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Abstract: Two variates are observed for each 
member of a sample. Variate S is sensitive and 
is observed using Randomized Response, while 
variate X is non-sensitive and is directly 
observed. It is required to estimate the 
distribution of X for each category of S. 
Simple estimators are developed without making 
any distributional assumptions about X. If 
distributional assumptions are made it is shown 
that the EM algorithm may be used to compute 
Maximum Likelihood estimates. Based on 
computational comparisons between the estimators 
it is concluded that the simple estimators 
perform well, particularly for large sample 
sizes. 

1. INTRODUCTION 

In surveys of human populations, one or more 
of the variates under study may be embarrassing 
or stigmatizing in some way. The randomized 
response (RR) technique introduced in Warner 
(1965) is by now well known as a method of 
providing each respondent with a degree of 
protection, and thereby encouraging greater co- 
operation by respondents. Recent reviews of 
randomized response are contained in Chaudhuri 
and Mukerjee (1988) , Fox and Tracy (1986) , 
Deffaa (1982) and Boruch and Cecil (1979). 

Most of the methodological work on randomized 
response has been concentrated on the design and 
analysis of the RR procedures themselves, ranging 
from extensions to the case of multinomial and 
multivariate estimation (e.g. Abul-Ela et al. 
(1967) , Bourke and Dalenius (1973) , Tamhane 
(1981), Bourke (1982)) to the development of 
general RP models (Warner (1971) , Loynes (1976) , 
Godambe (1980)). However little attention has 
been paid to the presence of other non-sensitive 
variates in a survey which includes an RR 
procedure. In this paper we consider the 
problem of estimating the distribution of a non- 
sensitive variate for each category of a 
sensitive variate. For example we may be 
concerned with the variate number of years of 
full-time education for women who engage in shop- 
lifting and for women who do not. 

In Section 2 estimators are developed without 
any distributional assumptions about the non- 
sensitive variate, whereas in Section 3 such 
assumptions are made, and the EM algorithm 
(Dempster, Lair0 and Rubin (1977)) is used to 
compute ML estimates. Some empirical analyses 
of the estimators are given in Section 4. 

2. ESTIMATION WITHOUT DISTRIBUTIONAL 
ASSUMPTIONS 

In this Section we develop estimators for 
various features of the distribution of X 
(denoting the non-sensitive variate) for each 
level of S (denoting the sensitive variate) 
without making any distributional assumptions 

about X. For clarity of presentation, we assume 
here that S has two levels (one stigmatizing and 
one non-stigmatizing) but there is little 
difficulty in dealing with more than two levels 
for S, using an appropriate multinomial RR design. 

Initially, we consider the estimation of the 
proportions in various categories of variate X 
for each level of S. Suppose that there are m 
categories of X and we wish to estimate the 
proportions {QIj}, j = I, 2 .... , m, when S is at 

level i, and similarly for Q2j" we note that 

ZQIj = 7Q2j = i. Let ~k be the proportion of the 

population at level k of S, and Zk is not assumed 

known. The data available are the n ordered 

pairs (xi, r i) , x i denoting the value of X for 

respondent i and r. denoting the response given 
1 

in the RR procedure for S by respondent i. Let 
z. denote the level of S for respondent i, and z. 
1 1 

takes on values 1 and O. We assume here that 
there are just two distinct values for ri, 

denoted by 1 and O. (There are RR designs where 
the number of response categories exceeds the 
number of levels of S, and again there is little 
difficulty in adapting to these designs). Let 
tjll denote the probability that a randomly 

selected respondent is in category j of X given 
that the response r. = 1 has been observed in 

1 
the RR procedure, and similarly for tjlO. Then, 

tj ll = Qlj P(zi=llri =l) + Q2j P(zi=Olri =I) 

tj[o = QIj P(l[O) + Q2j P(O[O) 

where, with an obvious contraction of notation, 
P(IIO) denotes the probability that the respondent 
has S at level 1 given that the response r. = 0 

1 
has been observed. Rewriting : 

tj 1 = P(I]I) P(Ol i) 

tj O P(IIO) P(O]O) 

QIj 

(2 .i) 
Q2j 

for j = i, 2, ..., m. One can estimate tj[l and 

tj IO from the proportions in category j of X for 

those with r. = 1 and r. = 0 respectively in the 
1 l 

RR procedure. The quantities such as P(zi=llri=l) 

depend on Wk and on the parameters of the chosen 

RR procedure. For example if the RR procedure 
used is the Simmons unrelated question design 
(Greenberg et a! (1969)) , then the matrix in 
(2.1) is : 

(p+ (l-p) 8) ~i/~ (l-p) 8 ~2/X (2.2) 

(l-p) (l-8)Wl/(l-~) [p+(l-p) (i-8) ]z2/(I-X) 
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where p is the known probability that the 
randomizing device selects the sensitive question, 
8 is the known proportion having the unrelated 
characteristic, and 

t = p ~i + (l-p)8 . 

Since the ~k'S are unknown, they must be 

estimated from the RR data (the r. values) using 
whatever estimators are appropriate to the chosen 
RR procedure. For the Simmons unrelated question 
design, the usual estimator for Zl is 

^ = [(nl/n) - (l-p) 8]/p (2 3) 
~i 

where n I is the number replying 'YES' (i.e.r.l = 

i) in the RR procedure, and n is the sample size 
used. Thus inserting the RR estimates for the 
Wk'S in (2.2) one could extract estimates for 

QIj and Q2i. from (2.1), provided that the matrix 

is non-singular. 
If the variate X is quantitative one may wish 

to estimate, for each level k of S, its mean and 
2 k = I, 2 variance which we denote by Nk, Ok, 

For the estimation of pl and ~2 we have, 

corresponding to (2. I) 

]. P( l l  ]-) p(ol ]-) ~l 
= (2.4) 

p 0 P(IIO) P (010) P2 

where p ll denotes the mean of X given that r. =I 
1 

has been observed for a randoml[ selected 
respondent, and similarly for ~]O. The 
quantities Nil and ~IO may be estimated by xq, 

o 
the sample means of X for those with r. = 1 and 

1 
O respectively, and estimation of pl , ~2 then 

proceeds as described earlier for Qlfi ~ and Q2j" 

The procedure suggested for estimating o~ and 

o2 is similar. Let o211 denote the variance of 

X given that r. = 1 has been observed for a 
1 

randomly selected respondent, and similarly for 
o210. We have 

o2l l  = Vl l  P(I[1) + V21 P(O[1) 
(2.5) 

o21o = vlo P(llO) + V2o P ( O I O )  

where Vll = o~ + (Pl - pI1) 2 

v 2 1  = ° ~  + (~'2 - ~11)  2 

Vlo = °] 2 + (Pl 
- u [ o )  2 

V20 = o~ + (P2 - p l o )  2 

The quantities 0211, 02[O may be estimated by s 2, 
2 s the sample variances of the X values for tho~e 
o 

respondents with r. = 1 and O respectively. 
1 

Using the estimators for the other quantities 
(PI' ~II' P(lll)' etc) described earlier, it is 

possible to estimate O~, O~ . 

The estimators presented in this section seem 
intuitively reasonable. However, formal analysis 
of these estimators is difficult, and will not be 
attempted here. In Section 4, some empirical 
results on the performance of these estimators 
are presented, and comparisons made with the ML 
estimates of Section 3. 

3. ESTIMATION WITH DISTRIBUTIONAL ASSUMPTIONS 
FOR THE NON-SENSITIVE VARIATE 

In this section we consider the estimation of 
the distribution of X where we are willing to 
make assumptions about the distributional form of 
X at each level of S. We shall use the EM 
algorithm to compute ML estimates of the 
parameters of the distributions. (Two distinct 
EM formulations for RR data are described in 
Bourke and Moran (1984 , 1986)). 

The quantities x., ri, z have the same mean- 
l i 

ings as described in Section 2, and z. differs 
1 

from xi, r i in that it is not observed. Let gl' 

g2 denote the p.d.f.s of X for the sub-populations 

corresponding to the two levels of S. The log- 

likelihood for the data (xl,rl,Zl),...,(Xn,r ,z ), 
n n 

if the z. were observed, is 
1 

log L(~l,gl,g 2) e ?i{zi[log ~l+lOg gl(xi)] (3.1) 

+ (l-z i) [log ~2+log g2(xi ) ]~- 

To proceed further, it is necessary to assume 
parametric forms for gl and g2" To illustrate 

the procedure, we will assume that gl is Poisson 

(m I) and g2 is Poisson (m 2) . In the E step of 

the algorithm, each z. is replaced by its 
l 

expectation z.l conditional on the observed (xi,r i) 

and the current parameter estimates. Thus, at 
iteration t 

* (t) , (t) (t) 
z.l = E[zi[xi, ri, ( ~I=~I ) , tml=m I ) , (m 2=m 2 ) ] 

P(x. ril (z i = i) l' g 
(t) (t) (t) (t) 
1 ' ml ' m2 ) ~i 

P(x i, r i) 

(3.2) 
(t) i 

gl(Xi)P(rilz i = I) 

gl(Xi)P(rilzi =l)~t') + g2(xi)P(rilzi =O)~t) 

using the fact that x. and r. are independent of 
1 1 
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TABLE 1 : Comparison of the Estimators: 

Estimates of Expected Values and Standard Errors of the 

Estimators of ml, m 2 and ~i for a Range of Sample Sizes• 

Sample 

Size 

Es timati on 

Me thod 

5OO 

iOOO 

15OO 

2O0O 

3000 

Simple 1.96 3. OO .099 
.55 .097 .025 

EM 1.97 3.O1 .099 

.47 .085 .024 

Simple i. 96 2.99 . i01 
• 38 .O61 .020 

EM 1.97 3.01 .099 

.39 .055 .O14 

Simple 1.95 3. Ol . iOO 

.28 .057 .016 

EM 1.96 3.02 .099 
.30 .041 .009 

Simple 2 .OO 3. OO . I00 
.25 .047 .O13 

EM 1.95 3.02 .098 

.24 .032 .006 

Simple 1.99 3.00 . iOO 

.22 .O41 .OlO 

EM 1.99 3.OO .099 
.19 .030 .006 

each other, conditional on z.. The M step of 
l 

the algorithm then gives up-dated estimates as 

follows : 

n 
(t+l) = 7. z. / n 

"n'l 1 

n n 
(t+l) * * 

m I = (7. x. z.) / 7. z. 
1 1 1 

(3.3) 

n n 
(t+l) * * 

m 2 = (7 x. (l-z.))/7 (l-z.) . 
1 1 1 

The E and M steps generate a sequence of iterates 

converging to the ML estimates for ~l' ml' m2 " 

The observed information matrix for the parameter 

estimates may be found using the results of 

Louis (1982) . 

4. EMPIRICAL COMPARISON OF THE ESTIMATORS 

In this Section we present some results from a 

comparison of the performance of the estimators 

using estimates computed from simulated data. 

The data on the non-sensitive variate were 

generated by mixing two Poisson distributions 

with means m I = 2 and m 2 = 3, using the mixing 

proportion ~i = O.iO . This corresponds to 10% 

of a population having the sensitive variate S at 

level 1 (the stigmatizing level). The resulting 

data correspond to the x. values in the notation 
1 

of Section 2. The RR procedure was also 

simulated, assuming the use of the Simmons un- 

related question design with parameters p = 0.7 

and 8 = 0.5 (see Section 2), and the resulting 

data correspond to the r. values of Section 2. 
1 

It was decided to compare the estimators for 

a range of sample sizes (n), and the following 

values for n were chosen: 500, IO00, 15OO, 2000, 

3000. For each sample size, 400 replicated 

samples of that size were generated, and the 

procedures of Section 2 and 3 were used to 

compute estimates of ml, m 2 and ~ifor each 

sample. Using the 400 replicated sets of 

estimates it was then possible to estimate the 

expected values and the standard errors of the 

estimators, and the results are presented in 

Table I. 
The results of the computations indicate that 

the simple estimators compare quite favourably 

with the ML estimators, even for smaller sample 

sizes. The estimated standard errors of the ML 

estimators are somewhat smaller, and there is 

some indication that the ML estimators have 

noticeably smaller standard errors for quite 

large sample sizes, but further computations are 

needed• The poorer estimates and larger standard 

errors associated with the estimation of m I are 

of course due to the much smaller number of 

sample elements contributing information on m I. 

The estimators of Section 2 for m I and m 2 are 

ratio estimators and one thus expects them to be 
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biased. However the bias appears to be neglig- 

ible. 

Overall one may conclude that the simple 
estimators of Section 2 perform quite well 
compared with ML estimators, and especially so 
for the large sample sizes that are likely to be 
used in RR surveys. 
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