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1. INTRODUCTION

Work by Cox and Ernst (1982), Causey, Cox and
Ernst (1985) and Ernst (1986) has demonstrated
the utility of linear programming in obtaining
solutions to some statistical problems,
particularly in sample design and estimation.
In this paper some further developments in this
area are presented.

In Section 2 the controlled rounding problem
in three dimensions is considered. Controlled
rounding is concerned with replacing nonintegers
by integers in an additive array while
preserving additivity. Cox and Ernst (1982)
demonstrated that a controlled rounding exists
for every two-dimensional additive array. It is
established here, by means of a counterexample,
that the natural generalization of their result
to three dimensions does not hold, but that a
rounding  does always exist under less
restrictive conditions.

Causey, Cox and Ernst (1985) presented an
optimal solution under very general conditions
to the problem of waximizing overlap between
primary sampling units (PSUs) when redesigning

sample surveys. Their solution modeled the
problem as a transportation problem. In Section
3 two modifications of that procedure are

presented. One modification very substantially
reduces the size of the transportation problems
used in the original procedure, which sometimes

can be unmanageably large. The second
modification results in an overlap procedure
which  preserves the independence of the

selection of sample PSUs from stratum to
stratum, an independence which 1is generally
destroyed by overlap procedures if the initial
and new designs do not have the same
stratification.

In Section 4 linear programming is considered
as an alternative to stratification as a method
of reducing between PSU variances. The linear
programming approach is conceptually very simple
and flexible, and permits the optimal balancing
of such often conflicting goals as the
minimization of variances and the ability to
estimate variances. Linear programming is also
applicable to the selection of PSUs for two or
more dependent designs simultaneously, such as
when the sample PSUs for one design are required
to be a subset of the sample PSUs from a second
design. However, as noted in Section 4, the
procedure also has the potentially fatal flaw
for some design problems that the corresponding
linear programming problem may be too large to
solve practically.

Due to space limitations the full
not presented here. All proofs, the 1list of
references and some exposition have been
omitted. The complete paper is available from
the author.

paper is

2. THREE-DIMENSIONAL CONTROLLED ROUNDINGS
Cox and Ernst (1982) proved that there exists
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a controlled rounding for every two-dimensional
additive array. The question of whether that
result generalized to three dimensions had
remained unanswered until now. In Section 2.2 a
negative answer to this question is presented by
means of a counterexample. Then in Section 2.3
it is proven that a rounding satisfying a less
restrictive condition exists for each three-
dimensional array. First, however, the notation
and concepts of controlled rounding, and the
results in Cox and Ernst (1982) are briefly
summarized in Section 2.1.

2.1 Preliminaries
A (m+1)x(n+l)x(2+1) array A=(a1jk) is said to
be a tabular array if

1<j<n+l, 1<k<e+l, (2.1)

- a(m+1)jk’

l1<iemt+l, 1cks<g+l, (2.2)

n
Z 35k T Y (n+l)k?

1<i<m+l, 1gjs<n+l. (2.3)

T 345(e41)°

Cell (i,j,k) is an internal cell if i<m+l,
j<n+l and k<g+l. If equality replaces strict
inequality in any of these relations then the
cell is a marginal of dimension equal to the
number of. indices for which equality holds.
This definition is analogous to the definition
of a tabular array in two dimensions for which
the third subscript is omitted from (2.1) and
(2.2), and there is no (2.3).

In the three-dimensional case a controlled
rounding of a (m+l)x(n+1l)x(g+l) tabular array
A=(a1jk) with respect to a positive integer base

b is a (m+l)x(n+1l)x(e+l) array R(A)=(r1jk) for
which

R(A) is a tabular array, (2.4)
Fijk = Lag5/0q0 or ryg=lag 5 /bl + b

for all 1i,3,k, (2.5)
where [ ] denotes the greatest integer
function. The analogous definition 1in two
dimensions is obvious. The definition of a

slightly more restrictive form of rounding known
as zero-restricted controlled rounding is
obtained by adding the requirement that Pijk =
aijk if aijk is a multiple of b.

In Cox and Ernst (1982) it was established
that a controlled rounding, and even a zero-
restricted controlled rounding, exists for every
two-dimensional tabular array.

In the next subsection it 1is shown that
controlled roundings do not always exist in
three dimensions, but then in Section 2.3 it is



shown that there exists for every three-
dimensional tabular array A=(ai'k)’ a tabular
array R(A>=(rijk) for which J

rijk is an integral multiple of b and

|r1jk - aijk|<2b for all i,j,k. (2.7)

2.2 A Three-Dimensional Tabular Array with No
Controlled Roundings

For any (m+1l)x{(n+1)x(e+1) tabular
A=(aijk)’ let I(A) denote

consisting of the internal elements of A, that

array
the mxnxg matrix

is I(A)=(aijk)= 1<iem, 1<j<n, 1<k<z.

The construction of a tabular array B- for
which no controlled rounding exists consists of
two steps. First Tlet B=(b1jk) be the b5x5x5

tabular array, with the following representation
as a set of five levels, that is as a set of
two-dimensional tabular arrays corresponding to
k=1,2,3,4,5.

Level 1 Level 2
LS00 5 0 1 S0 0 51
0 .5 .5 0 1 0 .5 0 5] 1
T T O ¢ 1 0 0 0 0] O
0 0 00 0 H .5 0 071
1 1 10 3 11 0 1] 3
Level 3 Level 4
0 0 0 0740 0 0 .5 51
0 0 .5 511 0 0 0 04}0
0 .5 0 BbH1]1 S0 0 51
0 .5 5 0|1 S 0 .5 011
0 1 1 1|3 1 0 1 113
Level 5

1 0 1 1 3

0o 1 1 1 3

1 1 0 1 3

1 1 1 0 3

3 03 3 3 |12

Figure 1. The Tabular Array B

Then let B” = be the 13x13x5 tabular

array with the set of internal elements I(B-)
defined by

b{jk = bijk if 1<i<4, 1<j<4,
= b(i-4)(j-4)k if 5<i<8, 5¢<j<8,
= b(i-8)(j-8)k if 9<ikl2, 9<j<l2,

for all other i,j,k.

The proof that B“ has no controlled roundings is
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presented in the complete paper.

Remark 2.1: A1l the marginals of B~ are
integers. However, B” can be easily modified to
obtain a 5x5x13 tabular array, B"=(b{5k) which

has no controlled roundings and for which none
of the <cells, internal or marginal, are
integers. Simply define I(B”*) by choosing
any e with 0<e<1/576 and letting b{jk=b{jk + €
for each internal cell (i,j,k). Since there are
576 internal cells in B““, no cells of B*~,
including marginals, are integers and [b’{jk]=

[b{jk] for all cells in B-“. Therefore, the set

of controlled roundings of B”““ is identical to
the set of controlled roundings of B“, namely
the empty set.

2.3 An Additive Rounding in Three Dimensions
Which Always Exists

It will be shown that for every
(m+1)x(n+1)x(2+1) tabular array A=(a1jk)’ there

exists a (m+l)x(n+l)x(2+1) array R(A) = (rijk)’
satisfying (2.4) and (2.7). Such an array is
obtained by successively defining a sequence of

two-dimensional, base b, zero-restricted
controlled roundings. First let (rijl) be a

rounding of the
Then for k=2,...,2,

zero-restricted controlled
(m+1)x(n+1) array (a5:1)-
let J

k-1
Cijk T . A5t~ ¢

[ Ray

| A
t Zl 1t

I<i<m+l, lgj<n+l, (2.19)

and take (rijk) to be a two-dimensional zero-

restricted controlled rounding of the
(m+1)x(n+1) array (Cijk) with k fixed. Finally,
let

[
.. = Lo s i<m+l, l<j<n+l. .2
r1J(£+1) kzl r13k 1<i<mt+l, 1<js<n+l. (2.20)

The proof that the array just defined satisfies
the required properties is presented in the
complete paper.

3. FURTHER RESULTS ON MAXIMIZING THE OVERLAP
BETWEEN SURVEYS

The problem of maximizing the expected number
of PSUs retained in sample when redesigning a
survey with a stratified design for which the
PSUs are selected with probability proportional
to size was introduced to the literature by
Keyfitz (1951). Causey, Cox and Ernst (1985)
were able to obtain an optimal solution to this
problem under very general conditions by
formulating it as a transportation problem. The
reader of this section is urged to read that
paper to facilitate understanding of the work to
be presented here.

There are several difficulties associated
with the use of the procedure of Causey, Cox and
Ernst. The description and solution to one of
these difficulties is presented in Ernst



(1986). In this section approaches are
presented for handling two other problems.

The first problem is that in the procedure of
Causey, Cox and Ernst the transportation problem
used in the selection of the sample PSUs for the
new design in each stratum can be unmanageably
large. To see this, note that each possibility
for the set of PSUs in a new stratum S that were
in the sample for the initial design corresponds
to a row in the transportation problem, and each
possibility for the set of PSUs in S in sample
in the new design corresponds to a column. If S
consists of n PSUs from which m are to be
selected without replacement in the new design,
then the number of columns is (n), which is a
reasonably-sized number for m=1"or 2 say, if n
is moderately sized. However, for any m the
number of rows can be as large as 2", resulting
in a transportation problem too large to
practically solve even for moderately-sized n.

In Section 3.1 a modified procedure is
presented for which the number of initial
outcomes used in the transportation problem is
vastly reduced, resulting in a transportation
problem that should be manageable for typical
values of n and m. The expected number of PSUs
retained when applying this modified procedure
is, not surprisingly, generally Tless than for
the original procedure, but it is believed that
in practice the loss in overlap usually would be
small.

The second problem considered in this
section, unlike the first, applies not only to
the procedure of Causey, Cox and Ernst, but to
all previous overlap procedures that this author
is aware of, whenever the initial and new
designs have different stratifications. Overlap
procedures in this case destroy the independence
of the selection of sample PSUs from stratum to
stratum in the new design (Ernst 1986). Among
the consequences of this loss of independence
are changes in variances which are almost never
accounted for in the variance estimates. In
Section 3.2 another modification of the
procedure of Causey, Cox and Ernst is presented
which preserves the independence of the
selection of sample PSUs from stratum to stratum
in the new design. The procedure also generally
reduces expected overlap in comparison with the
original procedure, in some cases drastically.

3.1 A Reduced-Size Transportation Problem for
Maximizing Overlap

The reduced-size procedure will, for ease of
presentation, be described here only for the
case when both the initial and new designs are
two PSUs per stratum without replacement. Many
of the details even for that case have been
omitted here but are available in the full
paper, where, in addition, the changes necessary
to apply this procedure for other initial and
new designs are sketched. It 1is assumed
throughout this subsection that PSUs in the
initial sample were selected independently from
stratum to stratum.

The general outline of the procedure for the
particular case to be detailed is as follows.

Let Al""’An denote the set of PSUs in a new

stratum S. Let the random set 1 denote the set
of integers i for which A; was in the initial

sample and let N be the corresponding random set
with respect to the new sample. The set of all
distinct pairs of integers i,j e {1,...,n} will
be ordered in a manner that the pairs i,j listed
earlier correspond to pairs of PSUs Ai’Aj that

have a better chance of being retained in sample
in the new design if they were in sample in the
initial design.

The details of the ordering of the pairs are
presented in the full paper. From this
ordering, the following ordering,
11,12,...,1\)+n+1 of all subsets of {1,...,n}

of two or fewer elemnts 1is constructed, where
the abbreviation v=(2) is used. Il""’Iv

consists of the pairs of integers determined by
their ordering. Iv+1’ "‘;Iv+n consists of the

n singleton sets in any ordering, and
I\)+n+1 = P. For each I, a wunique Ii is
associated, namely the first Ii in the sequence
for which Ii c I, For each I it s the
associated 11 rather than I itself on which the

new selection probabilities are conditioned, and
thus the new selection probabilities are
conditioned on only vin+l events., For
*

each i=1,...,vtn+l, P; denote the probability
that I is the subset associated with 1.
*

Formulas for computing p.
complete paper. 1
As for the new sample, there are v
possihilities, denoted Sj, J=1l,eeesv, for N.

If Sj = {s,t}, then w;, the probability that
N=Sj, is simply the predetermined probability

are presented in the

that both s and t are in the new sample.

The transportation problem to solve for this
procedure can at last be stated. For
izl,eea,vtntl, j=l,...,v, xij is the joint
probability that Ii is the set associated with I
and N=Sj, while Cij is the expected number of
PSlls in IﬁSj given IL,. Formulas for computing
cjj are in the complete paper. The Xij|s are
the variahles and the transportation problem to
solve is to determine Xij>0 that maximize

vin+l v
121 J'Zl ‘i3t
subject to
v * .
jzl Xjj = Pis i=l, 000, vin+l,
vin+l .
DN ><1.j =T, J=lyeessve

1j's have been obtained, the

conditional new selection probabilities for

Once the optimal x



*
Sj’ j=1l,...,v, given 11, are Xij/pi‘
3.2 An Overlap Procedure That
Independence from Stratum to Stratum

The key to a modified overlap procedure that
preserves the independence of the selection of
sample PSUs from stratum to stratum in the new
design if such independence existed in the
selection of sample PSUs in the initial design
is as follows. Let Fl""’Fr and Sl""’st

denote the set of strata in the initial and new
designs respectively, and let I denote the set
of initial sample PSUs across all initial design
strata. With each Sj, j=lyeeesty, @ subset

Preserves

Sj of Sj is associated such that each distinct
pair Sj, Sﬁ of such sets have no initial stratum
in common, that is for each i=l,...,r
Sj!WFi =p or Sk n Fi = P.
of PSUs in 1(153 and INS” ,

independently into the initial sample, even
though this is not necessarily true for IFISj

and T N Sk‘
procedure which conditions the selection of new

either
Therefore, the set

were selected

Consequently, a modified overiap

design  sample PSUs  for Sj on Ir\Sj instead
of Ir)Sj, as in the original procedure of
Causey, Cox and Ernst, would result in an

independent selection from stratum to stratum of
the new design sample PSUs.
A simple method of obtaining 55, J=lyeeests

satisfying the required condition is to
associate with each initial stratum Fi a unique

new stratum Sf(i)’ by means of a mapping
f: {1,...,r}-+{1,...,t}, and let

S{=50 U Fys J=lieeost.

3qefT (D

Appropriate choices for f are presented in the
complete paper.

The transportation problem to be solved for
this modified overlap procedure can now be
stated. As in the procedure presented in
Causey, Cox and Ernst, each stratum in the new
design requires the solution of a separate
transportation problem. Dropping the subscript
j, let S be a stratum in the new design
with S~ the corresponding subset as described
above. Llet Il,...,Im denote all possibilities

for the subset of S” consisting of all PSUs
in S” that were in the initial sample and let
Nl""’Nn denote all possibilities for the

subset of S consisting of all new sample PSUs in
S. For i=l,...,m, j=l,...,n, let p; denote the

probability that Ii the
sample PSUs in S§7, " the probability that Nj is

was set of initial

ij the joint

probability that both of these events occur, and

the set of new sample PSUs in S, x

Cij the expected number of PSUs in I(\Nj given
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Ii'
variables
determined.

Now proceed exactly as in Causey, Cox and
Ernst, that is determine X1j>0 that maximize

that the

are to be

]
the X1J S
values

Again it s are

whose optimal

m n

Cas Xi.
121 jzl 1 1)
subject to
n
jzl Xij = Py i=1l,...,m,
m
izl Xij =T j=l,eee,n.
Then, once the optimal xij‘s have been
obtained, the conditional new selection
probabilities for Nj’ j=l,...5n, given Ii’ are

xij/pi‘

It remains to explain how to compute c
Let le""’Njk denote the PSUs in Nj,
for 2=1,...,k let

ije
and

Cijz = 1 1if Njg € Iiﬂ S-,
=0 if le g€ $° ~ Ii’
= P(sz e I) if le £ S,
Then
k
C.. = ct..
ij le ije

4, LINEAR PROGRAMMING AS AN ALTERNATIVE TO
STRATIFICATION IN SELECTING SAMPLE PSUs

Consider a survey with a multistage design
for which the PSUs are contiguous geographic
areas. A common design technique to reduce
between PSU variance is to partition the sets of
PSUs into a collection of strata of
approximately equal measures of size, with the
PSUs in each stratum homogenous with respect to
a key characteristic or characteristics of
interest. The sample PSUs are then selected
independently in each stratum with probability

proportional to size. Stratification s
generally effective in reducing between PSU
variances. However, there are some

disadvantages to this procedure. A key problem

is that the process of forming strata, which
fits into the general category of clustering
problems, is often not an easy task.

Furthermore, sometimes the deviations from the
goal of equal-sized strata are nontrivial which
tends to increase variances. If two or more
surveys are to be designed together from
stratified designs with the sample PSUs for one
survey required to be a subset of the sample
PSUs for the other, then techniques such as
collapsing of strata may be necessary, which may
not be highly efficient.



programming is considered in this
section as an alternative to stratification.
This approach, as will be demonstrated, is
conceptually very simple and extremely flexible,
and software is readily available to solve
linear programming problems. Unfortunately,
there 1is a serious and, in many situations,
fatal difficulty associated with the use of
linear programming in this context, namely that
the size of the linear programming problem can
readily get so large that it cannot be solved in
practice even with powerful modern computers.
However, as will be discussed, there are
important situations where either this
difficulty does not arise, or where some hybrid
combination of Yinear programming and
stratification may be feasible.

To state the problem to be considered more
specifically, consider a multistage sample
design for which there are N PSUs from which n
are to be selected without replacement with
probability proportional to size. Let w.. be

LN
the probability that the i-th PSU is

Linear

in the
sample of n PSUs and let 5 be the probability

that both the i-th and j-th PSUs
sample. Let ?1 be an unbiased estimator of the
i-th PSU total, Yi’
second and subsequent stages.

are in

based on sampling at the
Then (Raj 1968)

an unbiased estimator, Y, of the population
total Y is given by
.0,
Y= 3 L
i=1 M
with variance
. N Voo, 2
V() = T (g - om) (- =)
i3 i ij ooy
i<
N 01?
+ ¥ . (4.1)
i=1 "

Typically, in determining the sample design,
values of the n1'S and Yi's are fixed
Then

~

PSU variance component of V(Y),

the
beforehand from census data, for example.

the between

which is

N oY 2

Y ey =) (- =), (4.2)

i i%j ij m 5

i<j
would be minimized by the optimal choice for
the “1jls independently of the only other
variables in (4.1), the c?'s. This will be the
focus of the work in this section, the
minimization of (4.2) by optimal choice of
the "'ijls'

Although stratification tends to lower (4.2),
as explained 1in the complete paper, linear
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programming can attack the problem of minimizing
(4.2) more directly. (4.2) is linear in the

only variables, the "ij's’ so it is only

necessary to minimize this objective function
with respect to these variables subject to
appropriate linear constraints on the nij's. In

order to insure that the i-th PSU is selected
with the required probability, T for each 1,
the following set of constraints must be
satisfied:
N
T om=(n-)m, i=l,...,N, (4.3)
j=1 Y
J#
If selecting PSUs with predetermined

probabilities is the only design requirement,
then this would be the only set of constraints
needed. However, other requirements, such as
the ability to obtain variance estimates with
desirahle properties would lead to additional
constraints as will be described later.

A set of "ijls satisfying (4.3) always
exists, since the "ijls arising from the use of
Sampford's method yields one solution,
Unfortunately, for n>2, there does not
necessarily exist a set of selection

probabilities attached to the set of distinct
n-tuples of PSUs which satisfies an optimal
solution to the problem of minimizing (4.2)
subject to (4.3), that is there may be no
sampling procedure which actually yields the
optimal nij's. For example, 1if N=4, n=3,

Y1/1'r1 = Y2/1T2 then the

following set of n..'s minimize (4.2) subject to
(4.3): I

and Y3/n3 = Y4/ﬂ4,

= 0, (4.4)

T2 = T34

4= 3/4. (4.5)

M3 T M4 T "23 T
However, if ﬂijk denotes the probability that

the sample consists of the i-th, j-th and k-th
PSUs, then .., must be 0 for all four distinct

ijk
triples in order for (4.4) to be satisfied, in
which case (4.5) is not satisfied and thus there
is no set of w..k‘s satisfying (4.4) and (4.5)
simultaneously.

To avoid this problem for general n, let S
denote the set of distinct n-tuples of PSUs and
for each seS, n; denote the probability that s

is selected. Then if § =2 is substituted
seS
i,jes

for ™55 in (4.2) and (4.3), these expressions

become respectively

N Yi Yj 2
I [mom, = 3 12) (— - ), (4.6)
iy 9 ses ST T
i<j i,jes
and



(4.7)

7 = 1wy, i=l,...,N.
seS s 1
ies

Since a solution to the optimization problem

(4.6), (4.7) immediately yields selection

probabilities for each possible n-tuple of PSUs,

the difficulty described with the formulation

(4.2) and (4.3) cannot occur. Furthermore,

Sampford's method always provides a feasible

solution to (4.7). However, 1in practice, a

possibly insurmountable operational problem can

occur. The number of variables in (4.6) and
(4.7) s (2), which can be impractically
large. Thus the use of this procedure appears

to be limited to cases where (:) does not exceed

the software and hardware limitations of the
available equipment. .

This method could be potentially applicable
to the Current Population Survey, which has a
state based design, and hence a separate linear

programming problem for each state. For the

smaller states at least, (E) may be sufficiently
small, N
If (n) is the Tlinear

programming formulation directly, a hybrid of
statification and linear programming could be
used. With this approach, stratification would
first be used to partition the population of
PSUs into a number of super-strata and linear

too large to use

programming then used to select the sample PSUs

from each super-stratum. The number of
super-strata would be smaller  than if
stratification were used alone, but there would
have to be enough super-strata to insure that
the linear programming problem corresponding to
each super-stratum was sufficiently small.

When the problem of minimizing (4.6) subject
to (4.7) is sufficiently small to solve, there
are at least two additional set of constraints
that might be added to the problem in .order to

he able to produce variance estimates with
desirable properties. They are
T & mme, T.3=l,e0.,Ny i#], (4.8)
seS S i
i,jes
¥ mT o> Cmms, i,J=1,000,N, 1#7, (4.9)
J
seS
i,jes
where c<1 is a constant. (4.8) and (4.9) are
equivalent to nij<ﬂiwj and wij>Cniﬂj
respectively. The reasons for requiring these

sets of constraints are as follows. If (Raj
1968) ?i and c? are unbiased estimators of Y,
and cf respectively, i=1,...,N, then provided
“ij>0 for all i,j=1l,...,N, 1i#j, an unbiased
estimator of (4.1) is
~ ~ 2
n TaMa=Ts - Y. Y.
o j i i

oy« 5 AT (L

1,J 1 1 J

i<j
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1/c-1 on (

(4.10)

(4.8) 1is needed to insure that v(?) is always

nonnegative. Without (4.9), T could be O for
some i,j, in which case v(Y) is not unbiased.
Furthermore, (4.9) forces an upper bound of

winj-ﬂij)/ﬂij. The variance of v(Y),

for a solution to the optimization problem that
includes (4.9), generally decreases as ¢
increases, since 1/c-1 decreases with increasing

Ce On the other nand V(Y) increases with
increasing ¢ since the set of feasible solutions
to (4.9) becomes smaller with increasing c. If
¢ becomes too Tlarge there are no feasible
solutions to the optimization problem. Thus the
selection of a value for ¢ in (4.9) involves a
tradeoff decreasing V(Y) the
variance of v(Y). The determination of a ¢
which optimally balances these two goals would
have to be obtained by trial and error or
through the solution of a nonlinear programming
problem,

Until now the problem of minimizing between
PSU variance using linear programming has been
considered with respect to only a single
characteristic., However, a virtually identical
approach can be used to minimize certain types
of averages of the between PSU variances for
several characteristics. For example, to
minimize an average of the variances for r

between and

characteristics, (¥ /n; - Yj/nj)z in (4.2) might
be replaced by

r
2
I (g /my = Yo /n) s (4.11)
k=1
where Yik is the total for the k-th
characteristic in the i-th PSU. wk would be

either a scaling factor or a preference factor
or some combination of the two types of factors

(see Kostanich et al. 1981). Since all the
quantities in  (4.11) are assumed known,
substitution of (4.11) into (4.2) as described

does not change the form of the optimization
problem.

Linear programming is also applicable to the
selection of sample PSUs for two or more designs
when the samples are not selected independently
from design to design, again assuming that the

resulting problem 1is not wunmanageably Tlarge.
This is explained in the complete paper.
*This paper reports the general results of

research undertaken by Census Bureau staff. The
views expressed are attributable to the author
and do not necessarily reflect those of the
Census Bureau.



