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1. INTRODUCTION 
U-statistics are an important class of 

estimators. They arise as a generalization of 
the sample mean, or of forming an average. The 
large sample invariance properties of this class 
are well understood for independent and 
identical ly distributed sequences of 
observations. The research described below 
extended some of these results to unequal 
probability without replacement sampling from a 
f in i te  population. 

First, consider a sequence {Xj; i>1} of 
independent and identically diszributed ( i . i . d . )  
random variables each having a distribution 
function (d.f .)  F. Let F be the space of all 
d . f . ' s  belonging to some specified class• A 
homogeneous stat ist ical  function of degree m 
(>_1) is given by 

0 : I " "  I g(x 1, . . . .  Xm)dF(Xl)..-dF(x m) 

= EF[g(X 1, . . . .  X m)] for all F in F, 

where F = {F : IO(F) I < ®} and g is a Borel 
measurable func t ion  ca l led  a kernel .  As is 
usual in t h i s  s i t u a t i o n ,  assume wi thout  loss of  
g e n e r a l i t y  tha t  g is a symmetric func t ion  of  i t s  
m arguments. I f  there ex is ts  a symmetric kernel 
g of  degree m fo r  which the above holds, then 0 
is termed an est imatable parameter. 

Hoeffding (1948) introduced an unbiased 
es t imator ,  ca l led  a U - s t a t i s t i c ,  of  O. Suppose 
tha t  n >- m, then U n is an unbiased est imator  of  
0 given by 

Un = (n ) - I  }i g(X i , . . . , X i m )  
. . .  _<n I l -<i l< <i m 

Hoeffding introducted the projection method to 
establish the large sample distribution of U n. 
This is the same basic approach adopted for use 
with unequal probability sampling. 

The projection of a U-statist ic 

^ n 
U n : I: E[U nix i ]  - (n-l)O . 

i=1 

Hoeffding demonstrated that the random variables 

A 

Yn : ~ (Un - O) and Z n : ~-n (U n - O) 

have the same l imit ing distribution by showing 
that Y~ and Z n are equivalent in quadratic mean 
as n t~ends zo inf in i te•  A 

The advantage of considering U n is that i t  is 
a simple degree one summation ra~her than a 
degree m sta t is t ic .  When the original 
observations are independent and identically 

A 

distributed, U~ is just the sum of n i i d 
• J l  • • • 

random variables. Thus, the well developed 
theory for the mean or total of i . i . d ,  random 
variables extends to the degree m stat is t ic  U n. 

Because of the shortness of space, a very 
brief summary of the theoretically results are 
given next. A detailed presentation of a 
simulation study is then presented. 

The case of equal probability sampling without 
replacement from a f in i te  population has been 
well covered by Nandi and Sen (1963), Sen (1960) 
and Sen (1972). I t  was shown that, for simple 
random sampl i ng without replacement from a 
f in i te  population, there is convergence to a 
Brownian bridge process. 

Folsom (1984) extended the class of U- 
stat ist ics to unequal probability samples. He 
defined the U-statist ic population parameter and 
i ts estimator. In 1988, Williams determined the 
project of a U-statist ic for unequal probability 
samples selected with less than ful l  
replacement. He then demonstrated that a U- 
s ta t is t ic  and i ts projection were equivalent in 
quadratic mean when sampling without 
replacement. This was done under the assumption 
of "uniform asymptotic neg l ig ib i l i t y . "  In 
addition, i t  was assumed that certain ratios of 
products of the expected sample inclusion 
frequencies, with the same sampling units in 
both the numerator and denominator, approach 
one. With this result, central l imi t  theorems 
for linear stat ist ics from unequal probability 
samples can be extended to U-statistics. 
2. NUMERICAL SIMULATION 

The results described above demonstrate that 
the distr ibution of a U-statist ic estimated from 
an unequal probability sample converges to a 
normal law as the sequence of samples and 
populations become in f in i te ly  large. In 
practice, we are allowed only one such 
population and sample. The advisabil ity of 
using the normal distr ibution as a basis for 
inference in this situation is assessed in the 
numerical simulation presented here. The 
simulation proceeds by selecting 1,000 
independent samples using Sampford's method from 
a population of U.S. counties. Two different U- 
stat ist ics are estimated from each sample and 
the empirical distr ibution of the 1,000 
estimates for each s ta t is t ic  is compared with a 
normal di stribution. 

The two U-statistics used in this simulation 
-- Kendall's rank correlation and the with 
replacement variance component -- d i f fer  in that 
one has a narrow constricted range, while the 
other may take on any f in i te  nonnegative value. 
The rank correlation is more l ikely to benefit 
from nearly equal probabil it ies of selection, 
while the variance component is more suited to 
unequal selection probabilit ies proportional to 
the size of the observation. Three sets of size 
measures, used to generate the selection 
probabil i t ies, are considered. The f i r s t  set 
covers a very wide range and is related to the 
size of the observations. The other two sets of 
size measures cover progressively smaller 
ranges. 
2.1 The Data 

The data for this simulation are taken from 
the 19B6 Area Resource File (ARF) obtained from 
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the Health Resources and Services Administration 
of the U.S. Public Health Service (1987). The 
ARF contains one record for each of the 3,080 
counties in the U.S., a subset of which wil l  
serve as the study population, with the counties 
being the sampling units. The 1980 U.S. Census 
population of each county, the 0.57 root of the 
population and the natural logarithm of the 
population are used as the size measures for 
selecting the samples. The 1984 count of the 
number of short-term general hospitals and 
short-term general hospital beds in the county 
are the analysis variables. The study 
population was restricted to the 2,000 smallest 
counties, as measured by their 1980 population 
count, to eliminate the possibil i ty of large 
self-representing (selection probability greater 
than one) units and to control the cost of 
selecting the samples. 

Even though only the 2,000 smallest counties 
are included, they are s t i l l  very diverse in 
total population size. They range in size from 
91 persons to 35,376 with a ratio of largest to 
smallest of 389. The other two size measures 
are used to generate samples from a less diverse 
set of probabilities. The 0.57 root 
transformation was chosen to provide a set of 
size measures that had an approximate 30 to 1 
range of sizes, while the log transformation 
provides a set of sizes measures with a less 
than 2.5 to 1 range. These two transformations 
of the size measures were mainly chosen to 
restr ict the variabi l i ty of the selection 
probabilities and not to determine an optimum 
size measure. 
2.2 Design of the Simulation 

Six sets of 1,000 independently replicated 
samples were drawn from the 2,000 study counties 
using the rejective version of Sampford's method 
(1967). The six sets result from using each of 
the three size measures with sample sizes of 50 
and 100. We attempted to consider sample sizes 
greater than 100, but, as the sample size 
increases, the rejective version of Sampford's 
method almost always rejects a candidate with 
replacement sample because of at least one 
duplicated unit in the sample. 

For each of the 6,000 samples, two U- 
statist ics were estimated. The f i r s t  U- 
stat ist ic considered was Kendall's (1938) rank 
correlation often called r~. A general 

I • 

description of this stat lst lc is given in 
Kendall (1970) or in Conover (1980). To 
formulate this as a U-statistic, consider two 
bivariate observations-- (Xl,Y 1) and (X2,Y2). 
The kernel for r a is 

Ix - s ° ° F 1 -  = sgn I 

with 

- I  i f z < O  
sgn(z )  = 0 i f  z - 0 

I i f z > O  . 

This kernel wil l  be averaged over all pairs of 

observations to find the rank correlation 
between the number of hospitals and the number 
of hospital beds in a county. 

The second U-statistic used in this simulation 
is the with replacement variance component given 
by 

N 
2 E ~(a) [ya/~(a) - Y+] 

awr = a = l  

Where Y+ is the population total and ~(a) is the 
relative size measure of the a-th county. This 
stat ist ic is useful in designing new surveys and 
is discussed by Folsom (1984). Divided by the 
sample size, this is the variance of the 
estimated total under with replacement sampling. 
This stat ist ic was chosen because i t  was l ikely 
to benefit fromprobability proportional to size 
sampling i f  the analysis variable, Y, is 
proportional to the size measure. The with 
replacement variance component wil l  be found for 
the number of hospital beds in a county. A 
kernel for this stat ist ic is 

2 
g ( a , b )  = ~(a)  ~ ( b ) [ Y a / ~ ( a )  - y b / ~ ( b ) ]  . 

In the following, the relative with replacement 
variance component wil l  be reported. This is 2 
obtained by dividing by the squared total, Y+ . 
This does not effect the results, but simplifies 
the presentation. 
2.3 Finding s 

Table 1 displays the mean and standard error 
over all of the estimates for the rank 
correlation and relative with replacement 
variance component. Notice that, in every case, 
the mean estimate is very close to the true 
value (also in the table). Next, note that, for 
the rank correlation, the standard error of the 
mean estimate decreases as the size measure is 
changed from the total population size, to the 
root population size, to the log of the 
population size. The converse is true for the 
relative with replacement variance component. 
In the lat ter case, the relative standard error 
is generally smallest for the total population 
size measure, intermediate for the root 
population size measure, and largest for the log 
population size measure. This f i ts  with the 
general intuit ion since the kernel for the rank 
correlation only takes on the values -1, O, and 
1, which wil l  be more "proportional" to the less 
diverse transformed size measures. On the other 
hand, since the number of hospital beds in a 
county should grow with the population of the 
county, we expect that the with replacement 
variance component should enjoy the benefit of 
proportional to size sample selection. 

Next, as a f i r s t  attempt to assess how 
"normal" the distribution of the estimates is, 
the skewness and kurtosis coefficients of each 
set of 1,000 estimates is presented in Table 2. 
Recall that skewness measures how symmetric the 
distribution is with the normal distribution 
having a skewness of O. Kurtosis measures how 
"heavy" the tai ls of the distribution are with 
the normal distribution having a kurtosis of 3. 
For Kendall's rank correlation with the log 
population size measure, the skewness and 
kurtosis of the sample estimates are very close 
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the values for a normal distribution for both 
sample sizes of 50 and 100. They move 
progressively further from the normal 
distribution values as the size measure is 
changed to the root of population size to the 
total population size. This again f i ts  with the 
preliminary expectations. Turning to the with 
replacement variance component estimates, we see 
that all of the coefficients dif fer markedly 
from the normal distribution values. However, 
as expected, they are closer to the normal 
values for the total population size measure 
than for the other size measures. 

A graphical depiction of the frequency 
distribution of the estimates is given by the 
histograms in Figures 1 and 2. These data have 
been standardized by subtracting the true value 
of the population stat ist ic from each estimate 
and then dividing by the empirical standard 
error of the 1,000 independent estimates. The 
f i rs t  histogram, for Kendall's rank correlation, 
is fa i r ly  symmetric. Contrast this with the 
next histogram, for the with replacement 
variance component, which show a highly skewed 
distribution with a long right hand ta i l .  The 
two cases shown here are i l lustrat ive of the 
histograms for the other cases. 

A more specific graphical comparison with the 
normal distribution is given in Figures 3 and 4. 
Here normal quantile plots compare the 
standardized empirical values with the quantiles 
of the standard normal distribution. Each plot 
contains a 45 line for reference. I f  the 
observed estimates were truly normal, they would 
produce a straight line with slope ~ and 
intercept ~. Since the empirical values have 
been standardized, they will correspond to the 
reference line i f  they approximate a normal 
distribution. 

Figure I contains the quantile plot for the 
rank correlation. Notice that the empirical 
distribution conforms quite well to the standard 
normal. When the total population size measure 
was used (not shown here), the graphs were less 
similar. This observation is further reenforced 
by the Kolmogorov-Simirnov (K-S) tests given in 
Table 3. The K-S test statistics were compared 
with the two-sided asymptotic cr i t ical values of 
levels 0.200, 0.100, 0.050, 0.025, and 0.010 to 
determine the range of the significance level of 
each test. This shows that the empirical 
distribution of the rank correlation is 
significantly different from that of a normal 
distribution when using total population as a 
measure of size (P-value < 0.01). However, when 
using the other size measures, the empirical 
distribution differs significantly, at the 0.05 
level, from the normal distribution only for 
samples of size 50 with the root population size 
measure. 

Turning to the with replacement variance 
component, Figure 2 shows very clearly that the 
empirical distribution differs markedly from a 
normal distribution for this s ta t i s t i c .  This is 
further demonstrated by the K-S tests shown in 
Table 4. In every case, the test rejects (P- 
value < 0.01) that the estimates are from a 
normal di stribution. 

The final numerical findings of this study are 
given in Table 5 where the empirical tai l  and 
confidence interval coverage probabilities 

determined for each set of 1,000 estimates are 
shown. These were obtained by comparing the 
standardized empirical values with the 0.050, 
the 0.025, and the 0.010 upper and lower 
quantiles of the standard normal distribution to 
find the proportion of times that the empirical 
values were in the tai ls of the distribution. 

For Kendall's rank correlation, the tai l  
probabilities are very near their nominal levels 
for both sample sizes and are fa i r ly  symmetric 
when using the log population size measure. 
With the root population size measure, the 
probabilities are also well behaved. They are 
skewed toward the upper ta i l ,  but the overall 
confidence interval is near the proper nominal 
levels. Sampling using the total population 
size measure yields the most highly skewed 
intervals. However, even these intervals are 
reasonable for the total coverage probabilities 
of the intervals. 

Moving on to the with replacement variance 
component, the situation is different. As noted 
when considering the frequency histograms in 
Figure 2, the distribution of the empirical 
values is very skewed which results in none of 
the standardized estimates fall ing into the 
lower ta i l .  However, the total probability of 
the confidence interval when using the total 
population size measure is near the correct 
nominal level. When sampling with the other two 
size measures, the situation is much worse. 
Again, none of the estimates fal l  in the lower 
tai l  and the empirical level of the confidence 
interval differs substantially from the nominal 
level. 
2.4 Conclusions 

The results of this simulation study are 
mixed. The validity of the large sample theory 
developed by Williams (1988) is evident from the 
results for Kendall's rank correlation. I t  is 
clear that the large sample distribution of 
estimates for this stat ist ic under Sampford's 
method is approaching that of a normal 
distribution. The rate of convergence appears 
to be related to the variabi l i ty of the 
selection probabilities. Less variable 
selection probabilities seem to enhance the rate 
of convergence. The potential advantages of 
probability proportional to size sampling are 
mitigated by the restricted range of the kernel. 
However, even with highly variable selection 
probabilities, the normal distribution provides 
an adequate approximation for sample sizes of 50 
to 100. 

On the other hand, a warning is sounded by the 
results for the with replacement variance 
component. For this stat ist ic, their is some 
evidence that the large sample distribution of 
the estimates is moving toward a normal 
distribution. However, for sample sizes of 50 
to 100 under Sampford's method, the distribution 
of the estimates is s t i l l  highly skewed with a 
long right hand ta i l .  The slower rate of 
convergence for this stat ist ic is not completely 
surprising since variances tend to generate a 
chi-square distribution with a long right hand 
ta i l .  Such a distribution is slow to approach 
normality in large samples. I t  was hoped that 
unequal probability selection proportional to 
total population size would hasten the approach 
to normality when compared to the more 
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restricted range size measures. While there is 
some slight evidence that this is the case, the 
effect was far from substantial. The empirical 
distribution of the estimates deviated greatly 
from that of a normal distribution. 
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Table I Mean and Standard Error from 1,000 Replicated Samples of Sizes 
50 and 100 by Type of Size Measure 

Size Measure 
Sample Size 

Kendall's Rank Correlation 
True 
Value 

Standard 
Mean Error 

Relat ive With 
Replacement Variance Component 

True Standard 
Value Mean Error 

Total Popul at ion 
50 

100 

Root Population 
50 

100 

Log Population 
50 

100 

0.234 

0.234 

0.234 

0.239 0.087 
0.242 0.069 

0.242 0.058 
0.240 0.038 

0.240 0.034 
0.240 0.023 

0.692 

O. 680 

0.943 

0.699 0.447 
0.690 0.303 

0.670 0.421 
0.688 0.321 

0.933 0.668 
0.958 0.499 
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Size Measure 
Sample Size Skewness Kurtosi  s Skewness Kurtosi  s 

Kendall's Rank Correlation 
Rel at i ve Wi th 

Replacement Variance Component 

Total Population 
50 1.30 6.25 2.00 6.87 

100 1.25 6.38 1.32 4.41 
Root Population 

50 0.70 4.69 3.08 13.40 
100 0.16 3.17 2.02 6.84 

Log Population 
50 -0.41 2.95 4.05 22.18 

100 -0.47 3.55 2.66 10.31 

Table 3 Kolmogorow-Smirnov (K-S) Test of Normality from 
1,000 Replicated Samples of Sizes 50 and 100 by Type of Size Measure 

Size Measure 
Sample Size 

Total Population 
5O 

IO0 
Root Population 

5O 
100 

Log Population 
50 

100 

Kendall's Rank Correlation 
K-S 

Statistic P-Value Range 

Relative With 
Replacement Variance Component 

K-S 
Statistic P-Value Range 

1 3 0  

1 2 0  

1 1 0  

0.084 <.010 
0.067 <.010 

0.047 .025 - .050 
0.024 >.200 

0.038 .100 - .200 
0.037 .100 - .200 

0.204 <.01 
0.167 <.01 

0.229 <.01 
0.198 <.01 

0.217 <.01 
0.215 <.01 

1 O0 

9 0  

4 0  

8 0  
>~ 
u 
c 70 

5 0  

3 0  

2 0  

1 0  

.& 

8te tndard lzed  Ernplr loal  V a l u e  

- 3  - 2  -1 0 

!i! ili 

ii ~i~, i ~ 

.i 
1 2 3 0 1 2 3 

S 1 a n d m - d i z e d  E m p i r l o a l  V a l u e  

FIGURE 1 FREQUENCY DISTRIBUTION FOR KENDALL'S RANK CORRELATION: 
SAMPLES OF SIZE 100, PPS TO LOG POPULATION SIZE 

2 7 0  

2 6 0  
2 5 0  

2 4 0  

2 3 0  
2 2 O  

2 1 0  
2 0 0  
1 9 0  
1 8 0  
1 7 0  

I eO >, 
u 1 5 0  
c 
~) 1 4 0  

1 3 0  

1 2 0  
L~ 1 1 0  

1 O0 

9 0  
8 0  
7 0  

6 0  
5 0  

4 0  
3 0  
2 0  
1 0  

0 
- 2  -1 

Table 2 Skewness and Kurtosis from 1,000 Replicated Samples 
of Sizes 50 and 100 by Type of Size Measure 

4 5 6 

FIGURE 2 FREQUENCY DISTRIBUTION FOR WITH REPLACEMENT VARIANCE COMPONENT: 
SAMPLES OF SIZE 100, PPS TO POPULATION SIZE 
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Table 4 Empirical Tail Probabilities from 1,000 Replicated 
Samples of Sizes 50 and 100 by Type of Size Measure 

n=50 n=lO0 
Si ze Measure Lower Upper  B o t h  Lower  Upper  Both 

Nominal Tail Level Tail Tail Tails Tail Tail Tails 

Kendall's Rank Correlation 
Total Population 

0.050 0.013 0.063 0.076 0.005 0.070 0.075 
0.025 0.004 0.047 0.051 0.000 0.052 0.052 
0.010 0.000 0.031 0.031 0.000 0.032 0.032 

Root Population 
0;050 0.017 0.057 0.074 0.029 0.072 0.101 
0.025 0.006 0.038 0.044 0.014 0.040 0.054 
0.010 0.002 0.029 0.031 0.003 0.015 0.018 

Log Population 
0.050 0.045 0.056 0.101 0.036 0.075 0.111 
0.025 0.024 0.019 0.043 0.020 0.028 0.048 
0.010 0.011 0.006 0.017 0.011 0.011 0.022 

With Replacement Variance Component 
Total Population 

O. 050 O. 000 O. 106 O. 106 O. 000 O. 080 O. 080 
0.025 0.000 0.092 0.092 0.000 0.047 0.047 
0.010 0.000 0.052 0.052 0.000 0.029 0.029 

Roo t Popu I at i on 
O. 050 O. 000 O. 061 O. 061 O. 000 O. 086 O. 086 
O. 025 O. 000 O. 047 O. 047 O. 000 O. 082 O. 082 
0.010 0.000 0.040 0.040 0.000 0.074 0.074 

Log Population 
O. 050 O. 000 O. 038 O. 038 O. 000 O. 059 O. 059 
0.025 0.000 0.027 0.027 0.000 0.056 0.056 
0.010 0.000 0.025 0.025 0.000 0.056 0.056 

• | i i i i 

3 2 1 0 1 3 

S t a n d a r d  N o r m a l  D l a t r i b u t l o n  
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FIGURE 3 NORMAL QUANTILE PLOT FOR KENDALL'S RANK CORRELATION: 
SAMPLES OF SIZE 100, PPS TO LOG POPULATION SIZE 
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S t a n d e u ' d  N o r m a l  D i s t r i b u t i o n  

FIGURE 4 NORMAL QUANTILE PLOT FOR WITH REPLACHENT VARIANCE COMPONENT: 
SAMPLES OF SIZE 100, PPS TO POPULATION SIZE 
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