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I. INTRODUCTION 
Suppose we are interested in estimat- 

ing the population total Y of a popula- 
tion with an intrinsic ordering Y(1), 
Y(2), ... , Y(k), ... , Y(N), based on a 
sample size n. For simplicity, through- 
out the paper we will assume that N=nk, 
where n is the desired sample size and k 
is the sampling interval. Several sys- 
tematic sampling designs with similar 
sampling fraction can be compared based 
on the "true" variance of the estimate 
and the MSE of the variance estimate. A 
single random start systematic sample of 
n elements is drawn by selecting one 
element at random from the first k ele- 
ments and thereafter selecting every k th 
element. Single random start (SRS) sys- 
tematic sampling is widely used in major 
surveys and national censuses, mainly 
due to its administrative benefits. The 
major liability associated with this 
sampling procedure is that the variance 
of the estimate can not be unbiasedly 
estimated from the sample itself. It is 
natural to compare SRS systematic samp- 
ling with possible competitors within 
its family. Let now consider a proce- 
dure which appears to have been sug- 
gested by J. Tukey[l]. 

Select a simple random sample of size 
h (without replacement) from the first 
kh elements and then every kh th element 
following those that were initially 
selected. Using this procedure a sample 
of size n is selected. This sampling 
procedure is evidently equivalent to 
drawing a simple random sample of size h 
from the kh clusters Ci, i = l~h~ . , 
kh. It, therefore, follows ~..~ this 
procedure yields an unbiased estimate of 
the variance from the sample at the cost 
of some (perhaps negligible) increase in 
the "true" variance of the estimates. 
For the 1980 Decennial Census, single 
random start systematic sampling was 
used. The variance estimation method 
recommended and used was the random 
groups method, using 25 systematic sub- 
samples. A major problem with the ran- 
dom group variance estimator (and other 
resampling methods like Jackknife) is 
that the bias is relatively large for a 
large number of census data items. Fur- 
thermore, the bias is generally the 
major component of the total MSE of the 
random groups variance estimator[2,3]. 

In this paper, we examined the alter- 
native of using MRS systematic sampling 
as a way of reducing the bias of the 
census variance estimates. 

One hundred and twenty 1980 tracts 
comprised the empirical study popula- 
tion. These tracts were contained in 16 
counties (in 7 states) with a high con- 
centration of minorities[4]. The geo- 

graphic level for which estimates were 
produced is defined as the 1980 tract. 
Housing units within each tract were 
divided into all possible systematic 
samples for (h=l,2,...,10) for a l-in-6 
systematic sampling design. Two basic 
sampling designs were simulated, single 
random start (h=l) and multiple random 
start (h=2,3,...,i0) systematic samp- 
ling. The variance estimation procedure 
was independently performed for each 
tract and for each sample. 

2. STUDY POPULATION 
A study population consisting of 

counties with minority race concentra- 
tion was generated. This study popula- 
tion was comprised of counties which 
have at least 16 percent nonwhite and 6 
percent Hispanic or 11 percent Black and 
6 percent Hispanic. A total of 153 
counties and 22 percent of the 1980 U.S. 
population were included in the study 
population. A two-stage sampling scheme 
was designed to select a sample of 120 
census tracts, which constitute the unit 
of analysis in this study. 
2.1. Source of Data and Characteristics 

The source of data for this study was 
the 1980 100-Percent Edited Detail File. 
From this data file, a tract population 
was created using the 100-percent hous- 
ing unit records within the sample 
tracts. The relative increase in the 
true variance of the estimate resulting 
from the use of MRS systematic sampling 
is a function of the homogeneity (auto- 
correlation) between "neighbors" in the 
geographic area of interest. Homoge- 
neity is a function of distance, it is 
reasonable to expect that the closer two 
units the more alike they will be. 
Therefore, we decided to use 100-percent 
data because using sample data (units 
are farther apart, lower autocorrela- 
tion) would have created a bias against 
single random start systematic sampling. 
If sample data had been used then the 
autocorrelation would have been 
decreased introducing a bias in favor of 
MRS[l]. Estimates were produced at the 
tract level for several 100-percent data 
items, such as (i) counts by 
race/Hispanic origin, (2) marital 
status, (3) rent/value, (4) tenure, and 
(5) substituted persons (as a proxy for 
small size data items). 
2.2. Sample Size Determination 

From the beginning it was decided 
that the Friedman test, or the Thompson- 
Willke's nonparametric multiple compari- 
son test was to be used to evaluate the 
different systematic sampling designs. 
The basic idea of the Friedman test is 
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that the difference between the rank 
sums is a result of the difference bet- 
ween the (sampling designs) treatments. 
Despite the lower efficiency of the 
Friedman test, it is very useful and a 
versatile technique. Independence bet- 
ween each tract was assumed. Basically, 
the Friedman test was implemented in 
this study as follows. The systematic 
sampling designs were first ranked by 
the magnitude of various statistics 
(e.g., the MSE or the variance) within 
each tract. Then, a rank sum was 
obtained for each systematic sampling 
design by adding the ranks over all 
tracts. 

The Friedman test statistics is a 
function of 
k - the total number of sampling design 

to be compared, 
v - the total number of tracts, 

R i - the average rank of the i th samp- 
ling design, and 

Rj - the average rank of the jth samp- 
ling design• 

The Friedman test statistic follows a 
chi-square distribution with k-i degrees 
of freedom• To determine how large the 
sample of tracts should be so that under 
the null hypothesis of no difference 
among the treatments the probability is 
(l-n) that all absolute values of Dij , 
the absolute pairwise mean rank differ- 
ence, will not exceed a constant d, we 
determined v such that 

P[ All 
H o ij 

1/2 
~ [ kCk+l) ] ... (2) 

d = qk,~ 12v 

where qk,~ is the upper ~ percentile 
point of the studentized range statis- 
tic. For d = 1.25 and ~ = 0.05, v = 
120. 
2.3. Sample Selection [5] 

A two-stage stratified systematic 
sampling design was used to select the 
sample of tracts• Prior to the first 
stage sampling, the study population 
(153 counties with minority concentra- 
tion) was stratified on (i) Count of 
Blacks, (2) 1982 Unemployed, and (3) 
Final number of 1980 weighting areas[2]. 
The population of counties was systemat- 
ically sampled at the rate of l-in-10. 
For the second stage (selection of 
tracts within sample counties) there was 
a minimum size requirement for tracts. 
Contiguous tracts were collapsed, if 
necessary, such that the number of hous- 
ing units was at least 800. Finally, an 
equal probability sample 120 tracts were 
systematically selected from within the 
16 counties initially selected to be in 
the sample. 

3 .  VARIANCE ESTIMATORS 
We begin the discussion of variance 

estimators with a description of MRS 
systematic sampling• Define h as the 
desired number of random starts and 
m=n/h is the size of each of the kh sys- 
tematic clusters (N=mhk). 

A simple random sample of h integers 
is selected from the integers 1,2,...,kh 
with k=6. If integer i is selected, 
then, the i th systematic sample (clus- 
ter) consists ofhthe populationhelements 
i t~, (i+kh) t (i+2kh) t , . . . 
, (i+(m-l)kh)th. ' The population was 
divided into kh (i.e., k=6; h=2 to h=10) 
systematic samples. The structure of 
the kh systematic samples from the popu- 
lation is as follows. 

Y1 Yl+kh Yl+2kh • • • YI+ (m-l) kh 
Y2 Y2+kh Y2+2kh • • • Y2+ (m-l) kh 
• . • • o • • 

• • • • • • • 

Yi Yi+kh Yi+2kh • • • Yi+ (m-l) kh 
• • • • • • • 

• • • o • o • 

• • • • • • • 

Ykh Y2kh Y3kh • • • Ymkh 

Therefore, for h=5, the population 
will be divided into 30 systematic 
samples or clusters• Five integers are 
randomly selected from 1 to 30, then the 
systematic samples associated with the 
random integers are selected to be in 
the systematic sample• Thus, the sample 
size is 5m=5(n/5)=n=N/k, the desired 
sample size. 

Assume simple inflation estimation, 
then 

n. 
1 

Yi = 6 Yij, for single random 
start systematic 

j=l sampling, ... (3) 
and 
^ h m 
YMRSI h = 6 ~ Yp[Yp = ~ Ypj;p=l,2,...,6h] 

p=l j=l for MRS, 
where ... (4) 

Yij - Value of the characteristic for 
the j th unit in the i th cluster, 

n i - Cluster size (SRS), 
m - Cluster size (MRS), and 

yp _ pth systematic sample total• 

3.1. Single Random Start Systematic 
Sampling 

The random group variance estimator 
was used to estimate the variance of the 
population total estimate• Each sample 
unit was systematically designated into 
one of 25 mutually exclusive random 
groups or subsamples. 

The true variance of the population 
total estimate and the expected value of 
the random groups variance estimate for 
a given characteristic and tract were 
determined. The bias and the true var- 
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iance of the random groups variance 
estimate were calculated and finally the 
MSE was calculated. 
3.2. Variance Estimators for MRS System- 

atic Sampling 
The true variance of the population 

total estimate for each MRS systematic 
sampling design (i.e., h=2,3,...,i0) was 
determined for each tract and character- 
istic as follows. 

Var(YMRh) 6h-I p=l p 

(5) 
3.2.1 Unbiased Variance Estimator 

An unbiased estimate of the variance 
of the population total estimate was 
determined as follows. 

h h 

= Yp Yp ; v~(YMRh) h-i h 

p=l p=l 

(6) 
~=l,2,...,J and h=2,3,...,i0. 

The number of all possible samples 
(variance estimates) for a given h is 
given by 

The true variance of the variance 
estimate for MRS systematic sampling is 
defined by the following expression. 

E J Var v (YMRh) 

J 2 

- v l  ( Y N R h )  - Var YNRh) 
J 

,~=1 ( 7 )  

It is obvious that the cost of calcu- 
lating the "true" variance of the var- 
iance estimate (for large h) becomes 
prohibitive very fast. As h increases J 
increases without limit. 

For h=3,4,...,i0, the "true" variance 
was estimated based on a simple random 
sample with replacement (size 200) from 
the population of all possible samples, 
for h=2, J=66, therefore, we calculated 
the true variance of the variance esti- 
mate. 

Assuming that v~(YMRh) is normally 
distributed (~,o 2) , the above sample 
size provides an estimate of the "true" 
variance with a i0 percent coefficient 
of variation. Substitute J by 200 
in (7) to get the desired unbiased 
estimate of the "true" variance. 
3.2.2. Biased Variance Estimator 

The variance estimator described in 
the previous section may have high var- 
iance since it is a function of a small 
number of sample systematic clusters 
which are the sampling units under this 
sample design. Thus, we decided to con- 

sider an alternative variance estimator 
which could have some bias but less var- 
iance. This rationale led us to con- 
sider a random groups variance estimator 
for a MRS systematic sampling design. 
The number of random groups (g) was def- 
ined as a function of h. The original 
plan was to use the same number of ran- 
dom groups (i0) for all the MRS designs. 
However, there was a concern with the 
relative difference in random group 
size. In order to avoid (perhaps) bias- 
ing the variance estimate unnecessarily, 
we defined the number of random groups 
as a function of the number of random 
starts in such a way that the number of 
units per random group was about the 
same[7]. 
a. A variable number of random groups 

were used; a minimum of 3 (for 
8~h~10) and a maximum of 12 (for 
h=2). In this way the maximum num- 
ber of replicates was 30 (h=10) and 
the minimum 24 (h=2). For 3~h~9, 
the number of replicates was between 
24 and 27, inclusive with a minimum 
size of 4 units/replicate and a max- 
imum of 6 units/replicate. 
Let h be the number of random 
starts, 
g be the number of random groups/ 
systematic sample, 
t be the random group size, and 
Y~ be the value of the character- 
is~Ic for the i th unit in the jth 
random group in the pth systematic 
sample. 
Then, the j-th random group total in 
the p-th systematic sample is def- 
ined as 

t 
Ypj = ~ Ypji 

i=l 

The biased estimate of the true var- 
iance of the population total estimate 
for each MRS systematic sampling design 
was determined for each characteristic 
and sample within tract using the fol- 
lowing formula: 

A 

v~ (YMRh) 

i - k ( k - 1 )  h g  YPJ _ _ _  YP3 
hg-I hg 

p=l j 1 p=l j=l 

(8) 
The true variance of the variance 

estimate is given by 

J J 

J 6 
=l ~ =i (9) 
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Again, for hZ3, it was not feasible 
to compute the true variance of the var- 
iance estimate, therefore, it was esti- 
mated using the same methodology 
described in Section 3.2.1. 
b. The bias of the proposed variance 

estimate was calculated as fol- 
lows[6]. 

Ev ] Bias ~(YMRh) 

2 [ 30h (h-l) 30h2gt(g-l) Sw + 

hg-i hg-i 

where 

30h] 
(10) 

2 
S w = 

1 6h g t 
X X X 

6h(m-l) p=l j=l i=l 

[ g t ] 
1 ~ ~ Ypji 

Ypji gt j=l i=l 

(11) 

E S~ = ~ YP - 6h p . 6h-i p 1 

c. An estimate of the MSE of the Var- 
iance Estimator was calculated 
adding (9) and the square of (i0) 

Note that for h=3 to i0, the MSE is 
an estimate with a i0 percent coeffi- 
cient of variation for the variance com- 
ponent. 

4. SUM/4ARY OF THE TEST RESULTS 

The objective of the nonparametric 
analysis was to screen the data for sig- 
nificant trends. The quantitative ana- 
lysis was performed to assess the magni- 
tude of the differences detected between 
the sampling schemes. 
4.1. Unbiased Variance Estimator 

We compared the MRS sampling schemes 
with SRS systematic sampling in terms of 
the "true" variance of the unbiased var- 
iance estimator and the MSE of the ran- 
dom groups variance estimator, respec- 
tively. The summary data shown in Table 
I.A indicate that the null hypothesis of 
no difference among the sampling designs 
was rejected for all but characteristics 
9 and i0. The random groups variance 
estimator (h=l or SRS) yielded a large 
number of data items having a signifi- 
cant low mean rank. For 12 out of the 
23 characteristics, the mean rank was 
below 4 and it did not exceed 6 for any 
of the remainder 9 characteristics. As 
h increases (h z 2) the mean ranks gen- 
erally decreases. The use of 2 random 
starts (h=2) resulted consistently in 
significantly high mean ranks. For 16 
out of the 23 characteristics, the mean 
rank was above 6 and no characteristic 
has a mean rank smaller than 5. For 14 
out of the 23 characteristics, h=10 

(excluding h=l) resulted in the lowest 
mean rank. From the data, it can be 
seen that the variability between the 
mean ranks for h=6 to h=10 is almost 
negligible. However, this observation 
does not apply to l~h~5. 
4.2. Biased Variance Estimator 

MRS systematic sampling was compared 
to SRS systematic sampling based upon 
the MSE of the biased variance estimate. 
The summary data presented in Table B 
indicate that the null hypothesis was 
rejected for all but 5 characteristics, 
these are characteristics 2, 9, i0, 22, 
and 23. SRS systematic sampling (h=l) 
ranks consistently higher than MRS with 
h=9 or h=10. MRS with h=10 resulted in 
the lowest mean rank for ii out of the 
23 characteristics and for 13 character- 
istics the mean rank for MRS with h=2 is 
generally higher than for the other 
designs. 
4.3. Pairwise Comparison Test 

For those characteristics for which 
the null hypothesis of no difference 
between the sampling schemes was 
rejected we conducted a pairwise compar- 
ison test. The test is based upon the 
absolute mean rank difference for any 
pair. The null hypothesis of no differ- 
ence between the two sampling designs is 
rejected if the difference exceeds 1.24 
(qk,~)" The analysis showed a (unbiased 
varlance estimate) statistical signifi- 
cant difference between SRS systematic 
sampling and the MRS sampling designs 
with small h, however, with ha9, the 
null hypothesis was not rejected for 
about 70 percent (28 out of 46) of the 
cases. For the MRS systematic sampling 
schemes defined by 7~h~10, the differ- 
ences were found to be not statistically 
significant for about 83 percent of the 
cases involving combinations of these 
designs. The analysis for the biased 
estimate indicates, statistical signifi- 
cant difference between SRS systematic 
sampling and MRS systematic sampling 
with 8~h~10 for most of the characteris- 
tics (14 out of the 18 characteristics). 
Again, the differences between MRS sys- 
tematic sampling designs defined by 
7~h~10 were found to be not statisti- 
cally significant for over 90 percent of 
the cases. 
4.4. Quantitative Analysis 

For those characteristics and pairs 
of sampling designs for which the null 
hypothesis of no difference was 
rejected, we conducted a quantitative 
analysis as follows. For each pair, the 
ratio of the mean square errors was cal- 
culated for each characteristic and 
tract, the denominator of the ratio 
being the MSE of the variance estimate 
of the design defined by the largest h 
value. For each characteristic the dis- 
tribution of these ratios was created 
and the median was determined. Our ana- 
lysis indicates that for the unbiased 
variance estimator the MSE of the random 
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groups variance estimator (SRS) is a 
small fraction (in many cases less than 
0.5) of the MSE of the variance estima- 
tor for MRS for at least 50 percent of 
the tracts. For MRS with 7~h~10, the 
median ratios were close to 1 indicating 
no real difference between these designs 
with respect to the MSE of the variance 
estimate. For the biased variance esti- 
mate, the MSE of the random groups var- 
iance estimator (SRS) is usually larger 
than the MSE of the variance estimator 
for MRS for at least 50 percent of the 
tracts with the only exception of h=2. 
With the exception of characteristic 14 
the MSE of SRS is at least 1.5 times (as 
high as 3.4) the MSE of MRS for at least 
half of the tracts. These data suggest 
that greater reductions in the MSE of 
the variance estimate are achieved by 
using 8 or more random starts. 
4.5. Autocorrelation and True Variance 

of the Estimate - Additional 
Research 

For each tract and each characteris- 
tic, the correlation, p, of neighboring 
elements will be computed as follows[8]. 

Let N be the number of HU's in the 
tract or tract size. 

For housing unit data, 

xJ I 
1 if the j th HU in a given 

tract has the character- 
istic of interest 

0 otherwise 

and for population characteristics, 

Xj = value of the characteristic for the 
jth HU, 

N Xj 
x= Z 

j=l N . 

Then the correlation p is 

C 1 
p - where 

C 1 - 

C o 

1 N-I 
(Xj - X)(Xj+ 1 - X) 

N-I 9=i 

C O - 
1 N - 2 

(Xj - X) 
N-I j=l 

If the correlation p, of neighboring 
elements for the variable being measured 
is high, then the more random starts, 
the higher the true variance of esti- 
mates due to the increased likelihood of 
neighbors being in sample. Theoreti- 
cally, the more random starts, the 
higher the increase in the true variance 
of the estimate for a given amount of 
autocorrelation. This relationship will 
be examined. 

Our analysis of the distrubution, of 
the true variance of the estimates, sug- 
gest that there is a significant (not in 
statistical sense) increase in the true 
variance of the estimate when MRS with 
h>_3 is compared to SRS systematic samp- 
ling, suggesting high autocorrelation 
values. The data indicate that for MRS 
with h>5, the (changes) increases in the 
true variance are independent from h. 
This was a very surprising finding since 
the true variance of the estimate is 
supposed to increase as the number of 
random starts increases. We will 
examine this in conjunction with the 
autocorrelation measure. The increase 
in the true variance of the estimate is 
in the order of 60 percent, averaging 
across characteristics. For instance, 
for characteristic i, when SRS system- 
atic sampling is compared to MRS with 
h=7, the increase in the true variance 
of the estimate is 59 percent. For 
other comparisons the percent increases 
are significantly higher (as high as 120 
percent) . 

5. CONCLUSION 
The findings of this research indi- 

cate that we can improve the mean square 
error of the random groups variance 
estimator through the use of MRS system- 
atic sampling. However, in order to 
realize any gains in the MSE of the var- 
iance estimator, the true variance of 
the estimate is significantly increased. 
In other words, the reduction in the MSE 
of the variance estimate is accompanied 
by a significant increase in the true 
variance of the estimate. We do not 
think that the reduction in the MSE of 
the variance estimate is worth the 
increase in the true variance of the 
estimate. Contrary to suggestions in 
previous research on this topic[i], when 
the statistician has a choice between 
systematic sampling (and random groups 
variance estimation) and MRS systematic 
sampling (and unbiased estimation of the 
variance), he/she should use the former. 
Results of this research suggest that 
MRS is superior (in the sense of var- 
iance of the variance estimate) to SRS 
systematic sampling if biased estimation 
of variance is used. 
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Table A: Friedman Test Mean Ranks for the MRS Systematic Sampling Designs 
(Unbiased Variance Est.) Mean Ranks - Values of h 

Char 1 2 3 4 5 6 7 8 9 I0 Cases Chi-Sq. DF Siqnif 

5 
6 
7 
8 
9 

i0 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

2.33 
4.58 
4.32 
2.47 
2.07 
1.93 
2.58 
5.66 
5.40 
5.43 
5.44 
2.59 
3.27 
4.44 
3.13 
2.44 
2.55 
5.51 
4.54 
3.81 
3.09 
4.93 
5.16 

9.22 
7.94 
7.85 
9.17 
9.19 
9.22 
9.24 
5.02 
5.48 
5.47 
5.60 
8.87 
8.37 
7.45 
9.09 
8.81 
8.87 
5.59 
6.93 
8.32 
8.96 
6.99 
6.88 

7.92 
6.48 
6.67 
8.07 
7.92 
8.32 
8.12 
4.56 
5.03 
5.14 
4.67 
7.52 
7.57 
6.63 
7.72 
7.56 
7.46 
4.66 
6.18 
7.35 
7.71 
5.74 
5.78 

6.63 
6.13 
5.87 
6.78! 
6.86 
6.85 
6.591 
5.17i 
4.95 
5.33 
5.02 
6.66 
6.65 
6.04 
6.45 
6.65 
6.73 
5.25 
5.28 
6.38 
6.76 
5.50 
5.32 

6.36 
4.92 
5.27 
6.19 
6.52 
6.25 
6.55 
5.36 
5.40 
5.25 
5.55 
6.45 
6.02 
5.96 
6.29 
6.53 
6.50 
5.03 
5.49 
6.03 
5.94 
5.31 
5.15 

5.54 
5.48 
5.46 
5.60 
5.45 
5.72 
5.88 
5.20 
5.32 
5.23 
5.20 
5.22 
5.19 
5.48 
5.41 
4.95 
5.12 
5.36 
5.27 
4.98 
5.33 
5.21 
5.03 

5.22 
5.35 
5.17 
5.08 
5.02 
5.06 
5.02 
5.67 
5.75 
5.50 
5.64 
5.54 
4.53 
5.00 
4.59 
5.13 
5.16 
5.76 
5.50 
5.51 
4.66 
5.29 
5.20 

Table B: (Biased variance estimate) 
Char 1 2 3 4 5 6 7 

4.15 
4.95 
5.05 
4.25 
4.20 
4.32 
3.97 
6.09 
5.96 
5.95 
6.10 
4.09 
4.69 
!4.65 
4.52 
4.49 
4.58 
5.82 
5.08 
4.63 
4.47 
5.17 
5.34 

4.03 
4.64 
4.70 
3.90 
4.14 
3.86 
3.80 
6.02 
5.85 
6.01 
5.68 
4.19 
14.50 
i 4 . 8 5  

3 . 8 6  
4 . 3 4  
4 . 1 7  
5.60 
5.30 
4.15 
4.50 
5.38 
5.68 

3.60 
4.52 
4.65 
3.48 
3.63 
3.47 
3.24 
6.25 
5.83 
i5.70 
6.09 
3.87 
i4.21 
4.51 
3.94 
14.10 
3.86 
6.42 
5.40 
3.84 
3.57 
5.47 
5.46 

120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
94 

515.935 
137. 618 
132.831 
519.464 
541.738 
594.011 
554.556 
33.845 
14.169 
10.622 
23.244 

426.035 
306.669 
119.295 
417.180 
414.813 
418.225 
26.750 
49.203 

273.864 
404.611 
37.728 
26.770 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.116 
0.303 
0.006 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0. 002 
0.000 
0.000 
0.000 
0.000 
0.002 

Mean Ranks - Values of h 
8 9 i0 Cases Chi-Sq. DF Signif 

5 
6 
7 
8 
9 

i0 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

7.07 
5.41 
5.90 
7.09 
7.82 
7.22 
7.52 
5.58 
5.31 
5.64 
5.70 
5.97 
5.91 
5.67 
6.14 
5.46 
5.60 
5.59 
5.69 
5.79 
5.74 
5.48 
5.81 

6.73 
6.04 
6.02 
7.25 
6.63 
6.92 
6.73 
4.43 
4.63 
4.89 
4.56 
7.31 
7.14 
7.69 
6.52 
7.43 
7.26 
4.70 
5.72 
6.67 
6.89 
5.27 
4.66 

6.15 
5.85 
5.95 
6.25 
6.62 
5.86 
6.15 
5.19 
5.34 
5.45 
5.14 
6.91 
6.54 
6.91 
6.52 
7.03 
6.96 
5.27 
6.29 
6.37 
6.89 
5.54 
5.39 

6.19 
5.87! 
5.97 
6.17 
6.07 
6.46 
5.85 
5.81 
5.46 
5.63 
5.58 
6.61 
6.54 
6.67 
6.09 
6.95 
6.68 
6.02 
5.77 
6.47 
6.05 
5.73 
5.84 

5.84 
5.64 
5.22 
5.83 
5.84 
5.59 
5.84 
5.44 
5.73 
5.42 
5.65 
5.52 
5.69 
5.91 
5.64 
6.01 
5.75 
15.28 
15.36 
15.59 
5.78 
5.82 
5.82 

5.22 
5.45 
5.72 
5.22 
5.17 
5.41 
5.35 
5.39 
5.40 
5.38 
5.32 
5.36 
5.35 

i 5 . 0 0  
5.49 
i5.47 
5.75 
5.52 
5.60 
5.06 
5.50 
5.18 
5.37 

4.63 
5.55 
5.11 
4.59 
4.72 
4.71 
4.50 
5.69 
5.71 
5.62 
5.84 
4.63 
5.18 
5.40 
4.72 
4.56 
4.74 
5.68 
5.15 
5.37 
4.79 
5.36 
5.45 

4.93 
5.00 
5.55 
4.92 
4.50 
4.92 
4.84 
5.89 
5.84 
5.91 
5.80 
4.63 
4.60 
4.03 
5.05 
4.37 
4.43 
5.52 
5.24 
5.24 
4.68 
5.48 
5.36 

4.51 
4.95 
4.52 
4.10 
4.25 
4.34 
4.23 
5.78 
5.68 
5.63 
5.50 
4.46 
4.35 
3.88 

i 4 . 4 4  
4.13 
3.98 
5.27 
4.82 
4.14 
4.78 
5.66 
5.71 

3.73 
5.25 
5.03 
3.58 
3.39 
3.57 
14.00 
5.80 
5.90 
i5.45 
!5.90 
3.59 
3.70 
3.83 
4.40 
3.59 
3.85 
6.15 
5.35 
4.30 
3.90 
5.47 
5.60 

120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
94 

134.355 
15.715 
30.307 

178.434 
210.334 
157.820 
152.270 
22.468 
16.087 
8.364 

19.500 
170. 164 
137.840 
211.387 
78.940 

211.059 
177.219 
19.848 
19.309 
88.464 

112.316 
4.708 

11.540 

0.000 
0.073 
0.000 
0.000 
0.000 
0.000 
0.000 
0.008 
0.065 
0.498 
0.021 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.019 
0.023 
0.000 
0.000 
0.859 
0.240 
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