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I. INTRODUCTION 
This paper presents a 1990 Census 

total error model. The term "total 
error" implies an integrated treatment 
of different sources of error in census 
or survey statistics. The error sources 
in 1990 Census data include, but are not 
limited to, errors of noncoverage 
(frame), sampling, geocoding, editing, 
coding, interviewing, mail response, 
nonmail response, and imputation. 

Two important applications of total 
error models have long been recognized: 
i) estimation of the total error of a 
statistic; and 2) estimation of the 
relative impacts of different kinds of 
errors on the total error. Using total 
error models, statistical inferences can 
be based on the overall accuracy of 
statistics, rather than just the 
sampling precision. Moreover, 
estimation of the relative impacts of 
different kinds of errors might lay the 
basis for efficient allocation of 
resources to different operations, so as 
to minimize total error for fixed cost. 

The model of this paper falls short 
of treating all sources of error in a 
single model. Hence, the term "total 
error model" is not used in a precise 
sense. The model seeks to account only 
for noncoverage, sampling, editing, 
response, enumerator, and imputation 
errors. 

II. OPERATIONS 
The total error model seeks to 

account for the processes giving rise to 
error in a single census statistic. Let 
P denote the population proportion to be 
estimated, and i denote the census 
questionnaire item that provides the 
data for computing the census statistic. 
The model applies to characteristics of 
households (housing items) as well as to 
characteristics of individuals 
(population items). 

The model assumes that a proportion C 
of N total units (i.e. , either 
households or persons, depending on the 
item i) are covered by the census and 
that a proportion (i - C) are not 
covered. The number of units in the 
covered and noncovered subpopulations 
are N c = C x N and NNC = (i - C) x N, 
respectively. 

The model assumes that P is estimated 
using the available data, i.e. , 
information for the N c units in the 
covered population. Figure 1 presents a 
flow diagram for selected operations 
affecting the total error of 1990 Census 
statistics. The model assumes that a 
proportion R of the N c covered units, 
i.e. , units represented on mail-out 
questionnaires, are mail returns and 
that a proportion (l-R) are nonmail 
returns. The numbers of units 
represented on mail returns and on 

nonmail returns are N 1 = R × N C and N 2 = 
(l-R) x N C respectively. 

A proportion E l of the N 1 mail return 
units do not have complete data for item 
i, while a proportion (i-~ i) have 
complete data for item i. The number of 
mail return units with complete data on 
item i is NI3 = (1-81) x R x N C. 

Among the mail return units without 
cQmplete data for item i, a proportion 
~i should fail edit and be sent ~o 
follow-up, and a proportion (i-~ l) 
should pass edit, according to 
questionnaire decision rules and 
tolerances. The numbers of units 
represented by "true" fail-edit mail 
returns and "true" pass-edit mail 
returns, among those withoqt complete 
data for it@m i, are NIl = E 1 x ~i x N 1 
and NI2 = E l x (l-~l) . x N 1 resp@ctively 

Like C, the proportions R, E l, and z[ 
are treated as fixed constants in th@ 
model. R is the mail response rate, 81 
is the mail return ~tem nonresponse rate 
for item i, and ~l is the conditional 
fail-edit rate, given missing or 
incomplete data on item i. 

By implication, the population of N C 
units represented on mail-out 
questionnaires is divided into four 
strata: i) Stratum Ii, the stratum of 
mail return fail edits with missing data 
for item i (size = NIl units) ; 2) 
Stratum i__22, the stratum of mail return 
pass edits with missing data for item i 
(size = NI2); 3) Stratum 13, the stratum 
of mail return edits with complete data 
on item i (size = NI3); and 4) Stratum 
2, the stratum of nonmail returns (size 
= N2). 

The N total units in the population 
are partitioned into five strata, the 
four strata of the covered population 
together with the noncovered stratum: 

N = N C + NNC 
= NIl + NI2 + NI3 + N 2 + NNC 

We will develop separate 
approximations for the error components 
in each stratum, and then combine the 
expressions, using weights determined by 
C, R, E l and ~l in order to derive the 
mean square error of an estimated 
proportion. 

Many of the remaining symbols in 
Figure 1 are subscripted by both k and 
j. These symbols denote random 
variables that are defined for each 
combination of an "operator" k (i.e., an 
enumerator), and a "unit" j (i.e., a 
household or person) of operator k's 
assignment. Exceptions occur in the 
following places: in Stratum 12, where 
no enumerator is defined since all 
responses are imputed; at the editing 
stage of Stratum ii, where units have 
not yet been assigned to enumerators; 
and in Stratum 13, where the subscript h 
denotes the household and j denotes the 

522 



eligible unit in the household to which 
item i applies (the household itself, if 
i is a housing item, or a household 
member, if i is a population item). 
Each subscripted variable in Figure 1 is 
also conditional upon the item i, but 
the i is omitted for notational 
simplicity. For each k and j,~ Ikj, 
and ~kj denote random i ca~or 
variables, i.e., random variables that 
take on either the value 0 or the value 
i. Each indicates whether a census 
operation was carried out successfully 
(value = 0) or unsuccessfully (value = 
I): 

8j = 0 if editor correctly sends unit j 
of the failed-edit stratum 
(Stratum ii) to follow-up; 

= 1 if editor does not send unit j 
of the failed-edit stratum to 
follow-up. 

Ikj = 0 if enumerator k obtains a 
response from unit j in the 
failed-edit follow-up. 

= 1 if enumerator k does not 
obtain a response from unit j 
in the failed-edit follow-up. 

ekj = 0 if enumerator k obtains a 
response from unit j in the 
non-response (nonmail return) 
follow-up; 

= 1 if enumerator k does not 
obtain a response from unit j 
in the nonresponse follow-up. 

In this model, we assume that 
follow-up enumerator assignments have 
been interpenetrated, i.e. , that the 
units have been split into random 
subsamples of equal size and assigned to 
operators. This simplifying assumption 
allows us to estimate certain 
covariances in the model that would 
otherwise be inestimable. 

Figure 1 shows that, depending upon 
the stratum in which a covered unit 
falls and upon the successful or 
unsuccessful outcomes of census 
operations for that unit, the recorded 
value of item i is subject to one of 
three kinds of error: i) response error, 
denoted by eRh ~ ; 2) enumerator error, 
denoted by eEk q~ or 3) imputation error, 
denoted by eIk~ or by eIj. For example, 
if an editor correctly sends unit j in 
Stratum ii to follow-up (i.e., 6. = 0), 
and if enumerator k does not o{tain a 
response to item i for unit j (i.e., l k~ 
= i), then an imputation error, denote~ 
I . results. This combination of e k 3 '  

stratum and outcomes is called "Path 4 
in Fig. i. 

In all, seven operational "paths" are 
shown in Figure i. Paths 2, 4, 5, and 7 
result in imputation error; paths 3 and 
6 result in enumerator error; and path 1 

results in response error. Complete 
specification of the model requires: i) 
assumptions about noncoverage; 2) 
assumptions about the sampling design; 
3) assumptions about the assignment of 
operators to covered units; and 4) 
assumptions about the joint probability 
distributions of the indicator variables 
8kj, ~kj~ and ek ~ and of the nonsampling 

• Ik~ , and eEkj. errors e ~h~. e 
MODEL ASSUMPTIONS 

This model treats the census as a 
random sample from the population 
covered by the census. If item i is a 
100% item (i.e., a question on the 
census short form distributed to every 
U.S. household), then it is a 100% 
sample, whereas if item i is a 
less-than-100% item (i.e., a question 
found only on the long form distributed 
to only a sample of U.S. households), 
then the sample is less than 100%. 

Let y denote the observed value of a 
binary random variable, e.g., whether a 
household has complete kitchen 
facilities (y = i) or does not have 
complete kitchen facilities (y = 0). 
Let x denote the unobserved "true" value 
of the same unit. 

For each of the four covered strata, 
y can be written as the sum of x and a 
nonsampling error. The nonsampling 
error added to x can be a response, 
enumerator, or imputation error, 
depending on the stratum and on the 
realized values of the random indicator 
variables defined in Section II; hence 
the nonsampling errors can be expressed 
as weighted sums of nonsampling errors: 

Stratum Ii, units that fail edit: 

. I 
Y (IIF)k=+ ( i-~ kj=) eX (llFlk~ (il~}~ e E k j  j ~Je (IIF) kj 

Stratum Ii( units that pass edit: 
y(llP)j = x(llP)j + EIj 

Stratum 12" y(12)j = x(12)j + eIj 

Stratum 13" y(13)hj = x(13)hj + eRhj 

= x(2)k'~2 +) (l-eki~eEkj) Stratum 2" y(2)kj I 
+ 

ekje kj = x~ kj + e kj 

In Strata ii and 2, y(ll)k, and 
y(2)kj denote the j th unit in th~ kth 
enumerator's assignment. In Stratum 12, 
and among the pass-edits of Stratum ii, 
responses are always imputed so there is 
no enumerator (no subscript k). In 
Stratum 13, the mail response stratum, a 
single household respondent is assumed 
to respond for all units in the hth 
household. That is, y(13)_, denotes the 
observed response for then~ eligibl th e 
unit in the hth household. 

Note that, if x ~ 0L each of the 
nonsampling errors, e , eE, and 6 R, can 
equal either 0, producing a correct 
response, or I, producing a false 
positive response. If x = i, each of 
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the nonsampling errors can equal either 
0, producing a correct response, or -i, 
producing a false negative response. 
Because e(llF) and e~2) are a random 
selection of enumerator and imputation 
errors, they also take the possible 
values 0 or 1 if x = 0, and 0 or -I if x 
-- 1. 

In order to derive the total mean 
square error of a sample proportion 
(Section IV) , we made the following 
assumptions about noncoverage, about the 
sample design, about the assignments of 
units to operators, and about the joint 
distributions of random variables. 
A. Noncoverage: We assume that a fixed 
proportion PNC of the NNC = (i - C) x N 
units in the noncovered stratum have the 
characteristic (i.e., x = i). 
B. Sample Design: We regard the census 
as a simple random sample of n units 
from the total of N c units in the 
covered population. The sampling 
fraction is f = n/N c. There are nll 
sample units in Stratum ii, n12 sample 
units in Stratum 12, n13 sample units in 
Stratum 13, and n 2 sample units in 
Stratum 2. It follows that n = nll + 

n12 + n13 + n 2. 
Under simple random sampling, nll, 

n12, .n13, and n 2 are random variables; 
but in the calculations that follow, 
they are regarded as constants fixed 
before the sample was drawn. By this 
simplification, we treat our 
poststratified sample as if it were 
stratified, i.e., as if the correct 
stratum to which each unit belonged were 
known before the sample was drawn. 
C. Operator Assignments: We assume that 
the nll sample units in Stratum ii were 
sent to editors, and of these np passed 
edit (were not sent to follow-up) and n F 
failed edit (were sent to follow-up) . 
We assume that the n F units sent to 
follow-up were randomly split into KII 
equal subsamples (assume that n F divides 
by K evenly) . One subsample was 
assigned to each of KII enumerators . 
Let mll denote the size of an 
enumerator's assignment; it follows that 

n F = Kllmll . 
In Stratum 13, we assume that a 

single respondent provided answers for 
all eligible units in the household. 
Let h13 denote the number of households 
in the sample. For simplicity, we also 
assume a constant household size of m13 
eligible units. It follows that nl~ = 
h13m13. If item i is a populatlon 
characteristic, characteristic, m13 
equals the average number of eligible 
persons in a household. If item i is a 
housing characteristic, m13 = I. 

For Stratum 2, assume the n 2 sample 
units were randomly split into K 2 equal 
subsamples and one subsample was 
assigned to each of K 2 nonresponse 
follow-up enumerators. Let m 2 denote 
the size of a nonresponse enumerator 
assignment; it follows that n 2 = K2m 2. 
D. Joint Distribution of Random 

Variables: We propose a hierarchical 
model for the indicators of census 
events, ~p~i~ ~ and ~kJ,Ras well as for 
the non errors E , E E, and E I. 
This model treats the individual 
operators' error rates as random 
variables, drawn from a probability 
distribution of possible error rates. 

For the indicators of census events, 
assume the following (wp = "with 
probability"): 

I wp 6 
= independently, 

6j 0 wp 1-6 j=l,...,nll , 

1 wp Ik independently, 

kkjlk k = j=l,...,mll , 
0 wp i-I k k=l,...,Kll , 

1 wp e k independently, 
ekj I ek = j = i,..., m2, 

0 wp l-e k k = i, ..., K2, 
where 6 is the average "fail-edit 

error rate" among all editors, I k is the 
"fail-edit follow-up failure rate" for 
the kth enumerator, and e k is the 
"nonresponse follow-up failure rate" for 
the kth enumerator. 

The follow-up failure rates are 
assumed to be independently and 
identically distributed random 
variables, drawn from infinite 
populations, as follows: 

, ..., 1 K are iid with mean I and 
1 variance ~62 . 

are iid with mean e and el, • -.- , eK 2 
variance o~ 2 . 

The sets of random variables above 
are assumed to be independent of each 
other, and independent of the values of 
X. 

For the nonsampling errors, we assume 
another hierarchical model, with 
differing rates of false positives and 
false negatives among operators. For 
response errors, we have: 

-I wp 0R h 
[eRhj ]Xhj=l,0R hI = 

0 wp i-0~ 

1 wp ¢R h 
[eRhj IXhj=0,~] = 

0 wp I-~R h 
independently, j = i, ..., m13, 

h = i, ..., h13. 
Following the model for qualitative 

data found in Bailar and Biemer (1984) 
and U.S. Bureau of the Census (1985), we 
assume that the false negative rate o R h 
and the false positive rate CR h for each 
household are random variables, drawn 
from a bivariate distribution: (0Rh, 
~Rh) , h = i, . .., h13, are iid with 

, , , R 2 means (O R ~R) variances (00R 2 o~ ) , 
and covariance aO~R. 

The same structure applies to the 
enumerator errors : 

-i wp oE k 
[eEkjlXkj=l,sE k] = 

0 wp I-oE k 

524 



I 1 wp CE k 
[eEkj lXkj=0,~E k] = 

0 wp I-~E k 
independently, j = 1 .... , mll (or m 2) , 
k = i, ..., KII (or K 2) . 

The false negative rate 8E k and the 
false positive rate ~E k are drawn from 
a bivariate distribution: (SEk, ~Ek), k 
= i, ..., KII (or K 2) are iid with means 
(BE, .~E) , variances (O8E2 , O~E2 ) , and 
covarlance o 8 ~E • 

The model for imputation errors 
however, has a simpler structure. 
Because there is only one operator, the 
imputation algorithm itself, there is 
only a single false positive rate and 
false negative rate ; there is no 
between-operator variation in these 
rates. Hence the following model is 
assumed: 

=i] = ~ -i wp 8I 
Ikj [e I xkj [ 0 wp i-8 1 

Ik~j IXkj=O] = ~ 1 wp ~I [ E 
L 0 wp i-¢i 

independently for all k and j. 

Under these model assumptions, the 
conditional expectations and variances 
of the three types of nonsampl ing 
errors, given the associated true 
values , are as follows : 

E[eRhj lXhj] = -Xhje R + (l-Xhj)~ R 

m[eEkj IXkj] = -Xkj8 E + (l-Xkj)¢ E 

E[eIkj [Xkj] = -Xkjei + (l-Xkj)¢I 

(l-Xhj) ¢ R 

v[eEkj I X.kj] = Xk3'OE(I-OE) + 
(l-Xkj) CE (I-¢E) 

V[eIkj IXkj] = Xk'e (i-8) + 
(l-Xkj) ~I (l-~I ~ I I 

It can also be shown that, within a 
stratum s, errors from the same operator 
are correlated, whereas errors arising 
from different operators are 
independent. Specifically, for response 
errors, 

Cov[eRhj,eRh ,.,Ix .,x ,.,] = 
,OO]R2 .hi h ] + Xhj (l-Xh'j')OO~R XhjXh'j 

+ Xh'j' !l-Xhj)° ~R ; 
( l-Xhj ) { j O~R l-x h , ,~ 

for h = h' and j ~ j', and 0 for h ~ h'. 
For enumerator errors, 

Cov[eEkj ,eE~,~, I Xkj, Xk , j, ], ) = 
XkjXk, j ,O(~E- Xkj~ l-Xk' j °8¢E 

+ x k,j, l-Xkj)O E + 

for k = k' and j ~ j' and 0 for k ~ k' l 

In other words, for mail responses, 
errors are correlated within but not 
between households. For enumerator 
returns, errors are correlated within 
but not between enumerator assignments. 
For imputations, however, all errors are 
uncorrelated: 

Cov[eIk~,eI k, 
for h ~ k 'j' Ixk'j'x~'j'] = 0 

ana/or 3 ~ J' 

From the expressions above, it is 
possible to derive the conditional means 
and variances of e(2)kj and e(llF)kj, 
which are random mixtures of enumerator 
and imputation errors. (The derivation 
is excluded due to space limitations. ) 

We assume that the true values, 
Xkj'S, are uncorrelated with the 6j,'s, 
~k,j,'s, and Ik,5,'s for all k, k , j, 
and j ' and un-correlated with the 
nonsampling errors eR~,j,, eIk,4j,, and 
eEk, j, for all k ~ k'; and/or ] ,,, j'. 
Because the data are qualitative, 
however, there is a negative correlation 
between a sample unit's true value and 
its nonsampling error; this arises 
because a unit whose true value is 1 can 
only have a nonsampling error of 0 or 
-i, while a unit whose true value is 0 
can only have an error of 0 or 1 (see 
U.S. Bureau of the Census, 1985). 
IV. DECOMPOSITION OF MEAN SQUARE ERROR 

Let P = the proportion of the 
population having a specified 
characteristic and let p = the census 
estimate of P. Using the symbols of 
Section II (suppressing the superscript 
i for convenience), we can write 

P = CR/3~PII + CR/9(I-z)PI2 + CR(1-8)PI3 + 
C(I-R)P 2 + (I-C)PNc , 

where P~I, P P , and PNC are the 
proportions %~' unltsPl~" In the population 
having the characteristic (x = i) in 
Strata II, 12, 13, 2, and the noncovered 
stratum, respectively. 

Similarly, assuming known values of 
R, 8, and z, the census estimate p of P 
can be written 

P = RSZPll + R~(l-~)Pl2 + R(l-~)Pl3 + 
(I-R) p 2 , (2) 

where the p's are the sample 
estimates in Strata ii, 12, 13, and 2 
respectively. 

We now provide expressions for the 
mean square error of p, 

MSE(p) = E[ (p_p) 2] '. 
where the expectation is taken over 

an infinite number of repetitions of 
response errors and census operations 
(i.e., over the probability 
distributions of Section III-D), over 
all possible enumerator assignments 
(under the interpenetration assumptions 
of Section III-C), and over repeated 
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samples (under the sampling assumptions 
of Section III-B). 

Assuming all nonsampling covariances 
among strata are zero, the mean square 
error of p can be written 

MSE(p) = BIAS2(p) + VAR(p), 
where 

BIAS (p) = CP~8zBIAS (PlI) + 
CR~(I-~)BIAS(PI2) + CR(I-~)BIAS(PI3) 
+ C(I-R)BIAS(P2) + (i -C) (E(p)-PNc) 

and 
V AR~p) = -R2~ 2~2VAR(plI) + 

+ R 2(I-~)2VAR(pI3) + (1-R)2VAR(P2) . 
The biases of PlI, Pl - PI3, and P2 

in are biases relative to2pll, PI2, PI3, 
and P2 respectively. Note from the last 
term that noncoverage contributes a bias 
equal to the product of the proportion 
of noncoverage and the difference 
between the expectation of the census 
estimate p and the true proportion 
having the characteristic in the 
noncovered stratum (cf. Cochran, 1963, 
p. 357). The individual stratum biases 
can be derived from the conditional 
expectations of the errors given their 
associated true values (in Section 
III-D) , by averaging over the 
interpenetration and sampling designs. 
For Strata 12, 13, and 2, the resulting 
expressions are: 

BIAS(P12) = -8iP12 + ~I(l-Pl2) 
BIAS(P13 ) = -SRPI3 + ~R(I-PI3) 
BIAS(P2) =-[~8I + (I-~)SE]P2 + [~I 

+ (l-e)~E] (l-P2). 
The bias for Stratum ii is more 

complicated, because the number of cases 
that pass edit np and the number that 
fail edit n F are random variables. To 
simplify matters, we derive the bias 
assuming that the sample proportion of 
pass edits, np/nll, is equal to the 
probability of passing edit 6. Under 
this assumption, the bias in Stratum ii 
is given by 

BIAS(P11 ) = - [681 + (1-6) (~8 I 
+ (I-~)SE) ] Pll 
+ [6¢i + (1-6) (~¢I 
+ (I-I)¢E) ] (l-Pll) " 

Following U.S. Bureau of the Census 
(1985) , we decompose each of the 
variances in (4) into three parts, which 
we denote by SV ("sampling variance"), 
SRV ("simple response variance"), and CC 
("correlated component"). For Stratum 
13, the decomposition is 

1 
VAR(PI3) = (l-f) SV(PI3) 

n13 

1 (m13-1) 
+ -- SRV(PI3) + CC(PI3) 

n13 n13 
where f13. = n13/N13 is the sampling 
fraction in Stratum 13. The sampling 
variance SV(PI3) is_defined as 

SV(Pl3) = V E!e~jlXhj] 
where the expec~atlon ms taken over 
response errors, census operations, and 
the interpenetration design, and the 
variance is taken over the sample 

design. Note that when the sampling 
fraction equals unity (as for a 100% 
questionnaire item), the SV term makes 
no contribution to the variance. 
The simple response variance and 
correlated component are defined as 

CC(Pl3) = E Cov[e ,j, IXhj,Xh, j,] 

where the variance and covariance are 
taken over response errors and census 
operations, and the expectations are 
taken over the interpenetration design 
and sample design. 
The variance in Stratum 2 is decomposed 
in an analagous fashion, 

1 
VAR(P2)- (l-f2) SV(p 2) 

n 2 

i (m2-i) 
+ SRV(P2) + CC(P2 

n2 n 2 

SV(P2 ) = V E[el21k j IXkj] 
SRV(P2) = E V[e 2 kj Xkj] 
CC (P2 ~ = E 
Cov[e 2)kj,e(2)k, j, IXkj,Xk,j,] 

where the expectations, variances, and 
covariances in the expressions above 
have the same meaning as in Stratum 13. 

In Stratum 12, there is no operator 
assignment, and all errors are 
conditionally uncorrelated given their 
true values; hence, the variance is 
decomposed as follows: 

1 
VAR(PI2) - (I-fl2) SV(Pl2) 

n12 

1 

+ -- SRV(PI2) 
n12 

SV(PI2) = V E[~Ikj~Xkj] 
SRV (P12) = V[E Ikj I Xkj ] 

where, in the expression for SV, the 
expectation is over response errors and 
the variance is over the sample design; 
and, in the expression for SRV, the 
variance is over response errors and the 
expectation is over the sample design. 

Stratum ii is more complicated 
because the split of nll into np and n F 
is random. Again, if we assume that the 
proportion np/nll is equal to 6, we can 
derive simpler expressions for the 
variance. We decompose the variance as 
follows: 

1 
VAR(PlI) - (l-fll) SV(PII) 

nll 

i (m11-i) 
+ SRV(PlI) + CC(PlI) 

nll n F 

The variance components are 
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SV(PlI) = 6 V EFeIj Ixj] 
+ (1-6) V E[e(llF)kj Xkj ] 

SRV(PII ) = 6 E Vi6 Ixj] 
+ (1-6) E V[e(II=) Ij kj I Xkj ] 

CCcov[e(Pll~iiF) kj,(le~2F)Ek'j' [Xkj,Xk'j' ] 

where expectations, variances, and 
covariances have the same meaning as 
before. 

We now give expressions for the 
individual SV's, SRV's and CC's. These 
can be derived through straightforward 
but tedious calculation. They are 
presented below, in order of increasing 
complexity. 

SV(Pl2) = [i - (Si+~i) ]2 P12 (l-P12) 

SV(Pl3 ) = [I- (SR+~R)]2 P13 (l-P13) 

SV(P2) = [i- (~(8~+~i) 
+ (l-e) (SE+~E)) ]~ P2 (l-P2) 

SV(Pll ) = [ 6 (l-(SI+~i))2 
+ (I-6) [i,(~ (Si+~i) 
+ (I-I) (SE+~E)) ] ] PII (l-Pll) 

SRV(PI2) = 8i(1-8i) P12 
+ ¢i(l-~i) (l-P12) 

SRV(PI3) = 8R(I-SR) P13 
+ CR(I-~R) (l-P13) 

SRV(P2) = [ eSi(l~SI) + (I-~)8E(1-8 E) 
+ e(l-~)(81 8E)Z - ] P2 
+ [ e~I(l-~ I) + (l-e)~E(l-¢ E) 
+ e(l-e) (~I-~E) z ] (I-P2) 

SRV(PlI) = ~ { 8I(i-8I) Pll 
+ ¢i(l-¢i) (I-P11)) 
+ (1-6) ( [ 18i~I-8i) + (I-I)SE(I-SE) 
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