
MODEL-BASED SAMPLE SELECTION AND PREDICTION PROCEDURES FOR T W O - S T A G E  SAMPLING 

Nancy J. Carter, California State University, Chico 
and G. David Faulkenberry, Oregon State University 

Nancy J. Carter, Dept. of Math and Statistics~ CSUC, Chico, CA 95929-0525 

Key Words and Phrases: Superpopulation, Variate values, 
Simulation 

ABSTRACT 

The problem of sample selection when predicting variate 
values for all individual units in a finite population based on a 
sample of some of the units is investigated. A 
superpopulation model-based prediction approach is proposed 
for the two-stage sampling problem. An iterative sample- 
selection procedure influenced by the consideration of 
minimizing the prediction errors with respect to the model is 
discussed. An example illustrates and evaluates the proposed 
procedures. Further  research subjects and possible problems 
are discussed. 

1. INTRODUCTION 

The use of a superpopulation model-based prediction 
approach to two-stage sampling is not new. For example, 
Royall (1976) used a linear least-squares prediction approach 
to two-stage sampling where the goal was to predict the 
population total over all units. What  is different about the 
work presented in this paper is that, while past work has 
concentrated on predicting one value (say a mean or total) 
over all units, the goal of this research is to derive a predic- 
tion for each individual population unit based on a sample of 
only some of the units. The approach used is to assume an 
underlying superpopulation model and to select the sample 
units and derive the individual population unit predictors 
based on this model. 

2. MODEL AND DEVELOPMENT OF PREDICTORS 

2.1 Model, Definitions, and Notation 

Consider a finite population of N identifiable units 

(assume N is a known integer). Associated with unit i is 

the random variable Yi" The joint distribution of Y1,...,YN 

will be denoted by ~. Also associated with unit i are p 

known auxiliary variables Xil,. . . ,Xip. Let X'_I -- (Xil .... 'Xip) 

denote the vector of auxiliary variables for unit i. The 

independent random variables Y1,...,YN are assumed to be 

X.~fl and V a r ~ ( Y i ) -  ~r 2 distributed so that  E~(Yi) = -1 -  

(assume homogeneous variances). It is assumed that  cr 2 and 

_fl' = (fll , . . . ,flp) are unknown constants. 

Contained within unit i are M i subunits il,...,iM i (M i is 

a known integer). Associated with subunit ij is the random 

variable Z.. where Z.. represents some characteristic of 
1j 1j 

interest for i=l , . . . ,N and j=I , . . . ,M i. The independent 

random variables Z;; are distributed so that  E;(Z;;)  = 
% ld 

and Var~(Zij ) = cr 2 i" 

M i 
It is assumed that  Yi - - j~ l  ZiJ" 

Thus, the random variable Yi represents the total over unit i 

M .  
1 

for some characteristic of interest. Since Yi = E Z.. it 
j = l  13' 

follows that  E ~ ( Y i ) =  MiP i. But E ~ ( Y i ) =  X_i_~ 

x_i~ 
which implies MiP i = X_ifl and #i = ~ " Similarly, 

1 

Var~(Yi) = Mi~r2 and V a r ~ ( Y i ) =  o 2 Thus, a.2 _ ~r___22 
• 1 - M  i" 

In drawing the sample, elements are selected for 

observation in a two-stage procedure. First, a sample s of n 

units from the N is selected. Next, from the M i subunits in 

first stage unit i, a subsample s i of size m i is chosen at 

random. Without  loss of generality, assume the units are 

arranged so that  the first n are sample units and the 

remaining N-n are nonsample units. Further assume there is 
n 

a fixed total sample size, m. Then E m i = m. 
i - 1  

Since units 1,...,n are subsampled, it is necessary to 

estimate Yi for these units based on the sample. The 

estimator chosen for use is Yi -- E Z.. -4- (M i - mi)Z i - 
JEsi 13 

Y ] Z . .  
_ s i 13 

M.ZI i where Zi - m i . Under the assumed model, E~(Yi) 

- X : f l  and ) =  - -1 -  Var((Yi  
M . a  2 

1 
m i • 

Following the notation of Royall (1976), let X_I denote the 

n x p matrix of auxiliary variables and V_I the n x n 

covariance matr ix  associated with the n sample units. 

Similarly, denote by _XII and V_I I the corresponding 

matrices for the N-n nonsample units. Let V_II, I be the (N- 

n) x n matr ix of covariances between nonsample and sample 

units. Denote by Y_ the N x 1 vector of random variables 

Y1,...YN. 

If y is arranged so that  the first n units are Y1,...,Yn 

and the remaining N-n are Y n + I ' " ' Y N '  the model states 

that  E ~ ( y ) =  _X_fl and C o v e ( y ) =  y where 

i ii [xi 1 Y =  , X =  , 
- Y I I  - -xII 
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_V I 
v_= 

V- II,I 

V' 
- II,I 

YII 

and /3 is defined above. That is, 
~ 

-YI = 

Y1 

r 

and 

x I - 

Xl l  X12 

X21 X22 
• 

Xnl Xn2 

Xlp 

X2p 

Xnp 

For this situation, 

M 1 

0 

YI = or2 

0 0 • • 0 

M 2 
m 2 

0 0 

0 " " 0 

M n  
0 m--~ 

= a2A_ i. 

A 

Since it is assumed Cov~(Yi,Yj) = 0 for all i -  1,...,n 

and j=  n+l,. . . ,N , WII,I is a (N-n) x n matrix of zeros. 

Therefore, 

V = ~  2 

M 1 
0 0 

M 2 
0 0 m 2 

Mn 
mn 

0 1 

= a2A. 

Therefore, under model ~, the weighted least-squares 

estimate of fl is ~ - (_x'IVilx_i)-lx ' ivi1Yi or 

equivalently, ~ = (_X'IA_I1XI)-I_x'IAI1YI . 

2.__22 Development of Predictors and Error Variance of 

Predictors for the Nonsample Units 

The totals for the nonsample units are Yi(j=n+I,...,N). 
t A 

, $  

Since E ~ ( Y j ) -  _Xj~ and ~ is ~-unbiased for ~, the 

natural predictor for Yj is X~.fl. - j  

The model-based approach taken suggests the appropriate 

measure of uncertainty for the predictors is the error variance 

with respect to ~. Therefore, it is assumed the samples s 

and s i are fixed for i=l, . . .n and, for j = n+l,. . . ,N the 

following quantity is considered: 

E~(Yj- X~.fl) 2 - J _  = Var~(Yj)+ 2Cov~(Yj,_X~fl)_ + Var~(X]~)• 

Since j is a nonsample unit and ~ is computed from the 
~ 

A 

it must be true that CovE(Yi, X'i~ ) = 0• sample units, 

Therefore 

E{(Yj- X'j~) 2 = z2[1 + x'j(X_'AIlXI)-lxjl 

2.3 Development of Predictors and Error Variance of 

Predictors for the Sample Units• 

For the sample units the total is 

M k 
Yk =j_=_E1 ZkJ (k=l,...,n). 
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For unit k, the sample estimate of 
A A A 

Yk is Yk" The Yk values are used to construct /3, the 

model-based estimate of ft. Note that  the sample units are 
~ 

composed of two kinds of subunits: those that  are sampled 

and those that  are not sampled. To take advantage of the 

assumed model relationships, a weighted predictor for sample 
A :4: A ~ A A 

unit k, Yk ' is used where Yk = WkYk + ( 1 -  Wk)X'kfl 

and where w k is the weight given Yk" The weight, Wk, that  

minimizes E~(Y k - Yk*)  2 is w k = %Mk. 

m k ^ ^ 
Substituting w k -M-kk into the Yk* formula gives Yk* 

mk mk ^ - (1 - mk ^ 
= (Mkk)Yk + (1-~-~k ) X ' k ~  s~ Zjk + 

mk ^ , )2  
When w k = ~ is substituted into E~(Y k - Yk the 

result is E~(Y k - Yk*) 2 = 

- m k  (1 ~ )  X 'k (X ' IAI -1X a2 (1 ~ ) [ 1  + - _ _ _ _ I ) - lXk  I. 

3. SAMPLE SELECTION P R O C E D U R E  

In theory, it would be desirable to select the sample in such 

a way as to give small prediction errors 

E~(Yj -  X~j~) 2 for j = n + l , . . . , N  and E~(Y k - ~/k*) 2 

for i=l , . . . ,n .  

However, looking at these error variances, it is seen that  

E((Yj  - X ' j ~ ) 2 =  ~r211 + X ' j ( X ' I A I l X I ) - l x j ]  

and E~(Y k - Yk*)  2 = 

(3.1) 

cr2(1 - mk m k ~ ) [ 1  + ( 1 -  ~ ) X ' k ( X ' I A I 1 X I ) - I X k  ] (3.2) 

where A I1 depends on the m k for k=l , . . . ,n .  Since both 

equations(3.1) and (3.2) depend on the m k the following 

sample selection scheme is proposed. 

First choose some starting size for the number of units 

selected, say n 1. Next use the procedure described in the 

paper titled "A Model-Based Sample Selection Procedure For 

One-Stage Sampling" by Carter and Faulkenberry (1989). 

When using the sample selection procedure for one-stage 

sampling to pick the n I units, assume no subsampling (i.e., 

m k - M k for k= l , .. . ,n l ). The next step is to determine how 
A 2 

to choose the m k such that  E~(Yk-Y k ) g .  " is minimized for 

k=l , . . . ,n  1 
n 1 

with the restriction that  E m k - m (where m 
k = l  

is the fixed total sample size). The method of Lagrange 

multipliers was used to accomplish this goal and the result 

obtained was 

~M k 
m k =  n 1 

E 
k = l  

Now equations (3.1) and (3.2), the error variances of the 

predictors, can be computed. Once the error variances are 

computed, the maximum over the N-n 1 nonsample unit error 

variances can be determined. These maximum error variances 

are used to "judge" the sampling plan. The goal now is to 

minimize the max imum over these equations with perhaps the 

added constraint of a minimum allowable error on the 

nonsample units. To achieve this goal, the entire sample 

selection process is repeated beginning with n 2 units where 

n 1 < n 2 < N. By continuing in this way a sequence of 

sampling plans, P1,P2,...  is derived. This sequence is 

continued until the maximum over the N equations (3.1) 

and (3.2) is no longer being reduced or, if there are other 

constraints, until all of these are met. It should be noted that  

since the total sample size is fixed, when n is increased, the 

number of subunits sampled is decreased. Hence, increasing n 

increases the (3.2) values. 

The amount  of increase in n i each time is a mat ter  of 

interpretation. If the maximum over (3.1) and ( 3 . 2 ) i s  

changing a lot from Pi-1 to Pi then a larger change in n i 

should be made than if there is little reduction taking place. 

If it happens that  n 1 was chosen so that  at plan P2 (using 

n2) the max imum is increasing, reduce n 1 to n' 2 and repeat 

the procedure suggested above only reducing n at each step 

until the condition in step 6 is met. 

This procedure does require a lot of computation but it is 

all relatively easy to do. All of the computations mentioned 

above are simple and straightforward. 

4. EXAMPLE:  AN EVALUATION OF THE SAMPLE 

SECTION AND PREDICTION PROCEDURES USING 

ACTUAL DATA 

Actual da ta  was used to examine how well the sample 
selection process and the prediction procedures worked. The 
data  set that  was used came from the U.S. Bureau of the 
Census-  County and City Data  Book (1983). 
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The ultimate goal was to predict the number of physicians 
(column 39) for each state. States were the first-stage units. 
The second-stage units were counties within states. The 
auxiliary variables used were total persons per state (column 

2) and total income in the state (column 116). 
Even though data were provided on the number of 

physicians per state, this information was treated as unknown. 
It was later used as a check on the predictions derived by the 
method described in this paper. 

Hence, using the procedures of this paper with two 
auxiliary variables per state, states were chosen to be sample.d. 
Within the sampled states, counties were chosen to be 
sampled. For all counties, data were available on the number 
of physicians per county (hence,-these data were available for 
the sampled counties). The prediction procedures proposed 
were then applied to the sample data and using the model, 
predictions were derived for the number of physcians per state. 

In order to evaluate these predictions, the following statistic 
was computed for the sampled states: 

y .  _ ~r* 
1 l (4.1) 
Y. 

where Yi is the true number of physicians for state i (based 

on the Census data) and 4~, is the model-based estimator for 

state i ( i=l , . . . ,n  where n is the number of sampled states). 

For the nonsample states, a similar statistic was computed: 

Y . - ~ .  
J J (4.2) 
Y. 

J 

where Y. is the number of physicians per state j based on J 

= X:fl_ is the model-based predictor the Census data  and --i 
J-  

(j = n+l , . . . ,N) .  Thus equation (4.1) measures the relation- 

ship of the estimated value to the true value in units of the 

true value for the sampled states. Equation (4.1) measures 

the proportion of error in the predicted values. If (4.1) is zero, 

that implies the predicted value and the true value are equal 

which means zero error. Hence, values of (4.1) "close" to zero 

indicate that the predicted value was "close" to the true value. 

Conversely, "large" absolute values of (4.1) indicate the 

predicted values are not good. A similar explanation holds for 

equation (4.2) except that (4.2) measures the error in the 

predictions for the non-sampled states. Here N=48 since 

Alaska and Virginia did not have county data available. 

The total number of counties in the 48 states used for this 
example is 2936. Three different total sample sizes were 
selected in order to see what effect total sample size had on 

the quality of the predictions. The three sample sizes were m 
= 200, 300 and 600. That  is, m = 200 is approximately a 
6.8% sample, m = 350 is approximately a 10.2% sample and 
m - 600 is roughly a 20.4% sample of the total number of 
counties. For each sample size, the first step was to select the 
states to be used at the first-stage of the process. This was 
done using the Carter-Faulkenberry technique described in "A 
Model-Based Sample Selection Procedure For One-Stage 
Sampling" (1989). The one-stage Carter-Faulkenberry sample 
selection process determined both the number of states to use 
and which states to use. For m = 200, it turned out that the 
optimum number of states to sample was n = 5 (California, 
New York, Pennsylvania, Ohio, North Carolina). Finally, 

when m = 300, the optimum number of states to sample was 
n = 9 (California, New York, Pennsylvania, Ohio, North 
Carolina, Texas, Tennessee, New Jersey, Illinois) and for m 
= 600, the optimum number of states to sample was n = 13 
(California, New York, Pennsylvania, Ohio, North Carolina, 
Texas, Tennessee, New Jersey, Illinois, Georgia, Connecticut, 
Alabama, Florida). 

In order to evaluate the prediction and sample selection 
processes, 1000 samples of size m were chosen for each of the 
fixed sample sizes: m = 200, 300 and 600. For each of these 
samples, the n values for equation (4.1) and the N - n values 
for equation (4.2) were computed. The mean of the 1000 (4.1) 
and the mean of the 1000 (4.2) values were next computed for 
each state in order to see how the prediction procedures 
behaved in the long run. That  is, the mean of the (4.1) values 
was computed for each sample state where the mean is 

1000 Yi -_Yi*k / 
E ~.-- 1000 

k = l  Yi / 
(4.3) 

A ,  
for fixed i - 1, . . . ,  n and where Yik is the predicted value 

for state i for simulation number k where k = 1, ..., 1000. 

Similarly, the mean of the (4.2) values, 

A 

1000 YJ yYJ k / 
E - -  1000 (4.4) 

k = l  j / 

was computed for each nonsample, state j=n+ l , . . . ,N  and 

~rjk is the predicted value for state j for simulation where 

number k with k = 1, ..., 1000. 

In addition to the means given by (4.3) and (4.4), standard 
deviations, ranges, maximums, and minimums were computed 
for each state where the computations were done over the 
1000 values of either (4.1) for sample states or (4.2) for 
nonsample states. These statistics were computed for m = 
200, 300 and 600. 

Summary statistics for the 1000 (4.1) and (4.2) values were 
computed for each of the three cases (i.e., m=200, 300 and 
600). Generally, the procedure appeared to work well for the 
sampled states and varied some for the nonsampled states. 
When m=200 and n=5, the mean of the 1000 (4.1) numbers 
for each of the 5 states is only off by a maximum of 6.2% For 
the nonsampled states, N-n = 43 and the mean of the 1000 
(4.2) numbers for each of the 43 states is off by a maximum 
of 117%. That  maximum occurred in Wyoming and it is 
probably due to the fact that Wyoming has only 512 doctors, 
most of whom are located in a couple of counties. If those 
counties were not chosen for the sample, the estimate would 
vary quite a bit from the true value. When m=300 n=9 and 
N-n=39, it was seen that the means for the sampled states are 
a little more variable (now off by a maximum mean of 22.8%) 
while the nonsampled states have means which are off by a 
maximum of 97.7% (again in Wyoming). Finally, when 
m=600, n=13 and N-n=35, the maximum means for both 
sampled and nonsampled states are smaller than those when 
m=300, n=9 and N-n=39. Overall, the means are good for 
the sampled states and vary for the nonsampled states. The 
geographic distribution of the doctors seems to be a very 
important factor in how well the process performs. 

5. COMMENTS AND FURTHER QUESTIONS 

A number of subjects need to be investigated before this 
model-based sample selection and prediction process becomes 
clearly practical. One subject is that the proposed procedures 
are model-based. The sensitivity of the procedures to 
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deviations from model assumptions is a critical point. The 
second-stage units are randomly selected but the first-stage 
units are chosen with purposive and not random sampling. 
Comments about the possible problems encountered are 
discussed in Carter and Faulkenberry (1989). 

A further important subject for examination is the case 
when there are multiple predictions desired for each unit. 
Multiple predictions (for example: number of physicians per 
state and number of serious crimes per state) may cause the 
auxiliary variables to change. This would effect the sample 
selection and prediction processes but in unknown ways. It is 
not clear how to select the "best" set of one-stage sample units 
in order to predict variate values for two or more 
characteristics of interest per unit. 

Also, this paper proposed a procedure which required 
homogeneous variances of the first-stage units. 
Nonhomogeneous variances will require some adjustment to 
these procedures. 

In conclusion, the sample selection and prediction processes 
proposed in this paper may be useful in deter-mining 
predictors for two-stage sampling when a good model 
relationship exists. 
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