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1. INTRODUCTION 
~.lork by Cox and Ernst (1982), Causey, Cox and 

Ernst (19F~5) and Ernst (1986) has demonstrated 
the u t i l i t y  of linear programming in obtaining 
solutions to some statist ical problems, 
particularly in sample design and estimation. 
In this paper some further developments in this 
area are presented. 

In Section 2 the controlled rounding problem 
in three dimensions is considered. Controlled 
rounding is concerned with replacing nonintegers 
by integers in an additive array while 
preserving addit iv i ty.  Cox and Ernst (1982) 
demonstrated that a controlled rounding exists 
for every two-dimensional additive array. It is 
established here, by means of a counterexample, 
that the natural generalization of their result 
to three dimensions does not hold, but that a 
rounding does always exist under  less 
restrictive conditions. 

Causey, Cox and Ernst (1985) presented an 
optimal solution under very general conditions 
to the problem of maximizing overlap between 
primary sampling units (PSUs) when redesigning 
sample surveys. Their solution modeled the 
problem as a transportation problem. In Section 
3 two modifications of that procedure are 
presented. One modification very substantially 
reduces the size of the transportation problems 
used in the original procedure, which sometimes 
can be unmanageabl y Iarge. The second 
modification results in an overlap procedure 
which preserves the independence of the 
selection of sample PSUs f rom stratum to 
stratum, an independence which is generally 
destroyed by overlap procedures i f  the in i t ia l  
and new designs do not have the same 
s t r a t i f i c a t i o n .  

In Section 4 l inear  programming is considered 
as an a l te rna t i ve  to s t r a t i f i c a t i o n  as a method 
of reducing between PSU variances. The l inear  
programming approach is conceptual ly very simple 
and f l e x i b l e ,  and permits the optimal balancing 
of such often con f l i c t i ng  goals as the 
minimization of variances and the a b i l i t y  to 
estimate variances. Linear programming is also 
appl icable to the select ion of PSUs for two or 
more dependent designs simultaneously, such as 
when the sample PSUs for one design are required 
to be a subset of the sample PSUs from a second 
design. However, as noted in Section 4, the 
procedure also has the po ten t i a l l y  fata l  f law 
for  some design problems that the corresponding 
l inear  programming problem may be too large to 
solve p r a c t i c a l l y .  

Due to space l im i ta t i ons  the fu l l  paper is 
not presented here. All proofs, the l i s t  of 
references and some exposit ion have been 
omitted. The complete paper is avai lable from 
the author. 

2. THREE-DIMENSIoNAL CONTROLLED ROUNDINGS 
Cox and Ernst (1982) proved that there exists 

a contro l led rounding for every two-dimensional 
addi t ive array.  The question of whether that  
resu l t  generalized to three dimensions had 
remained unanswered unt i l  now. In Section 2.2 a 
negative answer to th is  question is presented by 
means of a counterexample. Then in Section 2.3 
i t  is proven that a rounding sa t i s f y ing  a less 
r e s t r i c t i v e  condit ion exists for  each three-  
dimensional array.  F i r s t ,  however, the notat ion 
and concepts of contro l led rounding, and the 
resul ts  in Cox and Ernst (1982) are b r i e f l y  
summarized in Section 2.1. 

2.1 Preliminaries 
A (m+1)x(n+l)x(~+l) array A=(aij k) is said to 

be a tabular array i f  

m 

a i j k  : a(m+l ) jk '  
i= l  

l< j<n+ l ,  l<k<z+l,  (2.1) 

n 

a i j  k : a i (n+ l )  k, 
j=l  

l<i<m+l, 1<k.<c+1, (2.2)  

a i j k  : a i j ( z + l  ) ,  
k=l 

1<i<m+1, l< j<n+ l .  (2.3) 

Cell ( i , j , k )  is an internal  cel l  i f  i<m+l, 
j<n+l and k<c+l. I f  equal i ty  replaces s t r i c t  
inequa l i t y  in any of these re la t ions then the 
cel l  is a marginal of dimension equal to the 
number o f  indices for which equal i ty  holds. 
This de f i n i t i on  is analogous to the d e f i n i t i o n  
of a tabular  array in two dimensions for which 
the th i rd  subscript is omitted from (2.1) and 
(2 .2) ,  and there is no (2 .3) .  

In the three-dimensional case a control led 
rounding of a (m+l)x(n+l )x(~+l )  tabular  array 
A=(a i jk )  with respect to a pos i t ive integer base 

b is a (m+ l ) x (n+ l ) x (~+ l ) a r ray  R(A)=( r i j k )  for  

which 

R(A) is a tabular  array,  (2.4) 

r i j  k : [ a i j k / b ] b  or r i j k = [ a i j k / b ] b  + b 

for  a l l  i , j , k ,  (2.5) 

where [ ] denotes the greatest integer 
funct ion.  The analogous de f i n i t i on  in two 
dimensions is obvious. The de f i n i t i on  of a 
s l i g h t l y  more r e s t r i c t i v e  form of rounding known 
as ze ro - res t r i c ted  cont ro l led rounding is 
obtained by adding the requirement that  r i j  k = 
a i j  k i f  a i j  k is a mul t ip le  of b. 

In Cox and Ernst (1982) i t  was establ ished 
that a contro l led rounding, and even a zero- 
res t r i c ted  contro l led rounding, exists for every 
two-dimensional tabular  array.  

In the next subsection i t  is shown that 
cont ro l led roundings do not always ex is t  in 
three dimensions, but then in Section 2.3 i t  is 
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shown that there exists for every three- 
dimensional tabular array A=(aijk), a tabular 
array R(A)=(rijk) for which 

r i j  k is an in tegra l  mul t ip le  of b and 

I r i j k  - a i jk l<2b for a l l  i , j , k .  (2.7) 

2.2 A Three-Dimensional Tabular Array with No 
Control led Roundings 

For any (m+l)x(n+l)x(~+l) tabular array 
A=(aijk), let I(A) denote the mxnxz matrix 

consisting of the internal elements of A, that 

is l ( A ) = ( a i j k )  , l<i<m, l< j<n,  l<k<~. 

The construction of a tabular array B" for 
which no controlled rounding exists consists of 
two steps. First let B=(bijk) be the 5x5x5 

tabular array, with the following representation 
as a set of five levels, that is as a set of 
two-dimensional tabular arrays corresponding to 
k=1,2,3,4,5. 

Level 1 Level 2 

.5 0 .5 0 
.5 .5 0 

.5 .5 F} 0 
0 (3 0 0 

1 1 1 0 

1 .5 0 0 .5 
1 0 .5 0 .5 
1 0 0 0 0 
0 .5 .5 0 0 

3 1 1 0 1 

Level 3 Level 4 

0 0 0 0 0 0 0 .5 .5 1 
0 0 .5 .5 1 0 0 0 0 0 
0 .5 0 .5 1 .5 0 0 .5 1 
0 .5 .5 0 1 .5 0 .5 0 1 

0 1 1 1 3 1 0 1 1 3 

Level 5 

1 0 1 1 3 
0 1 1 1 3 
1 1 0 1 3 
1 1 1 0 3 

3 3 3 3 12 

Figure 1. The Tabular Array B 

Then let B" = (b~jk)_ be the 13x13x5 tabular 

array with the set of internal elements I(B') 
defi ned by 

b l j  k : b i j  k i f  1<i <4, l< j  <4, 

= b ( i_4 ) ( j _4 )  k i f  5<i<8, 5<j<8, 

: b ( i _8 ) ( j _8 )  k i f  9<i<12, 9<j<12, 

= 0 for  a l l  other i , j , k .  

The proof that B" has no controlled roundings is 

presented in the complete paper. 

Remark 2.1: All the marginals of B" are 
integers. However, B" can be easily modified to 
obtain a 5xSx13 tabular array, B"=(b##k) which 

has no controlled roundings and for which none 
of the cells, internal or marginal, are 
integers. S imply  define I (B " )  by choosing 
any c with 0<E<1/576 and lett ing b~#k=bli k + E 

for each internal cell ( i , j , k ) .  Since there are 
576 internal cells in B ' ' ,  no cells of B ' ' ,  
including marginals, are integers and [b'#jk]=_ 

[b#j k] for all cells in B ' ' .  Therefore, the set 

of controlled roundings of B'" is identical to 
the set of controlled roundings of B', namely 
the empty set. 

2.3 An Additive Rounding in Three Dimensions 
Which Always Exists 

I t  wi I l be shown that for every 
(m+l)x(n+1)x(Z+1) tabular array A=(aijk), there 

exists a (m+l)x(n+l)x(z+l) array R(A) = ( r i j k ) ,  

satisfying (2.4) and (2.7). Such an array is 
obtained by successively defining a sequence of 
two-dimensional, base b, zero-restricted 
controlled roundings. First let ( r i j  1) be a 

zero-restricted controlled rounding of the 
(m+l)x(n+1) array ( a i j l ) .  Then for k=2, . . . .  ~, 
let 

k k-1 
c i j  k = Z a - Z r 

t= l  i j t  t= l  i j t '  

1<i <re+l, l< j  <n+l, (2.19) 

and take ( r i j  k) to be a two-dimensional zero- 

res t r i c ted  cont ro l led  rounding of the 
(m+l)x(n+l)  array ( c i j  k) with k f i xed .  F ina l l y ,  
le t  

: Z r i r i j  (~+1) k : l  j k '  
1<i <m+1, l< j  <n+1. (2.20) 

The proof that the array jus t  defined sa t i s f i es  
the required propert ies is presented in the 
complete paper. 

3. FURTHER RESULTS ON MAXIMIZING THE OVERLAP 
BETWEEN SURVEYS 

The problem of maximizing the expected number 
of PSUs retained in sample when redesigning a 
survey with a strat i f ied design for which the 
PSUs are selected with probability proportional 
to size was introduced to the l i terature by 
Keyfitz (1951). Causey, Cox and Ernst (1985) 
were able to obtain an optimal solution to this 
problem under very general conditions by 
formulating i t  as a transportation problem. The 
reader of this section is urged to read that 
paper to fac i l i ta te  understanding of the work to 
be presented here. 

There are several d i f f i cu l t ies  associated 
with the use of the procedure of Causey, Cox and 
Ernst.  The descr ip t ion and solut ion to one of 
these d i f f i c u l t i e s  is presented in Ernst 
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(1986). In th is  section approaches are 
presented for handling two other problems. 

The f i r s t  problem is that in the procedure of 
Causey, Cox and Ernst the t ranspor ta t ion problem 
used in the select ion of the sample PSUs for the 
new design in each stratum can be unmanageably 
large.  To see t h i s ,  note that each p o s s i b i l i t y  
for  the set of PSUs in a new stratum S that were 
in the sample for  the i n i t i a l  design corresponds 
to a row in the t ranspor ta t ion problem, and each 
p o s s i b i l i t y  for the set of PSUs in S in sample 
in the new design corresponds to a column. I f  S 
consists of n PSUs from which m are to be 
selected without replacement in the new design, 
then the number of columns i s c n ) ,  which is a 
reasonably-sized number for m=l"mor 2 say, i f  n 
is moderately sized. However, for  any m the 
number of rows can be as large as 2 n, resu l t ing 
in a t ranspor ta t ion problem too large to 
p rac t i ca l l y  solve even for moderately-sized n. 

In Section 3.1 a modified procedure is 
presented for  which the number of i n i t i a l  
outcomes used in the t ranspor ta t ion problem is 
vast ly  reduced, resu l t ing in a t ranspor ta t ion 
problem that should be manageable for typ ica l  
values of n and m. The expected number of PSUs 
retained when applying th is  modified procedure 
i s ,  not su rp r i s ing l y ,  general ly less than for 
the or ig ina l  procedure, but i t  is believed that  
in pract ice the loss in overlap usual ly would be 
smal I .  

The second problem considered in th is  
sect ion,  unl ike the f i r s t ,  applies not only to 
the procedure of Causey, Cox and Ernst, but to 
al l  previous overlap procedures that th is  author 
is aware of ,  whenever the i n i t i a l  and new 
designs have d i f f e ren t  s t r a t i f i c a t i o n s .  Overlap 
procedures in th is  case destroy the independence 
of the select ion of sample PSUs from stratum to 
stratum in the new design (Ernst 1986). Among 
the consequences of th is  loss of independence 
are changes in variances which are almost never 
accounted for in the variance estimates. In 
Section 3.2 another modi f i ca t i on  of the 
procedure of Causey, Cox and Ernst is presented 
which preserves the i ndependence of the 
select ion of sample PSUs from stratum to stratum 
in the new design. The procedure also general ly 
reduces expected overlap in comparison with the 
or ig ina l  procedure, in some cases d r a s t i c a l l y .  

3.1 A Reduced-Size Transportation Problem for 
Maximizing Overlap 

The reduced-size procedure w i l l ,  for ease of 
presentation, be described here only for the 
case when both the i n i t i a l  and new designs are 
two PSUs per stratum without replacement. Many 
of the details even for that case have been 
omitted here but are available in the fu l l  
paper, where, in addition, the changes necessary 
to apply this procedure for other i n i t i a l  and 
new designs are sketched. It  is assumed 
throughout this subsection that PSUs in the 
i n i t i a l  sample were selected independently from 
stratum to stratum. 

The general outline of the procedure for the 
particular case to be detailed is as follows. 
Let A 1 . . . . .  A n denote the set of PSUs in a new 

stratum S. Let the random set I denote the set 
of integers i for which A i was in the i n i t i a l  

sample and le t  N be the corresponding random set 
with respect to the new sample• The set of a l l  
d i s t i n c t  pairs of integers i , j  c { I  . . . .  ,n} w i l l  
be ordered in a manner that the pairs i , j  l i s ted  
ea r l i e r  correspond to pairs of PSUs Ai,A j that 

have a bet ter  chance of being retained in sample 
in the new design i f  they were in sample in the 
i n i t i a l  design• 

The deta i ls  of the ordering of the pairs are 
presented in the fu l l  paper• From th is  
order ing,  the fol lowing order ing,  
11,12 . . . .  ,11)+n+l of a l l  subsets of { l , . . . , n }  

of two or fewer elemnts i s  constructed, where 
the abbreviat ion 1)=(~) i s  used. I I , 11) . . . .  

consists of the pairs of integers determined by 
t he i r  ordering• 11)+1, ...,11)+n consists of the 

n singleton sets in any order ing,  and 

I = B For each I ,  a unique l i  is 1)+n+1 
associated, namely the f i r s t  I i in the sequence 

for which I. c I .  For each I i t  is the 1 
associated I i rather than I i t s e l f  on which the 

new select ion p robab i l i t i es  are condit ioned, and 
thus the new select ion p robab i l i t i es  are 
condit ioned on only 1)+n+l events• For 

each i= l  . . . . .  1)+n+l, Pi denote the p robab i l i t y  

that  I i is the subset associated with I .  

Formulas for computing Pi are presented in the 
complete paper• 

As for the new sample, there are 1) 
p o s s i b i l i t i e s ,  denoted S j = l  v for  N j ,  , • • o ,  9 • 

I f  S. = {s t } ,  then ~j the p robab i l i t y  that  j ' 

N=Sj, is simply the predetermined p robab i l i t y  

that both s and t are in the new sample• 
The t ranspor ta t ion problem to solve for th is  

procedure can at last  be stated.  For 
i = l ,  . . . .  1)+n+l, j = l  . . . . .  1), x i j  is the j o i n t  

p robab i l i t y  that I i is the set associated with I 

and N=Sj, while c i j  is the expected number of 

PSlJs in INS j  given I i .  Formulas for  computing 
i c i j  are in the complete paper. The x i j  s are 

the variables and the t ranspor ta t ion problem to 
solve is to determine x )0 that maximize 

1j 

v+n+l 1) 

Zcx 
i= l  j=1 i j  i j '  

subject to 

I) 9c 

Z x i j  = Pi' i=1 . . . .  ,1)+n+1, 
j=1 

v+n+l , 
x i j  = ~ j ,  j = l  . . . . .  v• 

i = l  

Once the optimal x i j ' s  have been obtained, the 

condit ional  new select ion prohabi I i t i e s  for  
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Sj, j=1 . . . . .  v, given l i ,  are x i j / P  i .  

3.2 An Overlap Procedure That Preserves 
Independence from Stratum to Stratum 

The key to a modif ied overlap procedure that  
preserves the independence of the se lect ion of 
sample PSUs from stratum to stratum in the new 
design i f  such independence existed in the 
se lect ion of sample PSUs in the i n i t i a l  design 
is as fo l lows.  Let F I . . . .  ,F r and S I , . . . , S  t 

denote the set of s t ra ta  in the i n i t i a l  and new 
designs respec t i ve ly ,  and le t  I denote the set 
of i n i t i a l  sample PSUs across a l l  i n i t i a l  design 
s t r a t a .  With each Sj,  j = l  . . . . .  t ,  a subset 

S" of S. is associated such that  each d i s t i n c t  
J J 

pa i r  S~, S~ of such sets have no i n i t i a l  stratum 

in common, that  is for  each i = l , . . . , r  e i t he r  

S 'NF.  = ~) or S~ n F i = ~). Therefore, the set 
j i 

of PSUs in INS"  and I n s ~  , were selected J 
independently in to  the i n i t i a l  sample, even 
though th is  is not necessar i ly  t rue for I A S j  

and I n s k. Consequently, a modif ied overlap 

procedure which condi t ions the se lect ion of new 
design sample PSUs for  Sj on I NSj instead 

of I N S j ,  as in the o r ig ina l  procedure of 

Causey, Cox and Ernst,  would resu l t  in an 
independent se lect ion from stratum to stratum of 
the new design sample PSUs. 

A simple method of obta in ing Sj ,  j = l , . . . , t ,  

s a t i s f y i n g  the required condi t ion is to 
associate with each i n i t i a l  stratum F i a unique 

new stratum S f ( i ) ,  by means of a mapping 

f"  { I  . . . . .  r } -÷ {1  . . . . .  t } ,  and le t  

S" = S h U _ I  F j=l  . . . , t .  
J J i~f ( { j } ) i '  

Appropriate choices for f are presented in the 
complete paper. 

The transportation problem to be solved for 
this modified overlap procedure can now be 
stated. As in the procedure presented in 
Causey, Cox and Ernst, each stratum in the new 
design requires the solution of a separate 
transportation problem. Dropping the subscript 
j ,  let S be a stratum in the new design 
with S" the corresponding subset as described 
above. Let 1 I ,  . . . .  I m denote all possibi l i t ies 

for the subset of S" consisting of all PSUs 
in S" that were in the i n i t i a l  sample and let 
N I . . . .  ,N n denote all possibi l i t ies for the 

subset of S consisting of all new sample PSUs in 
S. For i=1 . . . . .  m, j= l  . . . . .  n, let Pi denote the 

probabil i ty that I i was the set of i n i t i a l  

sample PSUs in S', ~j the probability that Nj is 

the set of new sample PSUs in S, x i j  the jo int  

probabil i ty that both of these events occur, and 

c i j  the expected number of PSUs in INNj given 

! 
I i .  Again i t  is the x i j  s that are the 

variables whose optimal values are to be 
determined. 

Now proceed exactly as in Causey, Cox and 
Ernst, that is determine x..>~O that maximize 

IJ 
m n 

Z Zc i  x 
i=1 j=1 j i j  

subject to 

n 

Z x i j  = Pi' 
j = l  

i = l , . . . ,m ,  

m 

Z x i j  = ~i ' 
i=1 

j = l , . . . , n .  

! 
Then, once the optimal x i j  s have been 

obtained, the conditional new selection 
probabil i t ies for Nj, j = l , . . . , n ,  given I i ,  are 

x i j / P  i • 
I t  remains to explain how to compute c i j .  

N j  Nj Let N j I , . .  ' k denote the PSUs in , and 

for  £=I . . . . .  k le t  

Then 

C" = 1 i f  N c l.N S', 
1j£ JR I 

= 0 i f  N. c S" ~ I 
JR i '  

: P(NjR c I) i f  NjR S • . 

k 
c .  = Z CljR 
1J R= 1 

4. LINEAR PROGRAMMING AS AN ALTERNATIVE TO 
STRATIFICATION IN SELECTING SAMPLE PSUs 

Consider a survey with a multistage design 
for which the PSUs are contiguous geographic 
areas. A common design technique to reduce 
between PSU variance is to part i t ion the sets of 
PSUs into a collection of strata of 
approximately equal measures of size, with the 
PSUs in each stratum homogenous with respect to 
a key characteristic or characteristics of 
interest. The sample PSUs are then selected 
independently in each stratum with probabil ity 
proportional to size. Strat i f icat ion is 
generally effective in reducing between PSU 
var iances.  However, there are some 
disadvantages to th i s  procedure. A key problem 
is that  the process of forming s t ra ta ,  which 
f i t s  in to the general category of c lus te r ing  
problems, is often not an easy task.  
Furthermore, sometimes the deviat ions from the 
goal of equal-sized s t ra ta  are non t r i v i a l  which 
tends to increase var iances. I f  two or more 
surveys are to be designed together  from 
s t r a t i f i e d  designs with the sample PSUs for one 
survey required to be a subset of the sample 
PSUs for  the other ,  then techniques such as 
co l laps ing of s t ra ta  may be necessary, which may 
not be h ighly e f f i c i e n t .  
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Linear programming is considered in th is  
section as an a l te rna t ive  to s t r a t i f i c a t i o n .  
This approach, as w i l l  be demonstrated, is 
conceptually very simple and extremely f l e x i b l e ,  
and software is readi ly  avai lable to solve 
l inear  programming problems. Unfortunately,  
there is a serious and, in many s i tua t ions ,  
fata l  d i f f i c u l t y  associated with the use of 
l inear  programming in th is  context,  namely that 
the size of the l inear  programming problem can 
readi ly  get so large that i t  cannot be solved in 
pract ice even with powerful modern computers. 
However, as w i l l  be discussed, there are 
important s i tuat ions where e i ther  th is  
d i f f i c u l t y  does not ar ise,  or where some hybrid 
combination of l inear  programming and 
s t r a t i f i c a t i o n  may be feas ib le .  

To state the problem to be considered more 
s p e c i f i c a l l y ,  consider a mult istage sample 
design for which there are ~ PSUs from which n 
are to be selected without replacement with 
p robab i l i t y  proport ional to s ize.  Let ~ i j  be 

the p robab i l i t y  that the i - t h  PSU is in the 
sample of n PSUs and le t  ~.. be the p robab i l i t y  

13 
that  both the i - t h  and j - t h  PSUs are in 

Let Yi be an unbiased estimator of the sample. 

i - t h  PSU t o t a l ,  Yi '  based on sampling at the 

second and subsequent stages. Then (Raj 1968) 

an unbiased est imator,  Y, of the population 

to ta l  Y is given by 

n 
~ =  Z 1 

i =I ~i 

with variance 

N Y. Y. 
V(Cf) = ~ (~ ix j  - ~i ) ( 1 j_)  

i , j  J ~i ~j 

i< j  2 
N o i 

+ Z --'-'-'- • 
i =I xi 

(4.1) 

Typ ica l l y ,  in determining the sample design, 
the values of the ~. 's  and Y. 's are f ixed 

1 1 
beforehand from census data, for example. Then 

the between PSU variance component of V(Y), 

which is 

2 N Y. Y. 
(----]-~ - J-,-) (4 .2)  

Z (~i~j  - ~ i j )  ~i ~" ' i , j  J 
i< j  

would be minimized by the optimal choice for 
the x i j ' s  independentlyo of the only other 

var iables in (4.1) ,  the o~'s. This w i l l  be the 
i 

focus of the work in th is  sect ion,  the 
minimization of (4.2) by optimal choice of 

i the x i j  s. 
Although s t r a t i f i c a t i o n  tends to lower (4 .2) ,  

as explained in the complete paper, l i near  

programming can attack the problem of minimizing 
(4.2) more d i r e c t l y .  (4.2) is l inear  in the 

I only var iables,  the x i j  s, so i t  is only 

necessary to minimize th is  object ive funct ion 
with respect to these variables subject to 

I appropriate l inear  constraints on the ~ i j  s. In 

order to insure that the i - t h  PSU is selected 
with the required p robab i l i t y ,  ~ i '  for each i ,  

the fo l lowing set of constra ints must be 
sa t i s f ied"  

N (4.3) 
x i j = ( n - l ) ~ i  , i = l ,  . . . .  N. 

j=1 
j~ i  

I f  select ing PSUs with predetermined 
p robab i l i t i es  is the only design requirement, 
then th is  would be the only set of constra ints 
needed. However, other requirements, such as 
the a b i l i t y  to obtain variance estimates with 
desirahle propert ies would lead to addi t ional  
constra ints as w i l l  be described l a t e r .  

A set of ~ . . ' s  sa t is fy ing  (4.3) always IJ 
ex is ts ,  since the x . . ' s  ar is ing from the use of 

13 
Sampford's method y ie lds one so lu t ion .  
Unfortunately,  for n>2, there does not 
necessari ly ex ist  a set of select ion 
9 r o b a b i l i t i e s  attached to the set of d i s t i n c t  
n-tuples of PSUs which sa t i s f i es  an optimal 
solut ion to the problem of minimizing (4.2) 
subject to (4.3) ,  that is  there may be no 
sampling procedure which actua l ly  y ie lds the 
optimal x . . ' s .  For example, i f  N=4, n=3, IJ 
YI /~I  = Y2/~2 and Y3/~3 = Y4/~4, then the 
fo l lowing set of ~ . . ' s  minimize (4.2) subject to 
(4.3)" l j  

rr12 = ~34 = O, (4.4) 

= 3/4 .  (4 .5 )  x13 = x14 = ~23 = ~24 

However, i f  ~ i jk  denotes the p robab i l i t y  that  

the sample consists of the i - t h ,  j - t h  and k-th 
PSiJs, then ~ i j k  must be 0 for a l l  four d i s t i n c t  

t r i p l e s  in order for (4.4) to be sa t i s f i ed ,  in 
which case (4.5) is not sa t i s f ied  and thus there 
is no set of x. 's sa t is fy ing  (4 4) and (4 5) 
s imul taneously. l jk  " " 

To avoid th is  problem for general n, le t  S 
denote the set of d i s t i nc t  n-tuples of PSUs and 
for  each s~S, ~" denote the p robab i l i t y  that s 

s 
is selected. Then i f  Z ~" is subst i tuted 

soS s 
i , j  cs 

for  ~ i j  in (4.2) and (4.3) ,  these expressions 

become respect ively 

N yj 2 

Z [ ~ i ~ j -  Z ~s ] (Tal. " - .  ~ )  
i , j  soS j 
i< j  i , jBs  

(4.6) 

and 
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Z ~s = x i '  i = l , . . . , N .  (4.7) 
soS 
i~s 

Since a solut ion to the opt imizat ion problem 
(4.6) ,  (4.7) immediately y ie lds select ion 
p robab i l i t i es  for each possible n-tuple of PSUs, 
the d i f f i c u l t y  described with the formulation 
(4.2) and (4.3) cannot occur. Furthermore, 
Sampford's method always provides a feasible 
solut ion to (4.7) .  However, in pract ice,  a 
possibly insurmountable operational problem can 
occur. The number of variables in (4.6) and 

N) which can he impract ica l ly  (4.7) is (n ' 

large. Thus the use of th is procedure appears 

N) does not exceed to be l imi ted to cases where (n 

the software and hardware l im i ta t ions  of the 
avai lable equipment. 

This method could be poten.t ial ly appl icable 
to the Current Population Survey, which has a 
state based design, and hence a separate l inear  
programming problem for each state.  For the 

N) may be s u f f i c i e n t l y  smaller states at least ,  (n 

smalif1.(nN) is too large to use the l inear  

programming formulation d i r ec t l y ,  a hybrid of 
s t a t i f i c a t i o n  and l inear  programming could be 
used. With this approach, s t r a t i f i c a t i o n  would 
f i r s t  be used to par t i t i on  the population of 
PSUs into a number of super-strata and l inear  
programming then used to select the sample PSUs 
from e a c h  super-stratum. The number of 
super-strata would be smaller than i f  
s t r a t i f i c a t i o n  were used alone, but there would 
have to be enough super-strata to insure that  
the l inear  programming problem corresponding to 
each super-stratum was s u f f i c i e n t l y  small. 

When the problem of minimizing (4.6) subject 
to (4.7) is su f f i c i en t l y  small to solve, there 
are at least two addit ional set of constraints 
that might be added to the problem in order to 
be able to produce variance estimates with 
desirable propert ies.  They are 

Z ~s < ~i~j  ' 
soS 
i , j  ~s 

i , j : l , . . . , N ,  i ~ j ,  (4.8) 

D Z ~s ~ c~ i~ j '  i , j : l , . . . , N ,  i ~ j ,  (4.9) 
soS 
i , j  cs 

where c<I is a constant. (4.8) and (4.9) are 
equivalent to ~ i j  <~i ~j and ~i j )c~i ~j 

respect ive ly .  The reasons for requir ing these 
sets of constraints are as fo l lows. I f  (Raj 

1968) Y ^2 i and o i are unbiased estimators of Yi 
2 and oi respect ively,  i= l  . . . .  ,N, then provided 

>0 for al l  i , j = l ,  . . . .  N, i # j ,  an unbiased ~i j  
estimator of (4.1) is 

n ~ixj-~i Y ~ 2 
v(Y) : Z ( j ) ( i ~ j  ) 

i , j  ~ i j  ~i ~j 
i< j  

^ 2 n o . 
+ ~ 1 . (4.10) 

i=1 xi 

(4.8) is needed to insure that v (Y) is  always 
nonnegative. Without (4.9),^ ~ij could be 0 for 

some i , j ,  in which case v(Y) is not unbiased. 

Furthermore, (4.9) forces an upper bound of 

1/c-1 on (~ i~ j -~ i j ) /~ i j "  The variance of v(Y), 

for a solution to the optimization problem that 
includes (4.9), generally decreases as c 
increases, since 1/c-1 decreases with increasing 

c. On the other hand V(C() increases with 
increasing c since the set of feasible solutions 
to (4.g) becomes smaller with increasing c. I f  
c becomes too large there are no feasible 
solutions to the optimization problem. Thus the 
selection of a value for c in (4.9) involves a 

tradeoff between decreasing V(Y) and the 

variance of v(Y). The determination of a c 
which optimally balances these two goals would 
have to be obtained by t r ia l  and error or 
through the solution of a nonlinear programming 
problem. 

Until now the problem of minimizing between 
PSU variance using linear programming has been 
considered with respect to only a single 
characteristic. However, a vir tual ly identical 
approach can be used to minimize certain types 
of averages of the between PSU variances for 
several characteristics. For example, to 
minimize an average of the variances for r 

charac ter is t i cs ,  (Yi /~ i  - y j / ~ j ) 2  in (4.2) might 

be replaced by 

r 
~ W (Yi / ~ i -  Y /~ j )2  k : l  k k ik ' (4.11) 

where Yik is the to ta l  for  the k-th 

charac ter is t i c  in the i - t h  PSU. W k would be 

e i ther  a scaling factor or a preference factor 
or some combination of the two types of factors 
(see Kostanich et a l .  1981). Since al l  the 
quant i t ies in (4.11) are assumed known, 
subst i tu t ion of (4.11) into (4.2) as described 
does not change the form of the opt imizat ion 
problem. 

Linear programming is also applicable to the 
selection of sample PSUs for two or more designs 
when the samples are not selected independently 
from design to design, again assuming that the 
resul t ing problem is not unmanageably large. 
This is explained in the complete paper. 

*This paper reports the general results of 
research undertaken by Census Bureau s ta f f .  The 
views expressed are a t t r ibu tab le  to the author 
and do not necessarily re f lec t  those of the 
Census Bureau. 
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