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ABSTRACT

A model for the response error associated with
reported categorical data is proposed. For each
individual k, we assume that there is a small chance
e, that his reported response would be prone to error
wl?ﬁch however, may or may not lead to a response
error. In this case, the reported response follows a
contamination distribution. On the other hand, with
probability 1-¢,, his reported response would not be
prone to error and follows the true underlying
distribution. The average of ¢_ 's over all individuals
defines the mixing parameter ¢ for the contamination
model. We illustrate an application of the proposed
model in correcting classification bias for the month to
month labour flow data obtained from the Canadian
Labour Force Survey. It does not require the use of
reinterview data as is commonly the case for other
adjustment methods. Instead, we use administrative
sources, namely, Unemployment Insurance files to
estimate the model parameter .
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1. INTRODUCTION

In this paper we present a model-based approach to
the problem of gross flow estimation for the
characteristic "labour force status". Labour market
data are often obtained from multistage stratified
clustered samples of households with rotating panel
designs. In the case of the Canadian Labour Force
Survey (LFS), approximately 5/6th of the households are
common to two consecutive months and each sampled
household is interviewed consecutively for six months
before being dropped. For each sampled individual
belonging to the civilian noninstitutional population 15
years of age or over, data are collected on labour force
status for the week prior to the week in which the
survey is conducted. Individuals are classified as
either E(employed), U(unemployed) or N(not in the
labour force).

The main problems in modeling panel survey data
include the presence of nonresponse, response or
classification error, inflows to or outflows from the
population of interest, and inconsistency with external
population counts. Little (1985), Fay (1986), Stasny and
Fienberg (1985), and Stasny (1986) among others
considered the first problem by modeling in the
presence of nonrandom nonresponse, i.e. the
distribution of variable of interest for nonrespondents
was not assumed to be the same as that for
respondents.

The second major problem in the estimation of
gross flows (i.e. proportions of individuals making
transitions between categories at one time point to
another) is that due to classification errors. It is
believed that biases in the stocks or marginal counts
are negligible but the interior counts or flows are
considerably biased. In particular, there may be serious
upward biases in the off-diagonal cell flows (which
happen to be of main interest) of the (E, U, N) by
(E,U,N) gross-flow table because most of the individuals
do not tend to change their status from one month to
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the next. Thus even with small chances of
miseclassification, the relative errors in the off-diagonal
flows are expected to be quite high. The factors that
could contribute to errors in the classification process
include proxy response, a misunderstanding of questions
asked in the interview, coding errors, misinterpretation
by the interviewer of the -classification criteria,
frequent status changes, ete.

A popular model used for correcting classification
errors is based on the availability of reinterview data
for estimating error rates under the assumption of
independent classification errors, see e.g. Abowd and
Zellner {1985), Fuller and Chua (1985), Chua and Fuller
(1987), Poterba and Summers (1986). These methods
differ with respect to how the error rates are estimated
from reinterview results. The independence assumption
means that an individual's observed classification at
time t depends stochastically on his true classification
at time t but not on his true or observed classification
at t-1. If the response errors were serially dependent,
say, positively correlated, then they would tend to
decrease the number of reported changes and increase
the number of reported continuations of the previous
state. In general, this means that the adjustments for
response errors would be smaller than those under
serially independent -classification errors; see also
Gentleman (1988) for implications of some commonly
made assumptions.

We propose a model for correcting for
classification errors in the multinomial distribution
defined by the two way table of (E,U,N) by (E,U,N)
for the time period t-1 to t. We assume that the
marginal proportions (or stocks) are unbiased. Under
the assumption of unbiased response error at a single
point in time, the flows {(or interior proportions of the
table) can still be seriously biased, see e.g. Chua and
Fuller (1987). In our model, we specify response errors
by means of a contamination distribution whiech is
estimated under the assumption of unbiased stock
estimates and that responses for the two time points
are independent only for those individuals who are
prone to error. Unlike the usual right-wrong models
(Fuller 1987, p.273), which involve response
probabilities conditional on the true classification, the
contamination model is based on unconditional
probabilities for the reported categories. The link with
the true underlying distribution is provided by a mixing
parameter, denoted here by . Moreover, instead of
using reinterview data to estimate response
probabilities conditional on the true classifications, we
propose to  use administrative  data  (from
Unemployment Insurance files) to estimate the model
parameter e.

2. ADJUSTMENT METHODS BASED ON
REINTERVIEW DATA : A BRIEF REVIEW

We shall follow the description given in Fuller
(1987, p. 274) in the section on right-wrong models for
multinomial response error. The basic idea is to write
down the relationship between expected observed gross
flow proportions on one side and true gross flows along
with the classification error (conditional response)
probabilities on the other. This formula is then used to
estimate the true gross flow proportions. We have
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(o) . -

for k,% = E,U,N where Hij is the expected fraction in
the 1jth cell of the observed gross flow table for
(t-1,t), H(R is the true proportion for (k¢)th
and o5 5y,
or reporting (i,j) classification when in fact the true
classification in labour force status from t-1 to t is
(ko42).

Under the assumption of independent classification
errors for time points t-1 and t, we have

cell,

is the conditional probability of observing

¢ijlkl(t_1’t) = B“k(t'l) Sjll(t)’ (2.2)
which implies that
1 1,1 = 8e-1) 1P e-1,t) Bt (2.32)

or alternatively it can be conveniently expressed as
vec n(o) = (B(t) x B{t-1)) vec n(l), (2.3b)

where B(t-1), B(t) are matrices of conditional

response probabilities 8 Ik(t—l) , Bjm(t)

respectively, vec 1 is the column vector obtained

by listing the columns of H(O) one below the other,
and x denotes the Kronecker product. One can solve
(2.3) to obtain

vec n(l) = (B(t)_l x B(t—l)'l) vec H(O)
or

D <e-ny 1O gyl

(2.4)

Let ;[(O) be the observed two way table of flow

proportions, and B(t-1), B(t) the estimates of
classification error rates from reinterview data at each

time point. Then an estimator of n(l) is

obtained from (2.4). For an estimate of the covariance

matrix of H(l), the assumption of
sampling is generally made.

The various adjustment methods based on
reinterview data differ with respeet to how the B
matrices are estimated. In the Abowd and Zellner
approach (1985), for example, the reconciled
reinterview sample data are used. It is assumed that
the reconciled reinterview states are correct and
quarterly aggregates of interview-reinterview tables
are used to estimate B matrices. In the Chua and
Fuller (1987) approach, on the other hand, the
unreconciled reinterview data is used and model-based
estimates of B(t-1) and B(t) are generated based
again on some suitable aggregates of monthly
interview-reinterview data. Poterba and Summers
(1986) calculate two sets of error rates. The first are
the usual rates from the reconciled sample used by
Abowd and Zellner. They state that these rates are
commonly regarded as downward-biased; indeed the
rates of inconsistency from the reconciled sample
before reconciliation are substantially smaller than
those for the unreconciled sample. Poterba and
Summers attempt to correct for this bias by calculating
from the reconciled sample the probability of each
™rue" status, conditional upon first and second
interview status. These probabilities are then used to
synthetically estimate the number of individuals in the
unreconciled sample with each "true" labour market
status.

easily

multinomial
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3. THE MODEL

We can use the right-wrong model framework
(Fuller 1987, p.273) to motivate the proposed response
error model. The models described in the previous
section belong to submodel I of right-wrong models in

which every individual truly belongs to one of the 32
categories. Moreover, all individuals belonging to the
same true category have a common matrix of
conditional response probabilities. The proposed model
can be viewed as a submodel II of the right-wrong
models in which the conditional response probability
matrix is allowed to vary for individuals within the
same true category. In this case, these probabilities
(Qijlkz) would, however, be difficult to estimate. The
response error is, therefore, specified indirectly
through unconditional response probabilities as follows.

First we assume that individualk has a small
chance ¢, of being susceptible to response error in the

time period (t-1,t) under consideration. With chance
1—ek, the individual k responds with no error. We then

assign an appropriate gross-flow distribution depending
upon whether the individual k was or was not
susceptible to error in the given time period. Thus the

expected proportions H(O) of the observed flow tables
are obtained as a result of a two-stage process. The
chance Ek would in general vary from individual to
individual because of various factors (cognitive and
situational). If an individual turns out not to be prone
to error, then his response follows the true multinomial

classification distribution n(l). If the individual k is
prone to error, then he may or may not make an error;
his response would then follow a different classification

distribution, H(Z) say, which we will refer to as the
contamination distribution.

We next assume that if an individual is prone to
error, then his response at time t does not depend on
his response at time -1, i.e. for each classification at
time t-1, the response probabilities at time t are the
same. In view of the factors enumerated in the
introduction that could contribute to response error,
this assumption may not be unreasonable because of the

lapse of time between the two interviews. Thus, we
write

(2) (2) (2)

Hij (t-1,t) = L (t-1) H+j (t). (3.1)

This assumption is somewhat similar to the one of
independent classification errors (2.2) except that this
is assumed to hold only for a small fraction of
individuals who were found to be susceptible to error.
Also we remark that H%)
observing or reporting (i,J)
individual is prone to error. Unlike the classification
probability 3 91ke conditional on the true state (k,2),
it gives no indication of the chance of actually making
an error.
For all

denotes the probability of

classification when an

individuals, we have assumed a true
common multinomial elassification distribution H(l)

and a common contamination distribution H(Z).

Thus,
the probability of observing (i,j) for the kth
individual is given by

) _. (1) (2)
nij(k) = (l-sk) Hij + ey Hij . 3.2)



However we are not interested in a particular individual
k but in the aggregate proportion of individuals in the
ijth cell. Letting e denote the average of ek's, we

have that the expected fraction of individuals observed

in the 1jth cell is given by
(0) . (1) (2)
iy = (1-¢) My te My (3.3)
This defines an e-contamination model for
multinomial response error, where ¢ is the mixing
parameter and represents the rate of contamination. If
¢=0, then the responses would be free from any error.
A useful practical interpretation of ¢ can be given if
we assume that the ek's are approximately the same

for all individuals in the time period under
consideration. Then ¢ approximates the fraction of
individuals in the population who are prone to response
errors in the given time period.

the

(0)

proportions with expectations I35

Now let Hig) denote observed flow

It can be seen

that the response error bias b.. in the estimator ﬁsg)
for the true proportion H%) is given by
LLo= H(.Q> - n(.l.> = - 6(H§O.) - n(z.)) 3.4)
1J 1] 1 J 1]
where s is ¢/(l-¢). An estimate bij can  be
obtained by finding estimates of «, Hg(J).), and Hgg)

whieh would then provide the adjusted or corrected

(1)

estimate of 5 as

i - bij . (3.5)
We shall now assume as in Chua and Fuller (1987)

that the marginals Ty +]

This implies that the stock estimates

- S0y -
H§§)=H()

have unbiased

response errors.
are unbiased, i.e.
0y _ (1) _(0) _ (1)
H1.+ = n1.+ . H+j = H+j (3.6)

It now follows that the proportions H(z)

13 must satisfy

ngi) = ngp, ng) = H_E_;:), 3.7

and consequently,

b1'+ = b+j = 0. (3.8)
This means that the biases for each row i and

each column Jj cancel each other as one would expect
under the assumption of unbiased stock estimates. Thus
the e-contamination model automatically satisfies the
constraints (3.8) arising from the assumption of
unbiased response error at a single point in time.

It follows from (3.6) and (3.7) that n(f_) , H(Z)

. can
~ ~ 4l +]
#(Oang 7(0)

be estimated unbiasedly by i+ and 1 % respectively

and so only ¢ remains to be estimated in order to

obtain HE(J:) of (3.5). For an interpretation of the ¢ -

contamination model, consider the three matrices H(l),

H(O), and H(Z). In the first matrix, diagonal
proportions are high relative to the off-diagonal ones
because most individuals tend to stay in the same status
from one month to the next. For the second matrix,
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diagonal proportions are low relative to the first matrix
due to the response error. Finally for the third matrix,
diagonal proportions are expected to be further reduced
due to independent responses at t-1 and t for error-
prone individuals. The proposed model simply assumes

that the difference between H(l) and H(O) is a

constant fraction é of the difference H(O) - H(Z). A
natural generalization would be to consider different ¢'s

for various post-strata. The H(l) would then be a
weighted linear combination of the individual stratum
estimates. This is, however, not considered in this
paper.

4. ESTIMATION OF THE MIXING PARAMETER (¢)

For the Canadian labour market, unemployment
insurance files can be used to provide an estimate of e.
The administrative data based on the number of new
claims for unempoloyment insurance was also used by
Abowd and Zellner (1985) for diagnostic purposes.
Consider the subgroup of status changers, consisting of
persons who in a given month became beneficiaries of
the Unemployment Insurance program but were
employed in the previous month. In order to qualify for
benefits, a person must 1) have been a paid worker;
2) have worked usually 15 or more hours per week;
3) have worked at least 10 weeks; 4) not be a full-
time student. In addition, the claimant must be
available for work and unable to find a suitable
employment. By means of various items on the
Canadian Labour Force Survey (LFS) questionnaire, it is
possible to identify persons in the sample satisfying the
above criteria. The number of such persons suitably
weighted will be referred to as the estimated
beneficiary inflows.

[t may be noted that the subgroup of beneficiary
inflows in month t constitutes a composite category
made up of parts of (E,U) and (E,N) categories for
the time period (t-1,t). Leti =1, 2, 3, 4, 5
denote one of the five sub-categories defined as
1 = Employed, 2 = Unemployed and not a beneficiary,
3 = Unemployed and a beneficiary, 4 = Not in the
labour force and not a beneficiary, and 5 = Not in the
labour force and a beneficiary. Then the new category
of beneficiary inflows consists of cells (1,3) and
(1,5) in the transition table corresponding to the five
sub-categories. We now assume that the model (3.3)
continues to hold for the above five sub-categories of
the original three. To estimate ¢ from the combined
cells (1,3) and (1,5), we need the true proportion
of beneficiary inflows from unemployment insurance
files. This can be obtained by identifying all persons
who were not beneficiaries (with earnings in the first
month) but were so in the second month. Now we can
estimate s(or e¢(l-e) °) wusing the expression given
by (estimated proportion of beneficiary inflows from
t-1 to t minus the true proportion) divided by
[(proportion employed in month (t-1) x (proportion
of beneficiaries in month t) - estimated proportion of
beneficiary inflows].

Intuitively we might expect ¢ to be small,
somewhere between .01 and .05. Although detailed
calculations using unemployment insurance files and
LFS have not been completed yet, some preliminary
caleulations similar to those given in Lemaitre (1988)

suggest § or a(l-e)_l to be around .04. In the
examples considered in section 6, we have used § = .03
and .04 as working values.



5. VARIANCE oF 1(¢)

~

The estimator H(C) can be expressed as
-5 10 530 (5.1)

where J is a 3x3 matrix of ones. For large samples,

() = (145) (O

H(C) would be approximately unbiased. For computing
its asymptotie variance, we first assume § known
apriori for convenience.

5.1 & assumed known, 5=5°

We have
(0= (146 )7(0) g 7 (055(©)

= (108 )2 —s_(1 (091205 (0)_1 (0

+(ﬁ(o)-n(0)) JH(O)] (5.2)
So,

vec(rAI(C)—n(C)):((1+<so)19—<30(13 x n(O)J)

- do(Jn( 13)] vec(ﬁ(o)-n(g)) (5.3)

If the data were obtained under multinomial sampling,
then

v (vec ;[(c)]: nt Z\(diaé[vec ;[(O)]
- (vec ﬁ(o)](vec ;1(0))'] A (5.4)
where n is the sample size and the matrix A9X9 is

given by
A=(1+6.) Tg-s (I3 » 199y (3n O ). 69

5.2 & unknown

In this case, § is used. If Var{(s) is negligible,
then expression (5.4) remains valid for the covariance

matrix of vecn(c) where 8, is replaced by . This

situation may not be unreasonable because § will
usually be estimated by aggregating the data over
several months/years as it is expected to be stationary
over a long term. In general, we can account for the

variability in § by modifying (5.4) as follows

v{vec ﬁ(c)} = E[V{vec (e | 5= so}]

+ V[E{vec (e | 5 - so}l. (5.6)

The above expression can be easily evaluated if & and

ﬁ(o)are uncorrelated. This would be so if the
corresponding data sets are nonoverlapping.

It may be remarked that the standard error of H(C) so
obtained under the multinomial assumption would be
expected to be biased downward because of the
clustered nature of the commonly used sample designs.

6. EXAMPLES

We consider two examples, one for Canadian LFS
data, the other for United States CPS (Current
Population Survey) data taken from Chua and Fuller
(1987). We illustrate the adjustments under the

e- contamination model for two choices of § or e(1-¢) 1
namely, .03 and .04. For LFS data, these adjustments
are compared with those obtained under the Abowd and
Zellner (1985) method. For CPS data, we compare the
proposed method with Chua and Fuller (1987) method
where we have assumed tentatively that the rate of
contamination (i.e. the mixing parameter) ¢ for the
Canadian and U.S. surveys is the same.

6.1 LFS data (October-November 1985).
The 3x3 table of weighted observed flow
proportions obtained from matching the common

respondents in the months of October and November,
1985, is given by

Table 6.1 (The matrix 1¢0) for LFS)

t-1 t E U N Row Total
E L0112 .0123 .5032 .5932 = .0
U 0101 .0400 .0099 .06 = n)
N .0099 .0109 .3260 .3468 = 1\
Column

Total .5897 .0621 .3482 1

In Abowd and Zellner's method, we need to
estimate matrices of classification error rates B(t-1)
and B(t) from interview-reinterview data. Using
aggregate data over the period of 12 months (May '85 -
April '86) and assuming B(t) and B(t-1) to be equal,
we obtain

.9910 .0178 .0043
B(t-1) = B(t) = |.0017 .9056 .0061| ,  (6.1)
.0073 .0766 .9896

and
1.0092 -.0195 -.0043

gl- |-.0018 1.1048 -.0068| . (6.2)
-.0073 -.0854 1.0111

Now, ﬁ(l) can be obtained by using (2.4). The

adjusted values are shown in Table 6.2.

Under the proposed model, we need to compute the
(0) _ £(0):(0)

R R PR
and then use the formula (3.5) to compute the adjusted
flows. The matrix I is given by

matrix £ whose (i,j)thelementis n

.2198  -.0256 -.1942
L= -.0252 .0362 -.0110 (6.3)
-.1946  -.0106 .2052

The adjusted flows under the e-contamination model
for § = .03, .04 along with those for Abowd-Zellner
method are given in Table 6.2.



Table 6.2 Adjusted flow proportions (LFS) n(c)

E U N
c-CON ¢-CON ¢-CON
-1 AZ o s-03 A% =4 s-.03 AT =04 s-.03
(.5697) (.0112) (.0123)
B 5796 .5785  .5763  .0104 .0102  .0104  .0058 .0045  .0065
(.0101) (.0400) (0.0099)
U .0092  .0091  .0093  .0486  .0414  .0411  .0049 .0095  .0096
(.0099) (.0109) (.3260)
N .0034  .0021  .0041 .0061 .0105  .0106 .3316 .3342  .3321

Note: Proportions in parentheses indicate observed or unadjusted flow proportions.

6.2 CPS Data (January-February 1979) .9837 .0552 .0186
This example is taken from Chua and Fuller (1987). B(t-1) = -0030 .8415 .0077 (6.4)
Table 6.3 represents observed flow proportions based on L0133 .1033 .9742
3,198 interviews. The number 3,198 indicates the
number of individuals who were also reinterviewed in and
February 1979.
Table 6.3 (The matrix 1(°) for CPS) .9835 0550 .0l81
B(t) = .0032 .8422 .0082 (6.5)
-1t E U N Row 0133 .1028 .9737
Total
. . ~(c)
From formula (2.4), the adjusted estimates I can
B -5316 .0081 .0188 .5585 be obtained as in Abowd and Zeliner. These values are
U 0094 .0147 .0066 .0307 shown in Table 6.4.
We next consider the adjustment under the proposed
N 01720097 3839 .4108 model for the same example using the same values of §
as before for LFS data. First the matrix £ is computed.
CoMmn 5582 L0325 .4093 1 P

In Chua and Fuller's method, the matrices B(t-1)
are estimated using a certain model under
the constraints that marginals are unbiased and were

and B(t)

found to be

.2198  -.0l01  -.2097
-.0077 .0137 -.006
~-.2121  -.0036 .2157

Table 6.4 Adjusted flow proportions (CPS) ﬁ(c)

E U N
¢-CON ¢e~-CON e~-CON
1t CF w503 CF STwmr s-.w03 CF STz s-.03
(.5316) (.0081) (.0188)
E .5484  .5404  .5382  .0063  .0077  .0078  .0038 .0103  .0125
(.0094) (.0147) (.0066)
U .0081  .0091  .0092  .0206 .0152  .0151  .0020 .0064  .0064
(.0172) (.0097) (.3839)
N .0017  .0087  .0108  .0056  .0096  .0096  .4035 .3925  .3904

Note: The marginals of the above table mateh those for the observed flow proportions.

(6.6)

The adjusted flows H(C) are also shown in Table 6.4.



7. CONCLUDING REMARKS

It was seen that the proposed e-contamination
model could provide a quick and simple procedure for
correcting classification error bias if a suitable
estimate of ¢ 1is available apriori. It may be noted
that ¢ is expected to be stationary over a long term
and so different estimates of ¢ for several consecutive
periods would not be required. In the examples
considered it was found that the e-contamination

model (with the working values of § or e(l-e)—l' as
.03 and .04) generally tends to correct less than
those under alternative methods. Clearly, it would be
important to evaluate the performance of the proposed
method for various cases after a more precise estimate
of e is determined.
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