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1. Introduction 
This paper discusses several situations where 

sampling takes place in space and/or time. In 
these cases, the efficiency of alternative 
sampling strategies will depend on the 
underlying spatial or temporal autocorrelation 
present in the population. 

The classical f in i te population sampling 
theory considers a population of N units labeled 
1,...,N. A survey variable of interest, Y, 
takes on values Y(1),. . . ,  Y(N) that are 
considered fixed in this approach. Under a 
superpopulation modeling approach, these values 
are assumed to arise as realizations of a random 
variable Y. 

A simple superpopulation model appropriate for 
sampling in one dimension, for example, sampling 
in time alone (for a fixed network of units), is 
that the Y values follow a stationary process. 
Applications of such a stationary model may be 
found in Cochran (1946) and Iachan (1983). The 
assumption that the autocorrelation function is 
non-increasing (and non-negative) seems to arise 
naturally in this context: observations closer 
together (in t ime) are expected to be more 
strongly correlated than observations further 
apart (in time). 

Following a description of some i l lustrat ive 
surveys in Section 2, Section 3 presents a brief 
discussion of the precision expected in the one- 
dimensional case. The equicorrelation case 
(constant correlation), which provides an upper 
bound for the variance under the given 
assumptions, is further discussed. 

For sampling in a two-dimensional space (the 
plane), i t  is natural to index the population 
values Y( i , j ) .  A similar stationary model would 
then consider autocorrelation functions of the 
form ~u,v) between units with coordinates ( i , j !  
and "+u,i+v). Results for two-dimensiona~ 
sampling are available in Iachan (1985b) and are 
summarized in Section 4. This section also 
discusses the case when time is one of the two 
dimensions considered. The three-dimensional 
case is discussed in Section 5. 

Section 6 presents a discussion of design 
issues of practical importance when spatial and 
time dimensions are considered simultaneously. 
In particular, stratif ication issues are 
discussed and illustrated with the example 
surveys described in Section 2. 

2. I l lustrat ive surveys 
Some problems that occur  when the time 

dimension is of relevance in the survey design 
may be illustrated by a number of surveys in the 
recent experience of the Research Triangle 
Institute (RTI) and elsewhere. 

Two types of survey in our recent experience 
i l lustrate similar design issues related to the 
existence of successive, regularly spaced 
measurements on each sample unit. The f i rs t  
type of survey is an electrical load research 

survey where a total load estimate is desired 
for each time of the day. For simplicity, we 
wil l assume that (24) hourly estimates are 
desired. The sample measurements are integrated 
totals or averages ( e.g., over one hour) taken 
on each of n sample households for each of t 
days. For each of the (24) hourly estimates, 
one has available (a) household averages based 
on t daily measurements, and (b) a sample 
average based on nt measurements. 

Integrated measurements are a lso generally 
taken for indoor air and personal exposure 
studies. In both the indoor air and the load 
research contexts, the autocorrelation between 
successive measurements on the same unit is 
expected to be significant. That is, the 
precision expected from a series of t 
measurements taken on each of n sample units 
fal ls in between the following two extreme 
scenarios:" 

(a) the nt measurements are uncorrelated; 
(b) the measurements on a same sample unit are 

perfectly correlated. 
A misleading picture may result from assuming 

either one of the two scenarios at the design 
phase. The effective sample size is between the 
"sample size", n, and the total number of 
measurements, nt. A more detailed discussion is 
provided in Section 3. 

The sample units for the load research study 
are typically residential customers or housing 
units. Parameters of interest include the total 
seasonal load for a given hour of the day (e.g., 
from 1 to 2 PM) and also end-use specific loads 
for appliances such as air conditioning and 
central heating. The fact that such appliance 
uses are strongly associated with the season 
guides the design stratif ication discussed in 
Section 6. 

The load research study a lso il lustrates 
another problem related to the temporal 
dimension, namely that of appropriate unit 
definition. As discussed in Section 6, several 
factors need to be considered when deciding 
between units such as households or persons and 
the corresponding pairs obtained by crossing 
these units with t ime occasions. A similar 
problem arises in surveys of mobile populations, 
e.g., in the evaluation of the Migrant Education 
Program and in studies of the homeless 
population currently undertaken by RTI. 

The primary objective of the descriptive study 
of the M ig ran t  Education Program is 
characterizing program participants (children of 
migrant farmworkers and fishermen). The 
ultimate sample units are participating migrant 
students; states, local projects and schools are 
selected at earlier sampling stages. Due to the 
intrinsic mobility of the migrant population, 
the same sample student may be captured in 
several different locations. That is, the 
sample unit might be best defined as a migrant x 
time pair; however, to avoid the complexities 
resulting from this approach, a narrow time 
window is defined where a population "snapshot" 
is to be taken. 
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Migratory problems also occur in surveys of 
animal populations; capture-recapture methods 
applicable in those instances are not feasible 
for migrant students. An example of a non- 
mobile animal population study is provided in 
Iachan (1985a). The population considered in 
the study is the shellfish population along the 
East Coast of the United States in a given 
season; the focus of the art icle is on two- 
dimensional (spatial) strat i f icat ion of the 
study area at a fixed point in time. 

The temporal dimension in radon studies may be 
"designed away" by considering a fixed time 
period for measurement. Typically and 
conservatively, this time period is part of the 
season when contaminant (e.g., radon) levels are 
believed to be highest (usually the season when 
closed house conditions occur most often). In 
other types of indoor air surveys, day-to-day 
var iabi l i ty  is such an important component of 
the total variance that the design must also 
include temporal randomization. 

3. The one-dimensional case 
This analysis applies not only when there is a 

meaningful ordering of the N population units 
but also when successive time measurements are 
taken on a fixed sample. Whi le  the f i r s t  
situation was discussed in Iachan (1983), the 
second situation is more carefully discussed 
here: i t  involves sampling of N units and t 
(integrated) measurements at regular periods on 
each sampled unit. 

The superpopulation model considered in this 
case is that similar measurements taken on the 
same unit at times j and k, Y(j) and Y(k), have 
the same mean and variance and serial 
correlation, corr(j, k)= R(k-j), that only 
depends on the distance (or difference) between 
the two time periods. A special case considered 
further is that of constant correlation, 
R(k-j)=r, referred to as the equicorrelation 
case. 

Under this model, the variance of a sample 
mean based on t successive measurements may be 
wri tten as 

t t 
(Y) = + (1 + + r. r R(k-j)) (3.1) Var 

j<k 

where 

t 
v: -~ -  r v(j) 

1 

is the mean over  time of similar measurements 
~(j), and V is the sampling variance of each 

( j ) .  Note that Y(j) may be the measurement for 
a fixed sample unit or averaged over the sample. 

In the equicorrelation case, R(k-j) =r, all j ,  
k, and the variance (3.1) simplifies to 

Var(Y) : + (1 + (t-1)r) (3.2) 

Note that the relative increase in variance 
due to the autocorrelation is 

A = [Var(Y)- + ]  + + = ( t - l ) r  . 

The variance V/t would be obtained i f  successive 
measurements on a given unit were uncorrelated. 

The models considered in the literature (e.g., 
Cochran, 1946, Iachan, 1983) assume that the 
autocorrelation function R(.) is non-increasing 
(and non-negative). Under this model, the 
simple equicorrelation model variance (3.2) 
provides an upper-bound for the variance. 
Consequently, conservative sample sizes to 
achieve a specified precision may be based on 
the equicorrelation model. 

In the load research context, for instanc~h 
Y(j) is the sample mean load for the j 
successive measurement for a given time (e.g., 
hour) of the day, possibly for a specific end- 
use (or appliance). For each end-use, i f  hourly 
(integrated) total loads are considered, there 
are 24 such estimates, one for each hour-block 
of the day. 

In the indoor air study example, the number of 
successive measurements wil l  of course depend on 
(a) the total length of the monitoring period, 
and (b) the time period over which measurements 
are integrated. Both (a) and (b) are contingent 
upon the type of monitoring device employed in 
the study. 

4. The two-dimensional case 
This section considers a population of 

N ~ NIN 2 units arranged in a grid of N 1 = nlk 1 
rows and N2 = n2kp columns. Rectangular strAtA 
with klk:> 5nits TaBeled ( i , j )  are then defined, 
and equaT nln in number. 

In the two-dimensional context, models assumed 
by Quenouille (1949), Das (1950) and Bellhouse 
(1977) all have the form 

E(Yij)= #, E{(Yi,j - #)(Yi+u,j+v - #)} 
2 

= o a ( l u l ,  I v l )  (4.1) 

and #(0,0)=1. Here, the expectations (E) are 
taken under the mode] d i s t r i b u t i o n .  In other 
words,the population values Yi ' are assumed to 
ar ise as a rea l i za t ion  of a '~pat ia l  process, 
stationary in the wide sense with 
autocorrelation function p. We wil l  assume that 
p is nonnegative and nonincreasing in both 
arguments. 

A variety of natural processes with the above 
structure are examined by Matern (1960). Two 
examples are given by Das(1950), 

G 
p( lu l , lv l )  = r. aj exp(-Tjlu I - 6 j l v l ) ,  (4.2) 

j=l  

and by Matern (1947), 

p(lul, Ivl) = exp{-),(lul 2 + ivl 2) 1/2} (4.3) 
Notice that isotropic correlation functions are 
of the form (4.1). 

Quenouille (1949) introduced aligned and 
unaligned sample designs in the plane. A sample 
aligned in both directions, S=SlXS 2 of size 
n=nlng, is simply the cartesian product of a 
saml~l~ (s I) of n I row labels and a sample (s 2) 
of n z coTumn labels. Aligned simple random 
samples, strat i f ied random samples and 
systematic samples are thus obtained when both 
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s 1,s 2 are selected with the respective one- 
dimensional sampling schemes. Of course 
different sampling methods may be used along the 
rows and the columns. 

Unaligned simple random samples are formed 
by selecting n=nln ~ labels at random without 
replacement from ~h~ N=N]N 2 labels. Unaligned 
strat i f ied random samples are obtained by 
selecting at random without replacement within 
the defined rectangular strata. An unaligned 
systematic sample may be described as follows. 
Draw at random without replacement numbers 

al, . . . ,an2 between 1 and kl, and numbers 

b l , . . . ,bn l  between 1 and k 2. The sample 

consists of units labelled 

{(aj + k l ( i -1) ,  b i + k2(J-1)) : i= l , . . . ,n l ;  

j= l ,  . . . ,n2}. 

Assuming model (4.1) with 

r. r. Ip ( lu l ,  I v l ) l  < =, 
u v 

i t  is shown in Iachan (1985b) that the limiting 
expected variances for the three sample designs 
in each class (aligned and unaligned) follow the 
hi erarchy 

and 

2 2 2 
asy(a) ~ ast(a) ~ asr(a) 

2 2 2 
asy(u) ~ ast(u ) ~ asr(u ). 

Hajek (1959) has shown the optimality of 
(linear) systematic sampling in the sense of 
minimum expected variance, among all designs 
with the same probabilities of inclusion. This 
result cannot be extended to plane sampling, 
since Bellhouse (1977) has shown the 
nonexistence of an optimal sampling design in 
two-dimensions for a general  class of 
correlation functions. An optimum does exist, 
however, for a subfamily of the class of 
isotropic convex correlation functions (Dalenius 
et al . ,  1960). Under more restrictive 
assumptions, optimality of the appropriate 
systematic sampling designs is shown by 
Bellhouse (1977) in three different classes that 
include designs aligned in one or both 
directions, and unaligned designs. 

These two-dimensional model-based results are 
useful in the design of surveys of spatially 
correlated (non-mobile) populations such as 
forest trees (Matern, 1960) or shellfish 
(Iachan, 1985a). As discussed in the next 
section, i f  the study (planar) population to be 
sampled in t i m e  also presents temporal 
autocorrelations, the models need to be extended 
to three dimensions. 

Another type of two-dimensional population is 
obtained by adding a temporal dimension to the 
usual kind of (linear) f in i te  population. In 
this case, the population has labels ( i , t ) .  
i= l , . . . ,N;  t= l , . . . ,T .  The autocorrelation 
functions of interest have (one-dimensional) 
"marginals" r l(J) and r2(t ) of the form 
considered in the prevlous section (non- 
increasing and non-negative). 

Optimal sample designs for sampling in time 
and on the line wil l  then be obtained by 
crossing the two "marginal" sample designs, 
i .e. ,  wil l  be in the aligned class. I f  both r 1 
and r9 satisfy some additional assumptions 
(summal~i I i ty or convexity), t h e n  aligned 
systematic sampling wil l  be optimal. 

This type of design has been used in asbestos, 
well-water and personal exposure studies, where 
either (a) a sample of units is selected 
independently for each t ime period, or (b) a 
time period is randomly assigned to each 
selected unit. 

5. The three-dimensional case 
As mentioned in the previous section, i t  is 

possible to generalize many of the earlier 
results to the three-dimensional case. The 
three-dimensional case arises in two distinct 
situations of particular concern: 

(a) when the sampling units are distributed in 
the three-dimensional space, or 

(b) when the sampling units are in the plane 
and have changing characteristics in time. 

The f i r s t  case may occur for a variety of 
natural populations: fish in a lake, birds or 
insects in the air, cells in a human organ, and 
so on. The types of autocorrelation functions 
expected in these cases are simple extensions of 
the functions considered in Section 4. The 
results obtained in Iachan (1985b) may thus be 
extended to this case. In particular, 
systematic sampling s t i l l  outperforms (in the 
sense of smaller l imiting expected variance) its 
two most common competitors. 

The second case has greater practical 
importance. I t  seems reasonable to assume that 
the three-dimensional autocorrelation function, 
R(t,u,v), has marginal s r( t)  and R(u,v) 
satisfying the assumptions stated in Section 3 
and Section 4, respectively. I t  is an area for 
further research to extend the previous results 
to this case. 

Some comparisons have been performed by 
Kalsbeek (1988) when the focus is on the 
estimation of a mobile population size and no 
structure is imposed on the population. Using 
ANOVA-type decompositions and linear cost 
models, the paper investigated the efficiency of 
some sample designs in the two-dimensional 
classes discussed in Section 4. 

6. Stratif ication 
This section wil l  i l lustrate several issues 

related to strat i f icat ion when time plays a role 
in the design of the survey. The surveys 
described in Section 2 wil l  be used as 
i l lust rat ive examples. 

Stratif ication is inevitably connected to the 
choice of sampling unit. I t  may be d i f f i cu l t  in 
practice to strat i fy  sampling units defined by 
crossing units and t ime periods. For example, 
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electrical load surveys may consider sampling 
units of the form households x times. I f  
seasonal strata are defined, this approach may 
involve frequent switching of households from 
stratum to stratum. 

In a recent load research survey design, we 
have defined four basic strata based on summer 
and winter electrical usage: 

(a) low-summer, low-winter; 
(b) low-summer, high-winter; 
(c) high-summer, low-winter; 
(d) high-summer, high-winter. 

Exhibit 1 il lustrates how appliance use patterns 
are related to these four primary strata. These 
strata were further partitioned to yield 
substrata of approximately equal total (kWh) 
cons umpt i on. 

Stratum boundaries in the two-dimensional 
plane were constructed based on summer and 
winter average daily (kWh) consumption as 
illustrated in Exhibit 2. Note that the two- 
dimensional nature of the stratif ication arises 
not s t r ic t ly  from the temporal component, but 
from the combined use of two stratif ication 
variables. 

The two-dimensional stratif ication shown in 
Exhibit 2 is obtained by crossing the two 
marginal, one-dimensional stratif ications. 
Other, more general methods of multivariate 
stratif ication are considered in Iachan (1985a). 
The methods include the possible use of one 
composite (one-dimensional) variable to reduce 
the problem's dimensionality. In the two- 
dimensional example discussed in the paper, 
ocean depth contours provide efficient strata 
for estimating shellfish abundance. In state 
radon surveys, a composite radon potential index 
has a lso been suggested for stratif ication 
(where strata are groups of counties). 

Two-dimensional stratif ication is often 
encountered in national surveys where the U.S. 
terr i tory is divided into compact regions. 
Regional strata may be formed by clustering 
geographic units that are not necessarily 
Contiguous (Iachan, 1987). In indoor air and 
radon surveys, the temporal dimensi{)n plays a 
role through seasonal/climatic effects (Iachan, 
1988). Regional strata for radon surveys should 

also take geological factors into consideration. 
As a result, strata for these surveys are 
typically non-compact, i .e. ,  comprised of 
several disjoint areas. 
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Exhibit 1. End-use saturations in i n i t i a l  size strata 
for residential sample* 

Appl i ance 

Stratum 
S-Hi S-Lo S-Hi S-Lo 
W-Hi W-Hi W-Lo W-Lo 

A/C H L H L 

Electric Heating H H L L 

Electric Water Heater H H L L 

* Saturations for each end-use in the table are labeled H(high) or L(low) 
according to whether they are above or below the overall (population) 
saturation. (Saturations are the percents of population units with the 
given appliance.) 

Exhibit 2. Usage stratum boundaries based on (S,W) space 
for residential sample 

70.1 

29.1 

20.1 
1,2 

23.2 33.1 56.5 

* S = daily average Summer KWh consumption, 

W = daily average Winter KWh consumption. 

Stratum labels are- 
I = very small (gas), 
2 = very small (non-gas), 
3 = small (low/low), 
4 = low summer/high winter, 

5 = high summer/low winter, 
6 : large (high/high), 
7 = huge. 
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