
MULTIPLE-SYSTEM METHODS FOR CENSUS COVERAGE EVALUATION 

Alan M. Zaslavsky, M.I.T. and Harvard University 
Department of Stat ist ics,  Harvard University, Cambridge, MA 02139 

K E Y W O R D S :  Undercount ,  dual system est imator ,  
random-effects model. 

1. I n t r o d u c t i o n .  

In many contexts,  it is desired to obtain an es t imate  
of the size of a popula t ion  for which a complete and ac- 
curate census is impossible. Likewise, it may be desirable 
to assess the degree of coverage of an incomplete census. 
Among the si tuations tha t  fit this description are: 

(1) Censuses of animal  populat ions,  in which it is usu- 
ally impossible to obtain more than  a sample of the 
populat ion.  (Seber 1973) 

(2) Censuses in underdeveloped countries, for which re- 
sources and infrastructure l imitations may make it 
impossible to construct  complete address lists or to 
carry out an enumerat ion.  

(3) Es t imat ion  of a rare populat ion,  such as people with 
a rare disease, for which there are two or more in- 
complete lists. (Wit tes  1970) 

Even the U.S. Decennial Census, certainly one of the 
best-funded and most sophist icated censal operat ions in 
the world, does not have complete coverage of the popula- 
tion, according to est imates  from recent decades. (Citro 
and Cohen 1983) Fur thermore ,  undercoverage varies sub- 
s tantial ly between groups defined by demographic and 
geographic variables. 

Improved est imates  may often be obtained by com- 
bining information from two sources (for example,  a cen- 
sus and a sample survey such as the Post Enumera t ion  
Survey). These "dual system est imates" may be chal- 
lenged where the underlying assumption of independence 
between the two sources cannot be justified. The dual 
system es t imator  (DSE) is described in Section 2, to- 
gether with criticisms of the DSE for "correlation bias," 
tha t  is, bias due to an unjustified assumption of indepen- 
dence between sources. 

One me thod  of reducing correlation bias is to ob- 
tain addit ional  sources of information on the populat ion,  
thereby reducing the fraction of the populat ion tha t  is 
omi t ted  from all sources. In Section 3, est imates tha t  
use more than  two sources ("mult iple  system est imators"  
or MSE) are described. While these can improve upon 
the DSE, it may be too expensive to collect addit ional 
sources on the same scale as the second source. Collect- 
ing the third source in a subsample of the two-source area 
is a compromise tha t  limits costs while still providing a 
check on the accuracy of the DSE. In Section 4, a sub- 
sampled MSE is proposed, and in Section 5, methods  are 
described for es t imat ing the census coverage and total  
populat ion with a subsampled MSE design. 

The exposit ion of this paper  will assume tha t  the 
pr imary source is a Census, the secondary source is a 
coverage evaluation survey, and the addit ional  sources 
are fur ther  surveys or adminis t ra t ive records lists. How- 
ever, the methods  described here are equally applicable 

in other  si tuations where it is desired to es t imate  the cov- 
erage of a list. For example, the pr imary source might be 
a list of par t ic ipants  in a par t icular  program, the other  
sources might be surveys and administrat ive records tha t  
are used to identify the pool of potent ia l  part icipants,  
and the objective might be to es t imate  the coverage rate  
of the program. Indeed, these methods  would be even 
more useful in these non-Census settings, where cover- 
age rates are relatively poor and therefore the number  of 
units  omi t ted  from both  the first and second sources may 
be substantial .  

2. T h e  D u a l  S y s t e m  E s t i m a t o r  a n d  c o r r e l a t i o n  
b ias .  

One of the main stat ist ical  tools for populat ion esti- 
mat ion  and coverage evaluation where a complete census 
is not possible is the Dual System Es t imator  (DSE). In 
dual system est imation,  two surveys or censuses are car- 
ried out on the same populat ion.  Each observed unit is 
identified as included in the first survey only, the second 
survey only, or both  surveys. Thus each observation falls 
into one cell of a 2×2 contingency table like Table I where 
the cell count n00 (corresponding to units omi t ted  from 
both  surveys) is unobserved. 

The usual assumptions of this methodology are tha t  
(1) the popula t ion is closed (no births, deaths, or mi- 
grat ion) and of fixed size, (2) the two censuses can be 
matched  to determine which units appeared in both,  (3) 
inclusion in the first census is statist ically independent  of 
inclusion in the second, and (4) the numbers  of units in 
the cells of Table 1 are mult inomial ly distributed.  Under 
these assumptions,  the number  of units in the unobserved 
cell may be es t imated as n00 = nlOnOl/nll. Using this 
est imate,  the total  populat ion of the sampled area may be 
est imated;  the populat ion est imate  obtained by summing 
the cells is 

n++ =nl+n+l/n11. (1) 

DSE methodology has been used in Decennial Cen- 
sus coverage evaluation since 1950; the most ambitious ef- 
fort to date  was in the 1980 Census. In every case the first 
survey source was the Census itself. The second source 

Second source  

F i r s t  source  O b s e r v e d  O m i t t e d  T o t a l  

Obse rved  n l l  nl0 n I + 

O m i t t e d  n01 n00 no+  
Unobserved 

cell 
. , . . 

T o t a l  n + 1 n + 0 n + + 
Total 

population 

Tab le  1" The  D u a l  S y s t e m  E s t i m a t o r  
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is a sample survey. In 1980, the second survey was based 
on the Current Population Survey sample; in 1990 there 
will be a special survey in a sample of Census blocks, the 
Post Enumeration Survey (PES), for purposes of cover- 
age evaluation. The second source is only collected for a 
sample of the population (the CPS sample in 1980 and 
a specially drawn sample of blocks in 1990). Each stra- 
tum in the sample represents an estimation class, that 
is a subset of the entire population defined by the same 
variables. 

The concept in this effort is somewhat different than 
that underlying the Peterson estimator, because the sec- 
ond survey consists of only a sample of geographical areas. 
The population of the survey area is no longer of primary 
interest. Rather, the total population (for each estima- 
tion class) must be estimated. Populations for local areas 
may also be of interest. 

Focusing attention for the moment on a single es- 
timation class, the quantity calculated from the DSE is 
the coverage rate r = nl+/n++ of the first source (the 
Census). Under the assumption of independence, this is 
consistently estimated by the observable quantity n11/ 
n+l.  (More precisely, the corresponding ratios of expec- 
tations are equal.) If the sample for which the second 
survey is carried out is a properly drawn sample (for each 
stratum) of the corresponding estimation class, then the 
sample estimate of the coverage rate is an estimate of 
the average coverage rate for that class across the pop- 
ulation. An estimate of the national population in that 
class is then Nl+/r, where NI+ is the enumerated total 
in the Census for that class. Under the assumption that 
the undercount rate in any class is constant across geo- 
graphical areas, the estimated population belonging to a 

particular class in any local area is nl+/r ,(i)" where _(i) is t t l+  
the enumerated total in the Census for that class in area 
i. The "synthetic estimate" of total local area population 
is calculated by summing the local-area estimates across 
all classes. 

In practice the factor that would be used for estima- 
tion would not be simply 1/r  but a factor that takes into 
account other coverage errors such as erroneous enumera- 
tions. For simplicity, this exposition will assume that only 
undercoverage is of concern. It is reasonable to assume 
that overcoverage is adequately dealt with by checking 
against a single additional source since there is no reason 
to think that erroneous enumerations will be duplicated 
in the second source. 

The important distinction here is between 
(1) a population DSE, such as that described for 

animal studies, in which the entire finite popu- 
lation is targeted in each survey, and 

(2) a sample-based DSE in which a population cov- 
erage rate is estimated from a sample of areas. 

The simple form of the estimator r = n l l / n + l  may 
mask the fact that this is actually an average of coverage 
rates across geographic areas, 

E _(i) (i) tt+ l r 
r = r~11/~+1 -- ie Sample 

- -  , / n + l .  E _(i) where r (i) ---n~:)l" (i) 
'tt+ l 

ie Sample (2) 

Thus, when the design of the second source is more com- 
plicated than a simple random sample (as it must be 
in practice), more complex estimators should be used. 
(Cowan and Malec 1986) 

One of the critical assumptions in dual, system es- 
timation is that of independence between the first and 
second sources. But some models of the dynamics of the 
census process, often labeled heterogeneity and causal- 
effect models, suggest that this assumption may not be 
true. (Hogan and Wolter 1988) 

"Correlation bias" refers to any systematic bias in 
the DSE caused by an incorrect assumption of indepen- 
dence of sources (that is, failure to take account of corre- 
lation between omission in the first and second sources). 
The bias affects estimation of the unobserved quantity 
n00. Heterogeneity will always cause the estimator of n00 
to be biased downwards, whereas causal effects models 
can imply a bias in either direction. Another way of re- 
garding correlation bias is to say that the coverage rate 
nil/n+1 in uni t s  observed in the second source is not 
representative of the coverage rate n l + / n + +  for all units. 

Ericksen and Kadane (1985) suggest parametrizing 
the degree of correlation bias by k, the ratio of the actual 
number of twice-unobserved units to that predicted under 
independence of sources, or equivalently the crossproduct 
ratio in the 2 x 2 table (Table 1). Thus n00 = knoanlo/ 
nl 1. They further suggest using demographic estimates of 
the total population (based on births, deaths, and migra- 
tion for demographically defined groups ) together with 
the known rates nil/n+1 and nil/n1+ to estimate k for 
each stratum. In this way they estimate an overall value 
k=2.1 for blacks in the 1980 Census and Post Enumera- 
tion Program. 

3. M u l t i p l e  s y s t e m  e s t i m a t o r  m e t h o d s .  

Methods that make use of not just two but a mul- 
tiplicity of sources are called multiple system estima- 
tors. Although some units may remain unobserved in 
all sources, the additional sources improve the combined 
coverage and make possible more sophisticated models. 

The multiple-system equivalent of the Petersen es- 
t imator in animal population estimation is the Schnabel 
estimator, which also assumes that all sources are inde- 
pendent of each other. Variations of the multiple system 
estimator use the additional information contributed by 
successive captures to quantify violations of the assump- 
tions of the Petersen estimator, such as migration, births 
and deaths of animals. (Seber 1973) 

Other estimators (Feinberg 1972; Bishop, Feinberg 
and Holland 1974), drawing on the framework of log- 
linear models, relax the assumption of independence be- 
tween sources. Some a priori assumption is required to 
make the models identifiable, since there is always one cell 
count that is unobserved (corresponding to units missed 
by all sources). Typically, some higher-order interactions 
among sources (minimally, the highest-order interaction 
term) in the log-linear model are assumed to be zero. As 
the combined coverage of the sources improves, assump- 
tions of this sort will presumably introduce less bias since 
the count in the cell corresponding to the never-observed 
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part of the population will become smaller. Thus, in 
the three-source case, a minimal assumption is that there 
is no three-way interaction. 

A simpler multiple-source methodology (called by 
Kadane and Ericksen (1985) the "mega-list" method 
in contrast to the Wittes-Feinberg "multi-list" method) 
combines all the sources into a single list that is assumed 
to approximate a complete list of the population. The 
coverage of a single source is estimated as the fraction of 
units on the "mega-list" that are included in the target 
source. This is equivalent to assuming that the cell cor- 
responding to units omitted from all lists is empty. Com- 
parisons of the fits of these models given heterogeneous 
populations are shown in Zaslavsky (1989). 

4. A s u b - s a m p l e d  m u l t i p l e  s y s t e m  e s t i m a t o r .  

The most direct way of applying multiple system es- 
t imator (MSE) methods to undercount estimation would 
be to extend the Post-Enumeration Program (PEP) to 
multiple sources, collected and matched in all the PES 
blocks. Then the ratio of the census enumerated pop- 
ulation in an estimation class in the PES blocks to the 
corresponding estimated population using all sources is 
the maximum likelihood estimate of the coverage rate. 
The estimated population could be derived from either 
the "multi-list" or "mega-list" MSE. 

Due to the difficulty of matching more than two 
sources in a human census, it would probably not be fea- 
sible to carry out the MSE on such a broad scale. On the 
other hand, if multiple sources were used in a subsample 
of the PES blocks, then the additional information de- 
rived from the MSE could be used to calibrate the DSE 
estimates calculated from the full PES sample, by giving a 
better (less biased) estimate size of the "unobserved" cell 
n00 in the DSE. Typically, n00 is small compared to the 
other cells in the DSE. Thus, even if the sampling vari- 
ability in the MSE of n00 is relatively large (as measured 
by its coefficient of variation), because of the smallness 

of the MSE sample, it would still not contribute much to 
the variance of the estimated totai population. The addi- 
tional variance of the estimate might well be outweighed 
by the reduction in bias. Perhaps equally important, the 
information derived from the MSE would provide infor- 
mation to help settle one of the major controversies sur- 
rounding use of the DSE in coverage evaluation, that is 
the controversy over the extent of correlation bias. 

The three survey designs are illustrated in Figure 1. 
The vertical axis represents the entire list of blocks. Panel 
(a) shows the standard DSE design, in which all blocks 
are included in the Census and a sample is included in 
the Post Enumeration Survey (PES). Panel (b) represents 
the standard MSE design, in which the PES and a third 
source ( " ~  3") are obtained for a single sample of blocks. 
Panel (c) represents the proposed MSE design, in which 
a third source is obtained for a subsample of the blocks 
included in the PES; only for this subsample of blocks 
must the three-way matching operation be carried out. 

Once estimates of n00 in the entire DSE sample (for 
the  various estimation classes) have been calculated, the 
DSE can be used to calibrate the census as described 
above. Estimates of n00 will be derived from models re- 
lating.multiple-source omission status to two-source omis- 
sion status to be described in the next section. Two 
general assumptions are required for valid inferences to 
be drawn from the information derived from third sam- 
ple in the three-source sample. First, the three-source 
sample (the blocks included in the MSE) must be a ran- 
dom sample (with some known probability mechanism) of 
the two-source sample (the blocks included in the DSE). 
(This assumption can be relaxed in some models.) Sec- 
ond, the act of collecting the third list must not have a 
causal effect upon the probability of inclusion in the first 
two sources (Census and PES). This assumption is made 
plausible if (1) the process involved in collecting the third 
list is inherently separate from other Census operations, 
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F igure  1: Three  designs  for cal ibra£ing the Census  
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as would be the case if already existing administrative 
lists are processed for matching as a third source, or (2) 
the collection of the third list is later in time than the 
operations involved in the Census and PES. 

If the first source is the Census and the second source 
is the PES, the third source might be (1) an administra- 
tive list, (2) a combination of several administrative lists 
designed to give broad coverage across different s t rata  of 
the population, such as a combination of school registra- 
tion, welfare rolls, income tax lists, and Social Security 
enrollment (a sub-sample "mega-list"), or (3) some spe- 
cial list derived from a more intensive enumeration proce- 
dure than  the Census or PES, such as an anthropological 
participant-observer study. The Census Bureau currently 
is investigating the practicality of all of these sources for 
coverage evaluation purposes. Since the third source is 
only collected on a subsampled basis, problems of cost 
and difficulty of access to additional sources should be 
mitigated. 

We have thus far assumed a simple monotone pat tern  
of sampling for the three sources, that  is, one in which 
MSE blocks are drawn from DSE blocks, which are drawn 
from Census blocks. (The term is used in the sense of 
"monotone pat terns of missing data" (Little and Rubin 
1986), because Census omission status is more observed 
than PES status, which is more observed than status in 
Source #3 . )  More complicated designs are also possible. 
Models and estimation procedures for these designs are 
discussed in Zaslavsky (1989). 

5. M o d e l s  for  o m i s s i o n s  w i t h  m u l t i p l e  sou rces .  

5.1. M o n o t o n e  s a m p l i n g  p a t t e r n ~  no b lock  ef- 
fects .  Coverage estimates from the DSE can be applied 
to the Census in a very straightforward manner. The only 
information available for a non-PES Census block is the 
observed count (by estimation class) and so the est imated 
coverage rates for each class can be applied to estimate 
total populat ion by class and block. (In practice, some 
form of regression smoothing may be used to combine 
coverage data  from different classes in estimating class 
coverage rates.) 

One might proceed analogously with three sources 
to calculate an est imated coverage rate for the combined 
Census and P ES using only the three-source blocks. The 
coverage rate of the Census as a fraction of units cap- 
tured in either the Census or the PES could be est imated 
in the usual way from the two-source blocks. The over- 
all coverage rate of the Census could then be est imated 
by multiplying these two coverage rates. Est imation of 
the coverage rate may be split into stages in this way be- 
cause the likelihood for the two coverage rates factors. A 
simple parametr izat ion of the three-source coverage pro- 
cess makes this argument precise. Suppose {rrtijk} are 
expected cell counts in the three-way table for omission 
with three sources, as in Section 3. The following proba- 
bilities correspond to the coverage rates described in the 
last paragraph: 

Pl = P[unit is included in 

Census I included in Census and /or  PES] 

~--" m l+-t- / ( m + + +  -- mOO + )  

P2 - P[unit is included in Census and /or  PES[  

included in Census, PES, and /or  third source] 

= ( - ~ + + +  - moo+ ) / ( m + + +  - mooo) 

P3 = P[unit is included in Census, PES, 

and /or  third source] 

= ( - ~ + + +  - - ~ o o o ) / - ~ + + +  

where g=1,2,3 indexes the samples in which 1,2, and 3 
sources respectively are observed; xig is observed for i <_ 
g. Define also the following parameters: 

mlg -- E X l g  = m l + + , m 2 g  = EX2g = toOl+ ,  

?Tt3g --  ?7-tOOl, 

Ng = total count of all units = m+++.  

Then rnag = paNg, m2g = p2paNg, rn19 = plP2PaNg, 
and the log-likelihood is 

Z(p~,p~, p3 I x,  N )  = 

[(X12 Jr- X13) log  P l  -t- (X22 -Jr- z2a)log(1 - p l ) ]  

+ [ ( z ~  + x ~ ) l o g  p~ + ~ l o g ( ~  - p~)] 

@ f l ( X l l , P l , P 2 , P 3 , N 1 )  Jr- f2 (x22 ,P2,P3,N2)  

+ 5(z~,p~,N~). 

(3) 

The final set of terms involve the unknown total counts 
in each sample and therefore are of no help for inference 
on p (in the absence of strong prior information on these 
counts). Ignoring those terms, the likelihood factors. The 
first term is the log-likelihood for pl based on the two- and 
three-source samples, and yields the MLE pl = (x12 + 
Y13)/(x12 -t- x13 n t- x22 n t- x23), the fraction observed in the 
Census in those samples. Similarly, the second term is the 
log-likelihood for P2 based on the three-source sample, 
and yields the MLE p2 = (x,3 + x~3)/(Xl~ + x33), the 
fraction observed in the Census and /or  the PES in that  
sample. 

Note that  this pa t tern  of observations gives no in- 
formation on P3. The sensitivity of coverage estimates 
should be checked under a range of plausible alternative 
values for p3, based on different prior assumptions about 
the relationship of the coverage rate of the three sources 
together to the coverage rates of individual sources. Ob- 
viously p3=1 would yield the upper limit for coverage. 
Various plausible ad hoc lower limits might be proposed 
as functions of pl ,  p2 and other observed proportions. For 
example, we might suppose that  a=P[included in third 
source]=kl.P[included in third source [ included in Cen- 
sus or PES], and b=P[included in Census or PES ]no t  
included in third source]=k2.P[included in Census or PES 
[ included in third source]=k2p2, for some constants kl, 
k2 selected a priori. Then (1-p3)=(1-a)(1-b) .  Another 
possible est imate for p3 would be that  derived from the 
multi-list est imate of the thrice-unobserved cell. 

Whatever  value is assumed for p3, the coverage rate 
of the Census is then est imated as r = plp2p3. Our as- 
sumption is that  all of the estimates of p3 are close enough 
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to 1 that  sensitivity to the exact form chosen would be 
minimal. 

5.2 Monotone  sampling pattern,  with block 
effects .  If the DSE of the Census coverage rate in the 
three-source (MSE) blocks differs from the correspond- 
ing estimate in the entire two-source sample, one would 
have reason for concern that  the MSE coverage estimate 
in the three-source blocks would not be correct for the en- 
tire two-source sample. For example, if, due to random 
variation, the third source was collected from a sample of 
blocks with an atypically high coverage rate on the Cen- 
sus, the coverage rate of the PES for the units missed by 
the Census might also be atypically high; this would give 
misleading coverage estimates when applied to the entire 
sample of P ES blocks. 

In this subsection we will extend the model of Sec- 
tion 5.1 to the situation in which the underlying: coverage 
rates differ by blocks, that  is, there is block-to-block vari- 
ation in coverage beyond that  due to binomial variation 
around a single coverage rate. The term "block" here 
refers to an arbitrarily defined local area whose popu- 
lation is more homogeneous in coverage probability than 
the entire Census area. Thus a block might be, but would 
not necessarily be, the same as a Census enumeration 
block. 

The situation is analogous to estimation of the mean 
of a variable Y which is partially missing when there are 
completely-observed background variables W.  In the lat- 
ter case, a common approach is to calculate a regression 
adjustment (Cochran 1977), also known as a covariance 
adjustment; the linear regression of Y on W can be esti- 
mated from the fully observed cases and then the popula- 
tion mean I 7 can be estimated by substituting the mean 
of W into the regression. The regression adjustment may 
improve the efficiency of the estimate of I 7, when the fully- 
observed blocks are a simple random sample of all blocks. 
Furthermore, the regression adjustment may be consis- 
tent even when the probability that Y/ is observed de- 
pends on Wi ,  whereas the unadjusted estimate of Y al- 
most certainly will not be. The complicating factor here 
is that the variables of interest pl ,  p2 are not observed 
directly, but only the counts observed in the different 
sources, which are multinomialty distributed around the 
underlying rates. Therefore, the covariance structure will 
be introduced through a heirarchical Bayes model. 

Let the argument b index Census blocks, and let B1, 
B:,  B3 be the sets of blocks included in the 1-, 2- and 3- 
source samples respectively. Let xi(b) represent the count 
of units included in any of the first i sources (i=1, 2, or 
3) in a particular block b; xi(b) is observed if b E Bg and 
i < g. Let pl(b) and p2(b) be the values of pl and p2 in 
block b. We will denote by pi(Bg) and xi(Bg) the vectors 
of values of p~(b) and xi(b) respectively in all the blocks 
in set Bg. 

As in the last section, x and p are related by 
the binomial sampling distributions of x, with X1 (b) 
Binomial(x~(b) + x2(b),pl(b)) and (X~(b) + X2(b)) ,.o 
Binomial(xl(b) + x2(b) + x3(b),p2(b)). 

Suppose further that  pl(b) and p2(b) are related by 
a multivariate normal distribution on the logit scale, 

(Zlb,Z2b) t "-' N ( # ,  0") 

where Zib = log(pi(b)/(1 - pi(b))). (4) 

In this heirarchical Bayes model, the hyperparameter  is 
(#, 0"), the parameters are p, and the data are x. 

The posterior distribution of the probabilities p is 
the product of the N(#, 0") prior and the multinomial like- 
lihood for each component for which there is information 
in the sample. The likelihood takes the same form as (3) 
except that  each factor has its own pi(b) and so there 
must be a separate factor for each block. In the following 
expression for the posterior distribution of p, each factor 
corresponds to one of the sets of blocks B1, B2, B3. 

P[p [ #, 0., x] = P[Pl  (B1), p2(Ba) [ #, 0.]" 

P[pl(B2) I #,0",xl(B2),x2(B2)]" P[p2(B2) ] #,0"]" 
P[pl(B3) I #,0",xl(Ba),x2(B3)]. 
P[p2(Ba) I #,0",xI(B3),x2(B3),x3(Ba),pl(Ba)].  

Those components of p for which there is no infor- 
mation in the data make no contribution to the likelihood 
inference for (#, 0.) and may be integrated out to obtain 
the following probability distribution for the remaining 
components: 

P[pl(B2 U B3),pe(B3) ] # ,a ,x]  = 
P[pl(B2 [-J B3) [ #1,0"11, X]" 
P[p2(Ba) [ a,c, 0"22.1,x, b1(B3)] 

(5) 

where c = o"12 /O ' l l  and a = #2 - c # 1  are the coefficients 
of the regression of Z2b on Zlb, and 0"22.1 is the residual 
variance of that  regression. 

Since the normal prior is not conjugate to the multi- 
nomial likelihood, the posterior distribution of p is not 
analytically tractable, nor is that  of the logits z. How- 
ever, each factor of (5) may be approximated by a nor- 
real distribution for z, using the derivatives of the logit- 
multinomial likelihood for z to approximate a quadratic 
log-likelihood in the neighborhood of the current estimate 
of the posterior mode. 

Inference for # and 0" may now proceed by two ap- 
proaches. The maximum likelihood approach uses the 
EM algorithm (Dempster, Laird and Rubin 1977) in two 
stages to calculate the MLEs of the hyperparameters 
(¢, 0"). The first factor of (5 ) i s  the marginal posterior 
distribution of pl(B2 U Ba) and involves only the hy- 
perparameters (#1,0.11), whose likelihood depends only 
on the moments of pl(B2 [J B3). Therefore EM can be 
applied to calculate iteratively the MLE for (#1,0.11); at 
the E step the expected first two moments of Pl (B2 kJ B3) 
given (#1,0"11) are calculated (by extracting the appropri- 
ate means and variances from the normal approximation 
to the posterior distribution), and at the M step the MLE 
for (#1,0"11) is calculated from those sufficient statistics. 
The second factor of (5) gives the conditional posterior 
distribution of p2(B3) and involves the hyperparameters 
(a, c, 0"22.1); the sufficient statistics here are the joint first 
and second moments of Zlb and Z2b in B3. Thus EM may 
be applied again to calculate the MLE for (a, c, 0"22.2 ) with 
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(/21, (rll) fixed at its already-calculated MLE. 

Another approach generates draws from the joint 
posterior distribution of the hyperparameters. This 
method is based on the algorithm of Tanner and Wong 
(1987). A prior distribution must be assumed for the pa- 
rameters (#, a); the usual non-informative priors would 
be an improper uniform distribution for # and the Jeffries 
prior for a (probability proportional to IS  I -a). First, 
draws are taken from the joint marginal distribution of 
(#1, a11, pl(B2 U B3)), by an iterative process of alter- 
nately drawing parameters pl(B2 U B3) (conditional on 
hyperparameters and data) and hyperparameters #1, all  
(conditional on parameters). Then draws are taken from 
the joint distribution of (a, c, a22.1, p2(B3)) conditional 
on Pl (B2 U B3) by a similar iterative procedure. By this 
two-step process, draws from the joint distribution of the 
hyperparameters and the parameters are obtained. This 
has the advantage of representing uncertainty properly 
rather than fixing hyperparameters at their MLEs. 

Whichever inferential path is taken, the last step 
is to estimate the average value of the coverage rate 
pl(b)p2(b)pa(b). A straightforward method of estimating 
this would be by multiple imputation. For hyperparam- 
eter values fixed at their MLE (if maximum likelihood is 
used) or drawn from their posterior distribution (in the 
Bayesian approach), values could be imputed for p~(b) 
and p2(b) in each block of the PES, and for p3(b) if its esti- 
mate is expressed as a function of pl(b) and p2(b)). Then 
the average over blocks of pa(b)p2(b)p3(b) (weighted by 
block population in the corresponding class as in Equa- 
tion (2)) can be calculated. This would represent the 
average coverage rate for that class. 

The factorization (5) permits a relaxation of the sam- 
pling scheme for the second source. The parameters (a, c) 
are regression coefficients of z2 on Z l. Thus they can be 
estimated consistently as long as the probability of inclu- 
sion of a block does not depend on p2(b). The implication 
of this for the selection of the sample of "three-source" 
blocks is that the probability of inclusion of a block may 
be permitted to depend upon the DSE pl(b) of the cov- 
erage rate for that block. For example, it might be desir- 
able to oversample from blocks with extremely high and 
low values of Pl in order to include more leverage points 
and therefore improve efficiency of estimation and make 
estimates more reliable for the blocks with poor coverage. 

5.3. M o n o t o n e  s ampl ing  p a t t e r n ,  w i th  block 
effects and  mul t ip le  classes. In Sections 5.1 and 5.2, 
estimation was assumed to be restricted to a single esti- 
marion class. However, where there are block-level ran- 
dom effects, it would be reasonable to assume that the ' 
random effects are the same, or at least related, for the 
different classes. Such an assumption yields a more effi- 
cient procedure since the data from all classes are com- 
bined in estimating the random effect for a block. In this 
subsection we consider a model representing this assump- 
tion by assuming an additive effect for class on the logit 
scale. 

Let Pibs be the value of pi corresponding to block b 
and stratum (or estimation class) s. Then the extended 

model is 

log(Pibs/(1 --Pibs)) = #is n t- Zib, (Z lb ,  Z2b) t ''° N(O,~), 

where the #is are the mean logits for the various classes. 
Note that there are now two parameters for each class 
(related to the average values of Zl and z2 for that class) 
but that there are only two parameters per block for the 
random effects regardless of the number of classes. 

Estimation of the parameters then proceeds along 
the same lines described in Section 5.2. The average cov- 
erage rate for class s can then be calculated by averaging 
PlbsP2bsP3bs, weighted now by block population for that 
CIass. 
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