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1 INTRODUCTION

Consider a population U = (uy;), § =1,2,---,Nj; ¢
=1,2,---,k, of distinguishable elements which are clas-
sified into k strata, the size of the ith stratum being N;,
a known integerand N = Ny + N, +-+- + N;. Let 7 =
(w1, 72, -+, ™), where m; = N;/N. With each element
u;j of U, is associated a real unknown value y,, = y(ui;).
The N-dimensional vector y = (y;;), § =1,2,---, N5 i =
1,2,---,k, is called the parameter vector of a Euclidean
N-space Ry. We associate with the parameter-space
Ry the couple (BY ,C) where BY is the Borel o-field on
Ry, and C is a family of prior probability measures on
(Ry,BN). The class C of probability distributions ¢ on
Ry, C = {€}, is called a superpopulation model. The
population vector y is unknown and a complete survey
is not feasible. Hence the objective is to infer about the
unknown population mean § = (1/N)3; ¥ ; vij, on the
basis of a sample.

Any subset s of U is called a sample. Let § = {s:
s C U}. A sampling design is a function p : § — [0,1]
such that s C &, p(s) > 0 and Zsp(s) = 1. A stratified
sample is a vector n = (nq,ne,- - -nyg), where n; 2 0, ¢ =
1,2,---,k, is the number of observations drawn indepen-
dently from the ith stratum. It is assumed that sampling
is without replacement. Let (y1, g2, - - -, ftx) be the vector
of y-means of k strata so that

k
g= Y mi. (1.1)
i=1

Let §y,; be the arithmetic mean of a random sample of size

n; taken from the ith stratum, i = 1,2,---, k. In standard
texts such as Cochran (1977), the stratified sample mean

k
Yot = Z TiYn,
i=1

is proved to be p-unbiased with p-variance

(1.2)

=5 (L 3,
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(1.3)

where

(1.4)

N;
= 5 Loy — )
N =1 2

The allocation of resources in a stratified sampling
design aimed at estimating the population mean is usu-
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ally carried out, keeping in mind either one of the follow-
ing two alternatives: (i) to achicve maximum precision
for a given total cost of the survey, or (ii) to achieve
a given precision at a minimum cost.
Neyman optimum allocation is one, based on this type

The well known

of approach. From the Neyman optimum allocation (c.f.,
Cochran (1977)), it is apparent that the statistician plan-
ning the stratified sample survey needs to have some
prior information on the behavior of the character un-
der consideration, other than the size of each stratum.
The available literature on optimum stratified sampling
using prior information consists of the papers by Aggar-
wal (1959), Ericson (1965), Draper and Guttman (1968),
Zacks (1970), Rao and Ghangurde (1972), and many oth-
ers. An excellent review and criticism of many of these is
found in Solomon and Zacks (1970). The objective of this
paper is to present noninformative as well as two-phase
minimax type stratified sampling designs.

2 NONINFORMATIVE DESIGNS

Let ¢i, 1 =1,2,---,k, be the per unit sampling cost
in the ith stratum. Consider the augmented bounded
squared error loss

k
/B(gst - g)Z + Zcinia

1=1

where 8(> 0) is a weighting constant. We know that the
p-expectation of L, given n = (ny,nq,---,ny), is

Ey(L |n) = ﬂz (z-7) 5+ Z (2.2)
where 57 is defined in (1.4). Let all N;’s be fairly large
so that (N; — 1)7! ~ N7!
each j =1,2,--- | N;, that

. At this point we assume for

Ee(yij— )’ =04, 1=1,2,--- k.

Or one may consider stratum-i to be a sample from a su-
perstratum whose variance with respect to y is ©;. Thus
we have the {p-risk R for a given vector as follows.

R(n) Ey(LIn)

B ;7’; (n—x -
The concept of maximum ¢p-risk of this paper, is

based on the assumption that ©;,0,, -

1 k
E) @,‘ + ;C;n;. (23)

, ©r are random

variables with known distribution functions Fy, Fy, - - -, Fy,
respectively. It is also assumed that E(©;) < oo, i =
1,2,- -+, k. We use § to denote the vector (6,82, -+, 6;).
Let



R k. . . g 3 ;= e
A,_{QGR : o,zg%(o],];ez)},z 1,2, k.

* (2.4)
We assume that p(A;) > 0 for each i = 1,2,---, k. We
define the maximum €p-risk R;(n) as follows.

Definition 2.1 Let n = (ny,n,, -
tor.

,Nk) be a given vec-

k
Ri(n)- 3_cini =

i=1

1 1

72 (HL - __) B8O, + 277 <— - N—) sup(©;)
n; i

1f@€ A],

1

o (3= 30 00+ 17 (1o — ) vt
7

if @ € Ak,

» (; ) pour \;w (2 - ) st
if © € AVS

Assume that ©,,0,,---,0, are nonnegative random
variables having continuous support over (0, 00).

Theorem 2.1 Let ri(n) = E[R:i(n)].
k.11
ri(n) = ; {W,- (n—' - F.> Bri+ cm;} ,

where

= Z/ ofi(e) <H n(z)) dz.
(3]
Proof: See the proof of Theorem 3.1.
Remark 1 Note that
Ri(n) > R(n) a.s..

Therefore, by monotonocily property of mathematical cz-
pectation, we have

ri(n) = E[Ri(n)] 2 E[R(n)].

Thus the adjective ‘mezimum’ when referred to Ry makes
sense.

Remark 2 If Fy, F5,- - -, F; have continuous support over
(0,00), all 7;’s are identical. Dcrivation of 7;’s for a case
of k = 2, when Fy, F, are discrete, 13 discussed in Kot
(1988). Nezt subsection deals with a case of k =2, when
B, F; are uniform cumaulative distribution functions.

The idea is to obtain n* that minimizes r;. The re-
sulting solution is the desired stratified sample minimax
allocation.

Aggarwal (1959) considered the Bayes risk

.=§[ (3~ ) #ot +emi],

where ¢? (1 = 1,2,---,
upper bound for E¢(y:; — p:)?. He showed that

k) was assumed to be a known

;2 1\?
: ﬂ+1> and < N;

. uf
n;, = Integer nearest to | —
Ci

minimizes 7.
1
. W2T; 1 z
Theorem 2.2 n} = integer nearest to | —f + 3 and
Ci
< N

Proof: Follows from Aggarwal (1959).

2.1 An Example

Consider the case of two (k = 2) strata. Assume
that strata variances ©g and ©; have prior uniform dis-
tributions, respectively, over (ao,bo) and (ay,b1). The
constants ag, ay, by, b; are positive and

ao<a1<b0<b,.

bo T £ du d
To = T
ay bo — Qg a) bl —ay

+ h_=e (I du )da:
ay bl“‘al ap bO‘"aO '

On integrating and simplifying we obtain

af) - X (1 - a).

Then

2
(b0 = ao)(bs ~ ar)ro = 3 (83 -

Next by definition,

a1 bo—ao(m b1—01>d$+

ay bl—al(ao bo—ao)

)dx+

]

1

ay bo—‘ao ay bl_al

(£25)=
a1 bl——a1 bo"ao

b g

dz.

bo b1 — ay

. 1
l1.e., T1 =T0+§(b§"‘b(2)) /(l)1 —al).
Consider the following constants.

C0=C1=1.0



ap = 10,ay = 20, bp = 110, b, = 125.

We find 1 = 67.2857 and 7; = 84.0714. Finally applying
Theorem 2.2, we get

ng = 130 and n] = 145.

3 TWO-PHASE STRATIFIED SAMP-
LING DESIGNS

We adopt the framework of Draper and Guttman
(1968). Suppose we have k strata from which arise obser-
vations z;; (or yi;) (! = 1,2,---,k). Assume that known
proportion m; of the total population lies in the ith stra-
tum, where m + w2 + - + mx = 1. The principal objec-
tive of the sample survey is to estimate the overall mean
@ = Zmu; as precisely as possible. The letters z and y
will refer to the first and second phases, respectively. Let
zi; (or yi;) ~ N(u;,6:). We assume that the prior infor-
mation available before the first phase sampling can be
represented by independent, locally uniform prior distri-
butions on y; and 6; so that

P(pi)dp; o d p; and p(6:)db; %9—‘ (3.1)
Suppose that a sample {z;;}(i = 1,2,---,k) of m;(>
3) observations is taken in the first phase of sampling from
the ith stratum. These observations are used to enhance
the prior information concerning 6;’s. Let n; denote the
number of observations taken from the ith stratum in
the second phase of sampling. The n;’s will be chosen by
minimizing a maximum Bayes risk defined below.

3.1 Maximum Posterior Risk: Definition
and Expectation

Again we borrow some notation and results from Draper
and Guttman (1968). Let

miT; = 2‘::1:,']' and (m; - 1)3? = z'(:v,-j - i,‘)z.
=1 3=1
Also let

ny ni
nigi = 3w and (ni— 1w =Y (v — 7:)"
i=1 j=1
In order to obtain an allocation for the n;, we must
make a decision before the second-phase observations are
available. It is appropriate that this decision be based
on the variances of Tm;u; and the sampling cost for the
second phase. Again ¢; (i = 1,2,---,k) denotes the cost
of taking one observation from the ith stratum.
Draper and Guttman (1968) showed that

(m; +n; = 3)(m; + n))V () = mr:lf;;(fi - )
+ (mi — 1)s? +
(ni —w?  (3.2)
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Note that the conditional expectation of V(i) given ©; =
8 (i=1,2,---k)is

(i = )5t + (s = 1)
E(V|6;) = i 3.3
(Vi16:) (mi +ny = 3)(my + ) 33)
Let N
= (my— 1) T2
v; = (my l)m.- —3% (3.4)
and
72

M i i é)(m,. ) (3.5)

We define Ry(n), the maximum posterior risk as follows.

Definition 3.1 Let n = (nq,n2,---,n4) be a given vee-
tor.

k k
RQ(Q) - Zai’/i - ﬁ Zc;n; =

i=1 =1
'

k
(n1 — 1)ey©; + 3 (n; —~ Da;sup(0;) if @ € A,

j=2

k
(ni = 1)a;®; + Y _(n; — Doy sup(®;)  if @ € A,
J#i
k=1
(nk - l)akek + Z(nj - l)aj Sup(@j) if @ €Ay,

\ =1

where A; is defined in (2.4).

Let f; denote the first-phase sample posterior den-
sity of ©; and F; be the corresponding c.d.f.. Recall
that under the above setting, f; is an inverse gamma

m; -1, -1

. . m; —
density with parameters and si] . Sec

Berger (1985). These f;’s form the prior information for
the second-phase sample allocation. Rao and Ghangurde
(1972) called them (fi’s) as ‘data based’ prior densitics.
By f is inverse gamma density with parameters a and b
we mean

F(z) = (T(a)b®) (%)m &%, ©>0,a>0,b>0.
' (3.6)
Theorem 3.1 Let ry(n) = E[Ry(n)].

k
T‘z(ﬂ) = ; [(n; — l)a;T + oy + ﬂc;n;] , (37)

where

r=3 [Cehe)

J=1

H Fl(z)] dz.

t#5
Proof: Since ©’s have absolutely continuous support,
R,(n) of Definition 3.1 can be written as

Rg(g_):ELl a;u,‘+ﬁ2;‘=l c;n.’+2f=l(n;—l)a; max(©;,92,,0k). (38)

We need to find the expected value of this Rp. The first
two terms on the right hand side of (3.8) are constants.
To find the expectation of @) = max(01,: O;), we note
that the ©’s are statistically independent and therefore
the density of O is



k k
; fily) <H Fl(y)> .

(£

Taking expectation of Oy and writing the integral of a
sum as a sum of the integrals we have

T =E(Oy) = Z/Ow yfi(y) (H Fe(y)) dy.

(E ]
Thus the proof is complete.

3.2 The Minimax Solution

The idea is to obtain n;’s by minimizing r2(n) given
in Theorem 3.1. Note that for a given vector n, the risk
of Definition 3.1 as a function of the random vector ©
satisfies the inequality:

k
Ry(On) > ; [F2E(V(1)10:) + cini] as..

Thus it is appropriate to call R; as a maximum Beyes
risk. Now by monotonocity property of mathematical
expectation, we have

M@ZEWWH+§QM

Therefore, the resulting solution is called a minimax so-
lution.

Theorem 3.2 Fori=1,2,..- k, let

ap = fo (m,2 - 3m,~) (m‘2 —m; — 2) + 72— 2m;)v;

~n3 (i~ m)r

ay = fBe (llm‘;5 —19m? + 2m; + 6) + 7r,-2(3 —4dm;)r
—21/,~7r'-2

ay = P (Gm? —12m; + 1) — i

a3 = Peci(dm; —4) and ay = Be;.

The optimal allocation n¥ is the smallest positive integer

for which
Pin)) = aunt Jpesss ey . .
.'(TZ.) = aiyn; + a;zn; + AiaN; + ann; + a0

> 0.

Proof: Since the ith term on the right hand side of (3.7)
depends on n; alone, it is sufficient to minimize

h,’(n;) = (Tl,‘ — l)a;‘r + Qg Y; + ﬂc;n;.
We see that
hi(ni + 1) — hi(ni) =
Py(n:)
(mi+n; = 3)(mi + ny — 2)(mi + ny) - (my + 1y +1)°
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To minimize h;(n;)}, we choose the smallest positive inte-
gral value for which the difference hi(n; + 1) — hi(n) is
positive. The proof is complete.

3.3 An Example

As mentioned earlier, Draper and Guttman (1968) mini-
mized E,{V (1)} and obtained

hi = —gi—mi, i=1,2,,k, (3.9)
C;
where
m; — 1 3 k ms—1 1
e (222) Vi £ (223)

Note that n}, denotes the Draper-Guttman allocation
while n* denotes the minimax allocation proposed in the
Subsection 3.2. Draper and Guttman (1968) also showed
the variance of the preposterior estimator Yoy of p, is

WM@m=iﬁO—%§O+%)S? (3.10)

=1 my; — 3 ’
In this subsection, we consider an example to compare
the preposterior variance (3.10) under n}, and n*. Let
Vi and V; denote the preposterior variance, respectively,
under nj, and n*.
Consider the following constants:

E = 2: my = my =21
o= m=05 s = 50, s2=6.5
¢ = ¢, =0.02

With a FORTRAN subroutine, we got 7 = 9.25. We cal-
culate the minimax allocation n* for various values of B.
For each §, we computed the Draper-Guttman allocation
np. The total cost C used is the total cost incurred by
the minimax allocation. Following table summarizes all
results.

B (hn) € (mbnnp)  Va- W
0.01 (186, 190) 8.36 (174, 202) 0.000099
0.02 (123,127) 584 (115,135) 0.000114
0.03 (94,99)  4.70 (89, 104)  0.000094
0.04 (77,82)  4.02 (73,86)  0.000071
0.05 (66,70)  3.56 (62, 74)  0.000073
0.06 (57,62)  3.22 (54,65)  -0.000019
0.07 (50,55)  2.94 (48,57)  -0.000011
0.08 (45,50)  2.74 (43,42)  -0.000093
0.09 (40,46)  2.56 (39,47)  -0.00011
0.10 (36,42) 240 (35,43)  -0.000205
0.11 (33,39) 228 (32,40)  -0.000316
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