS is a national probabili ty sample of 

approximately 59,000 households, and is conducted by the Census 

Bureau for the Bureau of Labor Statistics. It is possible to 

compute estimates of the monthly unemployment  rate at the state 

level directly from the CPS data,  but the reliability of these 

estimates can differ greatly because the CPS sample is not 

distributed equally among the fifty states and the District of 

Columbia. As of January  1989 BLS publishes the direct CPS 

unemployment  rate estimates for eleven states, while for the 

remaining 39 states and the District of Columbia it uses estimates 

based upon the Kalman filter which incorporates CPS da ta  along 

with auxiliary information. We next describe an est imator which 

is closely related to one which BLS uses for the monthly 

unemployment  rate estimates for one of these states, and we 

demonstrate  the calculation of the mean square error expressions 

derived in Section 2 for this estimator.  

We will be using monthly  da ta  for a particular state (which 

will remain unidentified) covering the period of time from January  

1976 to February 1989, which comprises 158 months. In terms of 

the notat ion defined in Section 1 we define the problem for month  

t as follows 

Yt -- Direct CPS monthly state unemployment  rate estimate, 

Yt -- True populat ion monthly state unemployment  rate, 

wt = CPS sampling error in the direct estimate, 

where t = 1, .... 158.  The goal is to estimate the true, but  

unobservable, monthly  unemployment  rate Yt • The est imator we 

will describe makes use of three auxiliary variables for month t 

X2t : CES state employment  to population ratio, 

Xst  : National CPS entrant  rate, 

X4t -- Unemployment  Insurance claims rate for the state , 

where by definition Xlt  _ 1 for all t , and 

Xt  = (1, X2t , X3t , X4t ) . Tiller (1989) gives an in-depth 

description of these variables, as well as the estimation 

methodology used by BLS. 

The monthly  est imator we will examine Yt is given by 

Y t -  X t ~ t  for t - -  1 . . . . .  158 

where 

A, = (P,-~ + Q)Xl Z ~ 

f t -  1 + X t ( P t - 1  + Q)X~ 

P t  : P t - ~  + Q - L t L ~ f t  

where /~0 = 0 and P0 = ~ I where ~ is a large positive 

number. The matr ix  Q is a diagonal matr ix  with diagonal 

elements given by 

qll -- 0.00003612, q22 = 0.00003889, 

q33 -- 0.00003613, q44 "-- 0.00003634. 

The est imator  described above is the result of fitting a variable 

coefficients model to the da ta  where the regression parameters are 

assumed to follow a random walk. The elements of the matr ix  Q 

were actually derived by the method of maximum likelihood under 

the variable coefficients model specification and the assumption of 

normali ty.  Notice that  the matr ix  Q remains fixed, and does not 

depend on t .  

Along with the direct CPS unemployment  rate estimates Yt 

over t ime we also have estimates Swt2 of their variance over time. 

These variance estimates are actually calculated from generalized 

variance functions, and even though they are not exactly unbiased 

estimates we will assume they are unbiased here for the purposes 

of il lustration. We next demonstrate  the calculation of the six 

mean square error estimators given in Section 2. Each of these 

estimators will make use of the variance estimates 2 S w t  • 

Unfortunately we do not have direct estimates of the 

covariances of the CPS sampling errors w t over time. In order to 

demonstrate  the calculation of estimators m 1 and m 2 we 

calculated indirect estimates of the sampling covariances over time 

in the following way. Train,  Cahoon and Makens (1978), among 

other things, calculated average correlations over time for the CPS 

estimates of total  nat ional  unemployment .  As a rough 

approximation we decided to use their est imated correlations for 

the first four lags for our state data,  namely 

Lag-1 correlation = 0.45 , Lag-2 correlation -- 0.28 , 

Lag-3 correlation - 0.17 , Lag-4 correlation = 0.08 , 
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and assume that  the correlations for higher lags for the state were 

zero. We then estimated the sampling covariances over t ime as 

stot(1) (0 .45" 2 2 ,1/2 --" ) l S w t S w t _ l  ) , 

,~,(2)  = ( o . 2 8 ) ( s ~ , s L _ ~ )  ~/~ , 

swt(3) = (0.17Vs2 s2 ~1/2 ~ ' 1 ~ ,  w t  w t - 3 ]  

Swt(4) = ( 0 . , ~ ( s  2 s 2 ~1/2 ' a u l k  w t  w t - - 4 )  

and the the higher order covariances were set equal to zero. With  

these approximations we estimated rn 1 and m 2. Est imator  m 2 was 

estimated using weighted least squares where the weight for the t- 

th observation is t .  As would be expected estimator rn 1 appeared 

more erratic than rn 2 with the distinction being most evident after 

about 100 months.  On the average, both m 1 and m 2 seem to 

indicate that  Y t has a slightly smaller mean square error over time 

than the CPS direct estimate Yt • 

Estimators m 3 and m 4 were computed using weighted least 

squares, where the t-th observation received a weight of t .  In 

ordei to to compute these estimators we made the assumption 

that  l = 4, which is consistent with the correlation assumption 

made in calculating ml and m 2 . We found that  m 3 was more 

variable than ml, and that  m 4 was more variable than m 2. One 

reason for this is that  the estimated lower bound b(~It) used for 

both m 3 and m 4 often takes on the value zero. This occurred 

because the "Yt estimates tended to be unstable, often taking on 

negative values large enough in magni tude to drive the estimated 

lower bound to zero. Because of this problem we do not 

recommend using estimators m 3 and m 4 , but instead we 

recommend using rn 5 and ms which we describe next. 

Estimators m 5 and m 6 were computed using nonlinear weighted 

least squares, where the t-th observation received a weight of t .  

The NLIN procedure of PC SAS was used to compute the 

estimates ~ t  and ]~t.  The NLIN procedure allows the user to 
e ~  

place inequality restrictions on the parameters, and we imposed 

the following restrictions 

Otj > 0 , for j = 1, 5, 8, 10 

where 0 t = (Otl , Ot2 . . . . .  Otl0) / and 

O < _ p t j < _ l  , f o r j  = 1, 2, 3, 4 

where P t -- (Ptx, Pt2, Pt3, Pt4) t " The theta restrictions may 

look strange, but these theta  parameters correspond to the 

diagonal elements of V { ~ t - 1 }  defined in (14) which are positive 

by definition. We restricted the elements of P t to be in the 

parameter  space of positive correlations because based on the 

paper of Train,  Cahoon and Makens (1978) , as well as intuit ion 

resulting from an understanding of the CPS sample design and 

estimation methodology, we would expect the sampling errors w t 

to be positively correlated rather than negatively correlated. The 

estimates m 5 and m 6 are much more well behaved than the 

corresponding estimates m 3 and m 4. It was also observed that  m 6 

is very similar to m 1 and m 5 is very similar to m2, with the main 

difference being that  m s and m 6 were alightly larger than m 1 and 

m 2 • 

This ends our analysis of the state data. Our primary interest 

was demonstrate the calculation of the six mean square error 

estimators presented in Section 2 and not to draw conclusions 

about either the behavior of the unemployment  rate for the state, 

or to assess the quality of the estimator Y t • Our overall finding is 

that  m 5 and m 6 are superior to m 3 and m 4 , because by bounding 

some of the estimated parameters in the nonlinear regression we 

were able to reduce the erratic behavior in the final mean square 

error estimates. 

Remarks 

Any. opinions expressed are those of the author and do not 

reflect policy of the Bureau of Labor Statistics. 
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