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ABSTRACT 

A model for the response error associated with 
reported categorical data is proposed. For each 
individual k, we assume that there is a small chance 
~ that his reported response would be prone to error 
vChich however, may or may not lead to a response 
error. In this case, the reported response follows a 
contamination distribution. On the other hand, with 
probability 1-~k, his reported response would not be 
prone to error and follows the true underlying 
distribution. The average of ~k'S over  all individuals 
defines the mixing parameter ~ for the contamination 
model. We illustrate an application of the proposed 
model in correcting classification bias for the month to 
month labour flow data obtained from the Canadian 
Labour Force Survey. It does not require the use of 
reinterview data as is commonly the case for other 
adjustment methods. Instead, we use administrative 
sources, namely, Unemployment Insurance files to 
estimate the model parameter ~. 
KEY WORDS: Measurement error; Right-wrong models; 
Unbiased response error; Stocks and flows; 
Unemployment Insurance claims. 

1. INTRODUCTION 

In this paper we present a model-based approach to 
the problem of gross f low estimation for the 
characteristic "labour force status". Labour market 
data are often obtained from multistage stratified 
clustered samples of households with rotating panel 
designs. In the case of the Canadian Labour Force 
Survey (LFS), approximately 5/6th of the households are 
common to two consecutive months and each sampled 
household is interviewed consecutively for six months 
before being dropped. For each sampled individual 
belonging to the civilian noninstitutional population 15 
years of age or over, data are collected on labour force 
status for the week prior to the week in which the 
survey is conducted. Individuals are classified as 
either E(employed), U(unemployed) or N(not in the 
labour force). 

The main problems in modeling panel survey data 
include the presence of nonresponse, response or 
classification error, inflows to or outflows from the 
population of interest, and inconsistency with external 
population counts. Little (1985), Fay (1986), Stasny and 
Fienberg (1985), and Stasny (1986) among others 
considered the first problem by modeling in the 
presence of nonrandom nonresponse, i.e. the 
distribution of variable of interest for nonrespondents 
was not assumed to be the same as that for 
respondents. 

The second major problem in the estimation of 
gross flows (i.e. proport ions of individuals making 
t rans i t ions  be tween  ca tegor ie s  at one t ime point to 
another)  is tha t  due to c lass i f ica t ion  errors.  It is 
bel ieved tha t  biases in the stocks or marginal  counts 
are negligible but the inter ior  counts or flows are 
considerably biased. In par t icu lar ,  there  may be serious 
upward biases in the off -d iagonal  cell  flows (which 
happen to be of main interest)  of the (E, U, N) by 
(E,U,N) gross-f low table  because most of the individuals 
do not tend to change the i r  s ta tus  from one month to 

the next. Thus even  wi th  small chances of 
misclassification, the relative errors in the off-diagonal 
flows are expected to be quite high. The factors that 
could contribute to errors in the classification process 
include proxy response, a misunderstanding of questions 
asked in the interview, coding errors, misinterpretation 
by the interviewer of the classification criteria, 
frequent status changes, etc. 

A popular model used for correcting classification 
errors is based on the availability of reinterview data 
for estimating error rates under the assumption of 
independent classification errors, see e.g. Abowd and 
Zellner (1985), Fuller and Chua (1985), Chua and Fuller 
(1987), Poterba and Summers (1986). These methods 
differ with respect to how the error rates are estimated 
from reinterview results. The independence assumption 
means that an individual's observed classification at 
time t depends stochastically on his true classification 
at time t but not on his true or observed classification 
at t - l .  If the response errors were serially dependent, 
say, positively correlated, then they would tend to 
decrease the number of reported changes and increase 
the number of reported continuations of the previous 
state. In general, this means that the adiustments for 
response errors would be smaller than those under 
serially independent classification errors; see also 
Gentleman (1988) for implications of some commonly 
made assumptions. 

We propose a model for correcting for 
classification errors in the multinomial distribution 
defined by the two way table of (E,U,N) by (E,U,N) 
for the time period t-1 to t. We assume that the 
marginal proportions (or stocks) are unbiased. Under 
the assumption of unbiased response error at a single 
point in time, the flows (or interior proportions of the 
table) can still be seriously biased, see e.g. Chua and 
Fuller (1987). In our model, we specify response errors 
by means of a contamination distribution which is 
estimated under the assumption of unbiased stock 
estimates and that responses for the two time points 
are independent only for those individuals who are 
prone to error. Unlike the usual right-wrong models 
(Fuller 1987, p. 273), which involve response 
probabilities conditional on the true classification, the 
contamination model is based on unconditional 
probabilities for the reported categories. The link with 
the true underlying distribution is provided by a mixing 
parameter, denoted here by ~. Moreover, instead of 
using reinterview data to estimate response 
probabilities conditional on the true classifications, we 
propose to use administrative data (from 
Unemployment Insurance files) to estimate the model 
parameter ¢. 

2. A D J U S T M E N T  METHODS BASED ON 
REINTERVIEW D A T A  : A BRIEF REVIEW 

We shall follow the description given in Fuller 
(1987, p. 274) in the section on right-wrong models for 
multinomial response error. The basic idea is to write 
down the relationship between expected observed gross 
flow proportions on one side and true gross flows along 
with the classification error (conditional response) 
probabilities on the other. This formula is then used to 
estimate the true gross flow proportions. We have 
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~i) ( t - l , t )  nk~(OIt-l,t)= kZ z~ ¢ i j l k ~ ( t - l , t )  n (2.1) 

(0) is the expec ted  f rac t ion  in for k,~ = E,U,N where  n i j  

the i j th cell  of the  observed gross flow table  for 

( t - 1  t )  n (1) is the t rue  proport ion for (k~) th cell,  
' ' k~ 

and $ijlk~ is the conditional probability of observing 

or reporting (i , j )  classification when in fact the true 
classification in labour force status from t-1 to t is 
(k,~). 

Under the assumption of independent  c lass i f ica t ion  
er rors  for t ime points t - 1  and t ,  we have 
, i j l k ~ ( t - l , t )  = B i l k ( t - l )  B j i~ ( t ) ,  (2.2) 

which implies tha t  

n(O)(k_l , t )  : B( t - l )  ~ (1 ) ( t_ l , t )  B(t) '  (2.3a) 
or alternatively it can be conveniently expressed as 

vec n (0) = (B(t) × B( t - l ) )  vec H ( I ) ,  (2.3b) 
where B ( t - 1 ) ,  B( t )  are mat r ices  of condi t ional  
response probabil i t ies  Bilk ( t - l ) '  ~ j l~  ( t )  

respec t ive ly ,  vec II (0) is the column vec to r  obta ined 

by listing the columns of I~ (0) one below the  o t h e r ,  
and × denotes  the Kronecker  product .  One can solve 
(2.3) to obtain 

vec ~(I) : (B ( t ) - i  × B ( t_ l ) - l )  vec n (0) (2.4) 

or 

H(I) = B(t_l) -I H(O) B(t) -I. 
^ 

Let n (0) be the observed two way table of flow 

proport ions,  and B ( t -  1) ,  B( t )  the e s t ima te s  of 
c lass i f ica t ion er ror  ra tes  from re in te rv iew da ta  at each 

t ime  point. Then an e s t ima to r  of n (1) is easily 
obtained from (2.4). For an e s t ima te  of the covar iance  

^ 

matr ix  of n (1) ,  the assumption of mul t inomial  
sampling is general ly  made. 

The various ad jus tment  methods based on 
re in te rv iew da ta  d i f fer  with respec t  to how the B 
mat r i ces  are es t ima ted .  In the Abowd and Zel lner  
approach (1985), for  example,  the  reconci led  
re in te rv iew sample da ta  are used. It is assumed tha t  
the  reconci led  re in te rv iew s ta t e s  are co r r ec t  and 
qua r t e r ly  aggrega tes  of i n t e rv i ew- re in t e rv i ew tables  
are used to e s t ima te  B mat r ices .  In the Chua and 
Ful ler  (1987) approach,  on the  o ther  hand, the  
unreconci led r e in te rv iew da ta  is used and model-based 
e s t ima te s  of B ( t - 1 )  and B( t )  are gene ra t ed  based 
again on some sui table  aggrega tes  of monthly 
in t e rv iew- re in t e rv iew data .  Po te rba  and Summers  
(1986) ca lcu la te  two sets  of e r ror  ra tes .  The f i rs t  are  
the usual r a t e s  f rom the reconci led  sample used by 
Abowd and Zellner.  They s t a t e  tha t  these  r a t e s  are  
commonly  regarded  as downward-biased;  indeed the 
ra t e s  of inconsis tency from the reconci led  sample 
before  reconci l ia t ion  are substant ia l ly  smal le r  than 
those for the unreconci led  sample.  Po te rba  and 
Summers  a t t e m p t  to co r rec t  for  this bias  by ca lcu la t ing  
f rom the reconci led  sample the probabil i ty  of each 
" t rue"  s ta tus ,  condit ional  upon f irst  and second 
in terv iew sta tus .  These probabi l i t ies  are  then used to 
syn the t ica l ly  e s t i m a t e  the number  of individuals in the 
unreconci led  sample  with each "true" labour marke t  
s ta tus .  

3 .  THE MODEL 

We can use the right-wrong model framework 
(Fuller 1987, p.273) to motivate the proposed response 
error model. The models described in the previous 
section belong to submodel I of right-wrong models in 

which every individual truly belongs to one of the 32 
categories. Moreover, all individuals belonging to the 
same true category have a common matrix of 
conditional response probabilities. The proposed model 
can be viewed as a submodel II of the right-wrong 
models in which the conditional response probability 
matrix is allowed to vary for individuals within the 
same true category. In this case, these probabilities 
(¢ijlk~) would, however, be difficult to estimate. The 

response error is, therefore, specified indirectly 
through unconditional response probabilities as follows. 

First we assume that individual k has a small 
chance ~k of being susceptible to response error in the 

time period ( t - l , t )  under consideration. With chance 
1-e k, the individual k responds with no error. We then 

assign an appropriate gross-flow distribution depending 
upon whether the individual k was or was not 
susceptible to error in the given time period. Thus the 

expected proportions 11 (0)" " of the observed flow tables 
are obtained as a result of a two-stage process. The 
chance t k would in general vary from individual to 

individual because of various factors (cognitive and 
situational). If an individual turns out not to be prone 
to error,  then his response follows the true mult inomial  

e l a s s i f i ca t iond i s t r ibu t ion  ~ (1) .  If the individual k is 
prone to error,  then he may or may not make an error;  
his response would then follow a d i f fe ren t  c lass i f ica t ion  

distr ibution,  i!.(2) say, which we will r e fe r  to as the 
contamina t ion  distr ibution.  

We next assume that  if an individual is prone to 
error ,  then his response at t ime t does not depend on 
his response at t ime  t - l ,  i.e. for  each c lass i f i ca t ion  at 
t ime t - l ,  the response probabi l i t ies  at t ime t are  the 
same.  In view of the f ac to r s  e n u m e r a t e d  in the 
in t roduct ion tha t  could cont r ibu te  to response error ,  
this assumption may not be unreasonable  because  of the  
lapse of t ime be tween  the two interviews.  Thus, we 
wri te  

(2) (2) (2) 
l l i j  ( t - l , t ) :  Ill+ ( t - l )  n+j ( t ) .  (3.1) 

This assumption is somewhat  s imilar  to the  one of 
independent  c lass i f ica t ion  er rors  (2.2) excep t  tha t  this 
is assumed to hold only for a small  f rac t ion  of 
individuals who were  found to be suscept ib le  to error .  

Also we r emark  tha t  n'~2) denotes  the probabi l i ty  of 
"3 

observing or repor t ing  ( i , j )  c lass i f ica t ion  when an 
individual is prone to error .  Unlike the c lass i f ica t ion  
probabi l i ty  * i j l k ~  condi t ional  on the t rue  s t a t e  ( k , ~ ) ,  

it gives no indmat ion of the  chance of ac tua l ly  making 
an error. 

For all individuals, we have assumed a true 

common multinomial classification distribution II (I) 

and a common contamination distribution 11 (2). Thus, 

the probability of observing ( i , j )  for the k th 
individual is given by 

(°I 1 I) + (32) n i j  k) = ' ( l -~k)  H.j i j  " 
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However  we are not in te res ted  in a par t icu lar  individual 
k but in the aggrega te  proport ion of individuals in the 
i j th cell. Le t t ing  a denote  the average  of ek'S, we 

have tha t  the expected  f rac t ion  of individuals observed 

in the i j t h  cell  is given by 

(0) !1) + ~ ~ (2) (3.3) Hi j  = ( i - e )  H.j, i j  " 

This defines an s-contamination model  for 
multinomial response error, where a is the m}xing 
parameter and represents the rate of contamination. If 
E=0, then the responses would be free from any error. 
A useful practical interpretation of a can be given if 
we assume that the ak'S are approximately the same 

for all individuals in the time period under 
consideration. Then a approximates the fraction of 
individuals in the population who are prone to response 
errors in the given time period. 

Now let ~ I !0 )  denote the observed flow 
13 

proportions with expectations ii~0 ; I  ~.. . It can be seen 
13 

that the response error bias b. .  in the estimator ^I ~ii~0 j .  . i 1 3 lJ 
i )  is given by for the true proport ion If. i 
%./ 

(0 )  _ ~ ( 1 )  = _  ~ ( n l 0  ) _ n ( 2 )  (3 41 b i j  = T~ij i j  " j  i j  " 

where 6 is a / ( l - a ) .  An estimate b. .  can be 
IJ 

obtained by finding estimates of E, rl'l 0).j , and II.i'12) 

which would then provide the adjusted or corrected 

estimate of ~ (.l.) as 
Ij 

~ { c )  = ~ ! 0 )  _ ~ . .  , (3.5) 
lJ lJ lJ 

We shall now assume as in Chua and Fuller (1987) 
^ ^ 

that the marginals lli+ and II+j have unbiased 

response errors. This implies that the stock estimates 
are unbiased, i.e. 

" ~0) = ~ ( Z )  ~ ( 0 )  = r~(1) (3.6)  
H_.+ i+ ' +j +j 

(Z) 
It now follows that the proportions 11 i j must satisfy 

12) = 1II 1) +(~) = I I+ (1) ( 3 7 '  K . +  . +  , ~ j , 

and consequently, 
bi+ = b+j = O. (3.8) 

This means that the biases for each row i and 
each column j cancel each other as one would expect 
under the assumption of unbiased stock estimates. Thus 
the s-contamination model automatically satisfies the 
constraints (3.8) arising f rom the assumption of 
unbiased response error at a single point in time. 

It follows from (3.6) and (3.7) that If} 2)" " II (2) can 

be estimatedunbiasedlyby ~ll0+)and ~I+ (0)'+ ' +j a respectively 

and so only a remains to be estimated in order to 

obtain ~l'~c) of (3 5). For an interpretation of the a - " j  

contamination model, consider the three matrices II (l j, ~ 

II (0) and 11 (2) In the first matrix, diagonal 
9 " 

proportions are high relative to the off-diagonal ones 
because most individuals tend to stay in the same status 
from one month to the next. For the second matrix, 

diagonal proportions are low relative to the first matrix 
due to the response error. Finally for the third matrix, 
diagonal proportions are expected to be further reduced 
due to independent responses at t-1 and t for error- 
prone individuals. The proposed model simply assumes 

that the difference between 11 (1) and 11 (0) is a 

constant fraction 6 of the difference 11 (0) _ II (2). A 
~ t  

natural generalization would be to consider different a's 

for various post-strata. The ~I (1) would then be a 
weighted linear combination of the individual stratum 
estimates. This  is, however, not considered in this 
paper. 

4. ESTIMATION OF THE MIXING PARAMETER (e) 

For the Canadian labour market, unemployment 
insurance files can be used to provide an estimate of a. 
The administrative data based on the number of new 
claims for unempoloyment insurance was also used by 
Abowd and Zellner (1985) for diagnostic purposes. 
Consider the subgroup of status changers, consisting of 
persons who in a given month became beneficiaries of 
the Unemployment Insurance program but were 
employed in the previous month. In order to qualify for 
benefits, a person must l) have been a paid worker; 
2) have worked usually 15 or more hours per week; 
3) have worked at least 10 weeks; 4) not be a full- 
time student. In addition, the claimant must be 
available for work and unable to find a suitable 
employment. By means of various items on the 
Canadian Labour Force Survey (LFS) quest ionnaire,  it is 
possible to identify persons in the sample sat isfying the 
above cr i ter ia .  The number of such persons suitably 
weighted will be refer red  to as the es t imated  
benef ic iary  inflows. 

It may be noted that  the subgroup of benef ic iary  
inflows in month t cons t i tu tes  a composi te  ca tegory  
made up of parts of (E,U) and (E,N) categories for 
the time period (t-l ,t).  Let i = i ,  2, 3, 4, 5 
denote one of the five sub-categories defined as 
i = Employed, 2 = Unemployed and not a beneficiary, 
3 = Unemployed and a beneficiary, 4 = Not in the 
labour force and not a beneficiary, and 5 = Not in the 
labour force and a beneficiary. Then the new category 
of beneficiary inflows consists of cells (1,3) and 
(1,5) in the transition table corresponding to the five 
sub-categories. We now assume that the model (3.3) 
continues to hold for the above five sub-categories of 
the original three. To estimate a f rom the combined 
cells (1,3) and (1,5), we need the true proportion 
of beneficiary inflows from unemployment insurance 
files. This can be obtained by identifying all persons 
who were not beneficiaries (with earnings in the first 
month) but were so in the second month. Now we can 

estimate 6 (or a (1-a)- l)  using the expression given 
by (estimated proportion of beneficiary inflows from 
t - i  to t minus the true proportion) divided by 
[(proportion employed in month ( t - l )  × (proportion 
of beneficiaries in month t) - estimated proportion of 
beneficiary inflows]. 

Intuitively we might expect a to be small, 
somewhere between .01 and .05.  Although detailed 
calculations using unemployment insurance files and 
LFS have not been completed yet, some preliminary 
calculations similar to those given in Lemaitre (1988) 

suggest 6 or a(1-a)-I  to be around .04. In the 
examples considered in section 6, we have used ~ = .03 
and .04 as working values. 
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5. VARIANCE OF II (c) 

The estimator ~(c) can be expressed as 

~(c) : (i+~1 ~(01 _ ~ ~(01 j ~(01 (5.1) 

where J is a 3×3 matr ix of ones. For large samples, 
^ 

11 (c) would be approximately unbiased. For computing 
its a sympto t ic  var iance,  we first  assume 6 known 
apriori  for  convenience.  

5.I a assumed known, a=ao 

We have 

(c ) : (1+6o)~  (0)-6o ~ (0) j~ (0) 

: ( i+6o) ii (0)-6 o (if (0) dll (0) +ii (0) d (If (O)-II (0))  

+(~(o)_H(o) ) d~(O)) (5.2) 
So, 

vec(~(C)_TI(C))~( ( I+~o) I9-60(13 × F[(O)J) 

- 5o(J;~(O) ~ 13) ] vec(~I(O)-[I (0))  (5.3/ 

If the data were obtained under multinomial sampling, 
then 

(vec ~(c)]~ n-i A(diag(vec ~(0)] 

(vec ~(°)](vec ~(011 )~  (5.4) 
where n is the sample size and the matrix A9×9 is 
given by 

A: ( l+5o)  19_5o(13 , H(O) j )_~o( j  H (0)× 13). (5.5) 

5.2 6 unknown 
^ 

In this case, ~ is used. If Var(6)  is negligible, 
then expression (5.4) remains  valid for the covar iance  

matr ix  of vec~I (c) where  6 is rep laced  by ~. This 
o 

s i tuat ion may not be unreasonable  because 6 will 
usually be e s t ima ted  by aggrega t ing  the da ta  over 
severa l  months /years  as it is expec ted  to be s ta t ionary  
over a long te rm.  In general ,  we can account  for the  

var iabi l i ty  in ~ by modifying (5.4) as follows 

V{vec ~(c) }  : E[V{vec ~I (c) I ~ : 6o}] 

+ V[E{vec ~ (c) I ~ = 6o} ] .  (5.6) 

The above expression can be easily evaluated if 6 and 
~ ( 0 ) a r e  uncor re la ted .  This would be so if the 
corresponding da ta  sets  are nonoverlapping. 

It may be r emarked  tha t  the s tandard e r ror  of ~I(c) so 
obtained under the mult inomial  assumption would be 
expec ted  to be biased downward because  of the 
c lus te red  na ture  of the commonly used sample designs. 

6. EXAMPLES 

We consider two examples, one for Canadian LFS 
data, the other for United States CPS (Current 
Population Survey) data taken from Chua and Fuller 
(1987). We illustrate the adjustments under the 

-1 
e- con tamina t ion  model for  two choices of 6 or e(1-e) 
namely,  .03 and .04. For LFS data ,  these  ad jus tments  
are  compared  with those obta ined under the  Abowd and 
Zel lner  (1985) method. For CPS data ,  we compare  the 
proposed method with Chua and Ful ler  (1987) method 
where  we have assumed t e n t a t i v e l y  tha t  the r a t e  of 
con tamina t ion  (i.e. the mixir~g pa rame te r )  e for the 
Canadian and U.S. surveys is the  same.  

6.1 LFS data (October-November 19851. 

The 3×3 table  of weighted observed flow 
proport ions  obtained f rom matching  the common 
respondents  in the months of Oc tober  and November ,  
1985, is given by 

Table 6.1 (The matrix  ~I (01 f o r  LFS) 

t-i t E U N Row Total 

E 0112 0123  5932  5932 = (̂ ~,0, 
. . . .  I+ 

U 0101 0400 0099 06 = ~(0) . . . .  2+ 

N 0099 0109  3 2 6 0  3468 - ~(0) 
. . . .  3+  

Column 
.5897 .0621 .3482 l 

Total 

In Abowd and Zellner's method, we need to 
estimate matrices of classification error rates B(t-l) 
and B(L) f rom interview-reinterview data. Using 
aggregate data over the period of 12 months (May '85- 
April '86) and assuming B(t) and B(t-l) to be equal, 

we obtain 

.9910 .0178 .00431 

B ( t - l )  = B( t )  = .0017 .9056 00611 , 
.0073 .0766 98962 

(6.1) 

and 

1.0092 -.0195 - .00431 
~- i  : - 0018 1.1048 .00681 . (6.2) 

- 0073 - .0854 1.0111.] 

Now, ~I (I) can be obtained by using (2.4). The 
adjusted values are shown in Table 6.2. 

Under the proposed model, we need to compute the 

~ (01 - H 0)~(0) matr ix  r. whose (i  , j ) t h  e l emen t  is I I i j  .+ +j , 

and then use the formula  (3.5) to compute  the adjusted 
^ 

flows. The matr ix  r. is given by 

[2198 o256 1942] 
Z = .0252 .0362 0110 (6.3) 

.1946 - .0106 2052 

The adjusted flows under the e-contamination model 
for 6 = .03, .04 along with those for Abowd-Zellner 
method are given in Table 6.2. 
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Table  6.2 Adjusted flow proport ions  (LFS) ~ (c)  

t-1 t 

E U N 

e-CON e-CON e-CON 
A-Z A-Z A-Z 

- .04 ~ = .03 6 = .04 ~ = .03 ~ = .04 ~ = .03 

(.  5697) (.  0112) ( . 0123 )  
.5796 .5785 .5763 .0104 .0102 .0104 .0058 .0045 .0065 

(.0101) (.0400) (0.0099) 
.0092 .0091 .0093 . 0 4 8 6  .0414 .0411 . 0 0 4 9  . 0 0 9 5  .0096 

(.0099) (.0109) (.3260) 
.0034 .0021 .0041 . 0 0 6 1  .0105 .0106 . 3 3 1 6  . 3 3 4 2  .3321 

Note: Proportions in parentheses indicate observed or unadjusted flow proportions. 

6.2 CPS Da ta  ( Janua ry -Februa ry  1979) 

This example is taken from Chua and Fuller (1987). 
Table 6.3 represents observed flow proportions based on 
3,198 interviews. The number 3,198 indicates the 
number of individuals who were also reinterviewed in 
February 1979. 

^ 

Table 6.3 (The matrix H (0) forCPS) 

R o w  
t-I t E U N 

Total 

E .5316 .0081 .0188 .5585 

U .0094 .0147 .0066 .0307 

N .0172 .0097 .3839 .4108 

Column 
.5582 .0325 .4093 I 

Total 

In Chua and Fuller's method, the matrices B(t-1) 
and B(t) are estimated using a certain model under 
the constraints that marginals are unbiased and were 
found to be 

B(t-1) = 
.9837 .0552 .0186] 
.0030 .8415 .0077 
.0133 .i033 .9742 

(6.4) 

and 

B(t) = 0032 .8422 00821 (6.5) 
0133 .1028 9737.] 

From formula(2.4), the adjusted estimates l] (c) can 
be obtained as in Abowd and Zellner. These values are 
shown in Table 6.4. 

We next consider the adjustment under the proposed 
model for the same example using the same values of 

^ 

as before for LFSdata. First the matrix r is computed. 

= 0077 .0137 006 | (6.6) 
! 

2121 -.0036 21573 

The adjusted flows ~I (c) are also shown in Table 6.4. 

Table 6.4 Adjusted flow proportions (CPS) ~I (c) 

E U N 

t-1 t e-CON e-CON ~-CON 
C-F C-F C-F 

= .04 6 = .03 ~ = .04 ~ = .03 ~ = .04 6 = .03 

(.5316) (.0081) (.0188) 
.5484 .5404 .5382 .0063 .0077 .0078 .0038 .0103 .0125 

(.0094) (.0147) (.0066) 
.0081 .0091 .0092 . 0 2 0 6  .0152 .0151 . 0 0 2 0  . 0 0 6 4  .0064 

(.0172) (.0097) (.3839) 
.0017 .0087 .0108 . 0 0 5 6  .0096 .0096 . 4 0 3 5  . 3 9 2 5  .3904 

Note: The marginals of the above table match those for the observed flow proportions. 
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7. CONCLUDING REMARKS 

It was seen that the proposed e-contamination 
model could provide a quick and simple procedure for 
correcting classification error bias if a suitable 
estimate of e is available apriori. It may be noted 
that e is expected to be stationary over a long term 
and so different estimates of e for several consecutive 
periods would not be required. In the examples 
considered it was found that the e-contamination 

model (with the working values of ~ or e ( l - e ) - 1  as 
.03 and .04) general ly  tends to co r rec t  less than 
those under a l t e rna t ive  methods. Clearly,  it would be 
impor tan t  to eva lua te  the per formance  of the proposed 
method for various cases a f t e r  a more precise e s t ima te  
of e is de termined.  
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