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1 INTRODUCTION 

Consider a population U = (u~j), j = 1 , 2 , . . - , N i ;  i 
= 1, 2 , . . - ,  k, of distinguishable elements which are clas- 
sified into k strata, the size of the ith s t ra tum being Ni, 
a known in tege rand  N = N1 + N2 + - ' - +  Ark. Let E = 
(~rt,~r2,'",~rk), where 7ri = N i / N .  With each element 
uq of U, is associated a real unknown value yij = y(uij). 
The N-dimensional vector y = (yij), j = 1 , 2 , . . . ,  Ni; i = 
1, 2 , . . . ,  k, is called the parameter vector of a Euclidean 
N-space RN. We associate with the parameter-space 
RN the couple (BN,c) where B N is the Borel a-field on 
RN, and C is a family of prior probability measures on 
(RN, BN). The class C of probability distributions ~ on 
RN, C = {~}, is called a superpopulation model. The 
population vector y is unknown and a complete survey 
is not feasible. Hence the objective is to infer about the 
unknown population mean ~ = ( l / N ) ~ i  ~ j  yij, on the 
basis of a sample. 

Any subset s of U is called asample .  Let S = {s • 
s C U}. A sampling design is a function p"  S --~ [0, 1] 
~,~h t h a t ,  c S, p( , )  > 0 ~ d  r s p ( , )  = 1. A str,~ifiod 
sample is a vector n = (nl,n2," ".nk), where ni >_ 0, i = 
1, 2 , . . - ,  k, is the number of observations drawn indepen- 
dently from the ith stratum. It is assumed that sampling 
is without replacement. Let (#1,tL2,. . . ,  irk) bc the vector 
of y-means of k strata so that 

k 

= ~ 7rilti. (1.1) 
i=1 

Let .~,,~ be the arithmetic mean of a random sample of size 
nl taken from the ith stratum, i = 1, 2 , . . . ,  k. In standard 
texts such as Cochran (1977), the stratified sample mean 

k 

.~,, = ~ yri~,~, (1.2) 
i=1 

is proved to be p-unbiased with p-variance 

V(fl, t) = ~ ~S~ - , (1.3) 
i = l  

where 
1 g~ 

S~ = N i -  1 ~ ( Y i J -  #i)2" (1.4) 
j = l  

The allocation of resources in a stratified sampling 
design aimed at estimating the population mean is usu- 

ally carried out, keeping in mind either one of the follow- 
ing two alternatives: (i) to achieve maximum precision 
for a given to ta l  cost of the survey, or (ii) to achieve 
a given precision at a minimum cost. The well known 
Neyman opt imum allocation is one, based on this type 
of approach. From the Neyman optimum allocation (c.f., 
Cochran (1977)), it is apparent that the statistician plan- 
ning the stratified sample survey needs to have some 
prior information on the behavior of the character un- 
der consideration, other than the size of each stratum. 
The available literature on opt imum stratified sampling 
using prior information consists of the papers by Aggar- 
wal (1959), Ericson (1965), Draper and Gut tman (1968), 
Zacks (1970), Rao and Ghangurde (1972), and many oth- 
ers. An excellent review and criticism of many of these is 
found in Solomon and Zacks (1970). The objective of this 
paper is to present noninformative as well as two-phase 
minimax type stratified sampling designs. 

2 N O N I N F O R M A T I V E  D E S I G N S  

Let ci, i = 1, 2 , . . . ,  k, be the per unit sampling cost 
in the ith stratum. Consider the augmented bounded 
squared error loss 

k 
L : L(~, ~ , l~)  : Z (~ ,  - ~)~ + ~ ~,-~, (2.1) 

i= l  

where/~(> 0) is a weighting constant. We know that the 
p-expectation of L, given n = ( n l , n 2 , . . .  ,nk), is 

Ev(L In) = fl ~ ~r~ - S] + ~ cini, (2.2) 
i--1 i=1 

where S~ is defined in (1.4). Let all Ni's be fairly large 
so that  ( N ¢ -  1) -1 "~ N~ 1. At this point we assume for 
each j = 1, 2 , . . . ,  Ni, that  

E~. ( Y i j  - # i ) 2  = O i ,  i = 1, 2 , - . - ,  k. 

Or one may consider s t r a tum- / to  be a sample from a su- 
pers t ra tum whose variance with respect to y is ®i. Thus 
we have the ~p-risk R for a given vector as follows. 

R(n)  = E~Ev(L]n ) 
k k 

"= i=1 
(2.3) 

The concept of maximum ~p-risk of this paper, is 
based on the assumption that O1, O2, ' - - ,  Ok are random 
variables with known distribution functions F1, F2, • • •, Fk, 
respectively. It is also assumed that E(Oi)  < oo, i = 
1 ,2 , . - - ,  k. We use _~t to denote the vector (01,02,. ",Ok). 
Let 
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Ai  = {O_ E R k " Oi > m a x ( O i , j  T~ i )}  i = 1 , 2 , . . ,  k. 
- -  l < j < _ k "  " ' ' 

• ( ~ . 4 )  

We assume that  p(A~) > 0 for each i = 1 , 2 , . - - , k .  We 
define the maximum (p-risk Rl (n)  as follows. 

D e f i n i t i o n  2.1 Let n = "(nl ,n2, '" ,nk)"  be a given vec- 

tor. 

k 
R~ (n_)- ~ c i n i  = 

i=l 

if O__ E A1, 

j#i 
if O__ E Ak, 

(1 1) j~l 2 sup(Oj) 

if O__ E Ak. 

Assume  that 0 1 , 0 2 , ' ' ' ,  Ok are nonnegative random 
variables having continuous support over (0, oo). 

T h e o r e m  2.1 Let rl(~__.) - -  E[RI(n)].  

i - 1  

w h  e r e  

Proof"  See the proof of Theorem 3.1. 

R e m a r k  1 Note that 

Rl(n)  >_ R(n)  a.s.. 

Therefore, by monotonoci ty  property of mathematical  ex- 
pectation, we have 

r, (n) = E[RI(n__)] >_ E[R(n_)]. 

Thus the adjective 'max imum'  when referred to R1 makes 
s e n s e .  

R e m a r k  2 I f  F1, F2, . . . , Fk have continuous support over 
(0, oo), all T~ 's are identical. Derivation of ~'~ 's for a case 
of k = 2, when F1,F2 are discrete, is discussed in Kot i  
(1988). Next  subsection deals with a case of k = 2, when 
F1, F2 are un i form cumulative distribution functions.  

The idea is to obtain n* that  minimizes rl.  The re- 
sulting solution is the desired stratified sample minimax 
allocation. 

Aggarwal (1959) considered the Bayes risk 

i = 1  

where a~ (i = 1 ,2 , - - - ,  k) was assumed to be a known 
upper  bound for Ee(yij - #i) 2. He showed that  

1_ 

n~a = integer nearest to \ ci fl + and _< Ni 

minimizes ra. 

1 

T h e o r e m  2.2 n}' = integer nearest to \ ci + 

< N .  

and 

P r o o f i  Follows from Aggarwal (1959). 

2.1 An Example  

Consider the case of two (k = 2) strata.  Assume 
that  s t ra ta  variances O0 ~'md O1 have prior uniform dis- 
tributions, respectively, over (ao, bo) and (al ,b , ) .  The 
constants ao, al, b0, bl are positive and 

ao < a l  < bo < b l .  

Then  

, b o - a o  , b l - a l  

, b l - a l  o b 0 - a 0  

On integrat ing and simplifying we obtain 

2 @3_ a3 ) ao +al (bo2_a12) (bo - ao)(b, - al)TO = -~ 2 " 

Next by definition, 

rl = dx + 
bo  - a o  ~ b l  - a l 

1 b l - a l  o b o - a 0  

1 bo - a o  1 b l  - 
a l )  dx + 

L b ° x ( d U ) d x  • 
1 b l - a l  b o - a o  

L 1 X 

+ bl - -  a l  

~ d x .  

1 (b~- bo 2)/(b I --gl) i.e., rl = T0+ ~ 

Consider the following constants. 

Co = cl = 1.0 

71" 0 "-- 71" 1 ~--- 0 . 5  
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a0 = 10,  a l  = 20 ,  b0 = 110 ,  b~ = 125. 

We find 7"0 = 67.2857 and ra = 84.0714. Finally applying 
Theorem 2.2, we get 

n;  = 130 and n~ = 145. 

TWO-PHASE STRATIFIED SAMP- 

LING DESIGNS 

We adopt the framework of Draper and Gut tman  
(1968). Suppose we have k s trata  from which arise obser- 
• cations xq (or Yii)(i  = 1 , 2 , . . .  ,k). Assume that  known 
proport ion lri of the t o r n  population lies in the ith stra- 
tum, where 7rl + 7r2 + • + 7rk = 1. The principM objec- 
tive of the sample survey is to estimate the overall mean 
/~ = ~Tri#i as precisely as possible. The letters x and y 
will refer to the first and second phases, respectively. Let 
Xij (or yq)  ,.., N( t t l ,  Oi). We assume that  the prior infor- 
mat ion available before the first phase sampling can be 
represented by independent,  locally uniform prior distri- 
butions on / t i  and 0i so that  

P(pi)dt.ti o~ d I.ti and p(Oi)dOi a 
dOi 
0i (3.1) 

Suppose that  a sample { x q } ( i  = 1 , 2 , . . - , k )  of m i ( >  
3) observations is taken in the first phase of sampling from 
the ith s t ra tum. These observations are used to enhance 
the prior information concerning 0i's. Let ni denote the 
number  of observations taken from the ith s t ra tum in 
the second phase of sampling. The ni's will be chosen by 
minimizing a maximum Bayes risk defined below. 

3.1  M a x i m u m  P o s t e r i o r  R i s k :  D e f i n i t i o n  
a n d  E x p e c t a t i o n  

Again we borrow some notat ion and results from Draper  
and Gut tman  (1968). Let 

rni rni 
- 2 g.i)2. mix i  = E Xij and ( m i -  1)si = E ( x i j -  

j = l  j = l  

Also let 
ni  n i  

niffi = E Yij and ( n i -  1)w~ = E ( Y i j  - Yi) 2. 
j = l  j = l  

In order to obtain an allocation for the ni, we must 
make a decision before the second-phase observations are 
available. It is appropriate that  this decision be based 
on the variances of ~Tri#i and the sampling cost for the 
second phase. Again c / ( i  = 1 , 2 , - . . ,  k) denotes the cost 
of taking one observation from the ith s tratum. 

Draper and Gut tman  (1968) showed that 

(ml  + ni - 3)(ml + n; )V( tq )  = mini  (xl - Yi) 2 
ml + ni 

+ (rni -- 1)s~ + 

(n, -- 1)w 2. (3.2) 

Note that  the conditional expectation of V(I, ti) given ®; = 
0~ (i = 1,2, . . .  k) is 

Let 

a n d  

( m i  - -  1) m i  - 1 2 ( n i  1)Oi 
mi 3 sl + --  

E(V~I0' )  = (mi + n , -  3)(m, + hi) (3.3) 

ui = ( rn~-  1 ) r n i -  2 2 
m~ 3 si (3.4) 

2 

~' (3.~) 
" '  = (m, + , ~ -  3)(m, + n,)" 

We define R2(n_), the maximum posterior risk as follows. 

D e f i n i t i o n  3.1 Lei n_ = ( n a , n 2 , ' " , n k )  be a given vec- 
tor. 

k k 

n ~ ( ~ )  - F_, ~, , ' ,  - # ~ ~,,~, = 
i=1 i=1 

k 

( n , -  1)~,Oa + ~ ( n  s - 1)~jsup(Oj) if 6) E A,,  
j=2  

k 

( h i -  1)ai01 + ~ ( n j -  1)aj sup(@j) if f l  E A;, 
j¢; 

k-1  

( n k -  1)~k0k + ~ ( n  i - 1)~j sup(0j )  if f l  E Ak, 
j : l  

,,,h,,-, zx, i, d4~,~e i,~ ( e #  

Let fi denote the first-phase sample posterior den- 
sity of O~ and Fi be the corresponding c.d.f.. Recall 
that  under the above setting, f l  is a.n inverse gamma 

density with parameters m i - 1  and [ . m l -  1 ~]-1 2 2 s . See 
Berger (1985). These f i ' s  form the prior information for 
the second-phase sample allocation. Rao and Ghangurde 
(1972) called them (f;'s) as 'data  based' prior densities. 
By f is inverse gamma density with parameters a and b 
we mean 

• ) = ( r ( ~ ) b " ) - '  ~-~, • > o, ~ > o, b > o. 

(3.6) 

T h e o r e m  3.1 Zet r2(n__)= E[R2(n_)]. 

k 

"~("--) = } 2  [ ("~-  1),~- + o~,.~ + #~,,;1. (3.7) 
i=1 

t0h ere 

P r o o f :  Since O's have absolutely continuous support ,  
R2(n_) of Definition 3.1 can be writ ten as 

R:2(n.~=E~=l OqVi+e E~=l clni+E~=, (ni-1)oqmax(Ol,02,...,Ok ). (3.8) 

We need to find the expected value of this R2. The first 
two terms on the right hand side of (3.8) are constants. 
To find the expectat ion of ®(k) = max(®1, : Ok), we note 
that  the ®'s are statistically independent and therefore 
the density of ®(k) is 
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Taking expectation of ®(k) and writing the integral of a 
sum as a sum of the integrals we have 

r =  E(@(k)) = J='£ f o ° °y f j ( y ) ( f i e¢ j  F ~ ( y ) ) d y .  

Thus the proof is complete. 

3 . 2  T h e  M i n i m a x  S o l u t i o n  

The idea is to obtain ni's by minimizing r~(n) given 
in Theorem 3.1. Note that for a given vector n_n_, the risk 
of Definition 3.1 as a function of the random vector (9 
satisfies the inequality: 

k 

R~(o_l.__) > E [~E(V(,,)IO,)+ ~,~,] a.~.. 
i = l  

Thus it is appropriate to call R2 as a maximum Beyes 
risk. Now by monotonocity property of mathematical 
expectation, we have 

u 

r2(n) >_ E[V(#)] + ~ cin,. 
i - -1  

Therefore, the resulting solution is called a minimax so- 
lution. 

T h e o r e m  3.2 For i = 1 , 2 , . . . ,  k, let 

aio = t3ci (m~ - 3 m i ) ( r n : -  r n i -  2) + 7r2(2- 2rni)ui 

-~'(m,- m~)~ 

a l l  - -  l ~ c i  (4m 3 - 12mr + 2rni + 6) + zr~(3- 4m,)T 

--2uiTr~ 

a , ,  = - l * . m ,  + 1 )  - 

ai3 = f l c i ( 4 r n i -  4) and hi4 = ~ci. 

The op t imal  allocation n* is the smal les t  posi t ive integer 
f o r  which 

4 ai3n3 n 2 + aix ni + a.io P i (n i )  = ai4ni + + hi2 

> O. 

Proof i  Since the ith term on the right hand side of (3.7) 
depends on ni alone, it is sufficient to minimize 

h i (n i )  = (ni  - 1)ai ' r  + air,, + t3cin;. 

We see that 

hi(ni  + 1 ) -  hi(n i )  -- 

Pi(,~i) 
(mi + n i -  3)(mi + n i -  2)(mi + ni). (mi + ni + 1)" 

To minimize hi(hi), we choose the smallest positive inte- 
gral value for which the difference hi(ni  + 1 ) -  hi(hi )  is 
positive. The proof is complete. 

3.3 A n  E x a m p l e  

As mentioned earlier, Draper and Gut tman (1968) mini- 
mized By{V(#)} and obtained 

, C 
nDi - ~ q i - -  mi ,  i =  1 , 2 , ' ' ' ,  k, (3.9) 

where 
1 1 

q i = 7r i x/r~, s i / 7r j 
i 3 "= i 3 V/-~sJ" 

Note that n~ denotes the Draper-Guttman allocation 
while n* denotes the minimax allocation proposed in the 
Subsection 3.2. Draper and Gut tman (1968) also showed 
the variance of the prepostcrior cstimator ~ 7ri~ji of #, is 

( v(s,~,,j,l~_) = ~,~y 1 -  1 + si . (3.10) 
i=1 rni - 3 

In this subsection, we consider an example to compare 
the preposterior variance (3.10) under n~ and n*. Let 

and 172 denote the preposterior variance, respectively, 
under n~ and n*. 

Consider the following constants: 

k = 2" rnl = r n 2 = 2 1  

T ' I  - -  7 1 " 2 - - - 0 . 5 ,  312 "~  5.0, S 2 --6.5 

C l  - -  c2 = 0.02 

With a FORTRAN subroutine, we got r = 9.25. We cal- 
culate the minimax allocation n* for various values of ft. 
For each fl, we computed the Draper-Guttman allocation 
n~. The total cost C used is the total cost incurred by 
the minimax allocation. Following table summarizes all 
results. 

/~ (n~,,q)  C ( - 5 , , - 5 ~ )  V, - V, 

0.01 (186, 190) 8.36 (174, 202) 0.000099 

0.02 (123,127) 5.84 (115,135) 0.000114 

0.03 (94,99) 4.70 (89,104) 0.000094 

0.04 (77, 82) 4.02 (73, S6) O.OOOO71 

0.05 (66, 70) 3.56 (62, 74) 0.000073 

0.06 (57, 62) 3.22 (54, 65) -0.000019 

0.07 (50, 55) 2.94 (48, 57) -0.000011 

0.08 (45,50) 2.74 (43,42) -0.000093 

0.09 (40, 46) 2.56 (39, 47) -0.00011 

0.10 (36, 42) 2.40 (35, 43) -0.000205 

0.II (33, 39) 2.28 (32, 40) -0.000316 
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