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I. Introduction 

The Objective Yield Survey is a series of monthly 
measurements conducted by the United States Department 
of Agriculture (USDA) National Agricultural Statistics 
Service (NASS) during the growing season for the 
purpose of forecasting end-of-season yield for crops such 
as corn, soybeans and wheat. In this paper, we discuss 
models for corn using data from the state of Iowa during 
the years 1979 to 1985. Thorough discussions of the 
survey design and current forecast methods can be found 
in Francisco, Fuller and Fecso (1987), and Reiser, Fecso 
and Taylor (1987), respectively. An abbreviated 
description follows. 

An early season estimate for the number of acres 
planted or to be planted to corn is calculated by 
NASS from data collected during the June Enumerative 
Survey, a multistage stratified area sample. Objective 
Yield Surveys are conducted during the months of July 
through November, using fields that are subsampled from 
those visited during the June Enumerative Survey. In 
Iowa, approximately 240 fields are selected each year. 
For each selected field, a pair of randomly located units 
is established for data collection. Each unit is two rows 
(of corn) wide and fifteen feet long. In early July (month 
number one for the Objective Yield Survey), one half of 
the selected fields are visited, and data pertaining to 
number of stalks in each unit are collected. Starting in 
August (month two), all selected fields are visited monthly 
until the crop is either harvested or fully mature. No 
fields are visited after November (month five). During 
the visits in months two through five, data is collected 
on both number of ears and size of ears. Although 240 
units are selected for the sample each year, some units are 
lost to refusals by owners, changes from intentions to 
plant as stated in June, and damage to crops. As a result, 
data is available each year on approximately 200 fields, 
or 200 pairs of units. For analysis purposes, each pair of 
units is treated as a single observation. 

Even though the data represent observations over 
time, the number of time points is small, and, in the past, 
the data has been treated as essentially cross sectional. 
That is, data from July are used to develop a July 
forecasting model, data from August are used to develop 
an August forecasting model, etc. Trends over months 
within years are not presently used in forecasting models. 
In this paper we consider the use of panel models, which 
incorporate aspects of both cross sectional and time series 
data. Panel models are heavily used in the social 

sciences, where the emphasis is on the process of change 
over time -- i.e., which variables influence other variables 
over time. Here, the use of panel models has different 
purposes. First, month to month changes in variables 
could be monitored as a quality control process. 
Secondly, and to receive more attention here, panel 
models may be used for the purpose of identifying 
measurement error in the predictor variables, and, 
ultimately, to assess the impact of that measurement error 
on forecasts. 

In the following section we will present a brief 
overview of the forecasting methods presently used by the 

-USDA. Then, in Section III we consider a single 
indicator panel model for number of ears of corn, and in 
Section IV we will consider a two variable, two wave 
model for size of ears. 

II. Present Methods 
End of season yield is calculated for a selected 

field using total number of ears and average grain weight 
per ear: 

Yij = YwijYNij K Sij ~ (1) 
Y~j = yield for field j in year i in bushels per 

acre 
Yw~j = Average grain weight per ear, for field j in 

year i, measured on the ears in the selected 
units 

Ysij = Number of ears of corn in the selected units 
for field j in year i 

= a constant that transforms pounds per unit 
K into bushels per acre 

= 103.714 
Sij = width of eight rows of corn, field ij. 
During the growing season, the yield for the 

selected field is calculated from expression (1) using 
forecasted values for grain weight and/or number of ears. 
Forecast models for number of ears and grain weight are 
obtained using ordinary least squares on data from the 
five years previous to the present year. The model for 
predicting number of ears at the end-of-season includes 
number of stalks and number of ears measured earlier in 
the season. 
Ys = 13o + ~X,  + 132 X2 + 133X3 + I],X, + F--,ij (2) 

where Ys = 
X 1 = 

X 2 

X 3 = 

X 4 = 

end-of-season number of ears 
number of ears with kernels (P17) 
(months 2 and 3 only) 
number of stalks (P14) 
number of stalks with ears (P15) 

number of ears or ear shoots (P16) 
The model for grain weight includes two measures of ear 
length 

Yw = 13o + 131X5 + ~X6 + ~j (3) 
where Yw = average grain weight per ear, 

at end-of-season 
X5 = average length over husk 

(P18) 
X6 = total length of five kernel 

rows (P19) 

III. Panel Model for Number of Ears 
The model presented in this section is a single 

indicator panel model that will allow us to identify the 
measurement error in some of the predictor variables for 
the count of number of ears per sample unit. These 
predictor variables include number of stalks (P14), number 
of stalks with ears (P15), number of ears or ear shoots 
(P16), and number of ears with kernels (P17). 

A consequence of the rapid growth of corn across 
a fairly short growing season is that not all variables are 
available in each month of the Objective Yield Survey, 
and even if one is available, it may not be available on 
all units. The lont~est span of time over which new 
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observations are available for any of the predictor 
variables is, in fact, only three months, as shown in Table 
1. An important variable for which data is available from 
months two, three and four is the count of ears with 
evidence of kernel formation, variable P17. 

A model with measurements at three points in time 
is shown in Figure 1. The single X variable at each time 
point is sometimes referred to as a single indicator. We 
can write the model as follows: 

x = A ~  ~+e... (6) 

and : 13 .+ (7) 

Expressions (6) and (7) specify relationships among the 
regressor variables over time, for the purpose of 
identifying measurement error. That is, in expressions (6) 
and (7), x and 

contain a single regressor measured at different points of 
time: 

X I = 

X 2  -- 

X3 = 

~2 "" 

For the model shown in figure 
specifications are also required. 

v(e0=v(e~)=v(e~)=v(~) 
A ~ = I  (o o o) 

$, 0 0 
0 13~ 0 

Measurement for number of ears with 
kernels at month two 
measurement for month three 
measurement for month four 
true value for number of ears with kernels 
at month two 
true value for month three 

true value for month four 
vector of measurement errors 

vector of equation errors 

1, the following 

Using these specifications, the model is just identified, and 
the parameter estimates can be calculated directly from the 
covariance matrix, as given by Wiley and Wiley (1970). 
Under the assumption of multivariate normality, the 
estimators are maximum likelihood estimators. Estimates 
for model parameters are given in Figure 1. As is 
apparent from the figure, the magnitude of the 
measurement error variance, 2.21, is very small. Wiley 
and Wiley (1970) define the reliability ratio, p~, as the 
ratio of variance of the true measure to the total variance: 

p~= v(~)/[v(~)+v(e)] 
Under this definition, the reliability ratio of the 
measurements at times one, two and three are: 

pl '= 0.991 

p~= 0.990 

p3'= 0.990 
Although it is not necessarily the case that the reliabilities 
be equal across time points, it is clear that number of ears 
with kernels is measured virtually without error at months 
two, three and four. 

We fit this simple model to other variables that are 
measured in months one, two and three. For the count of 
number of stalks, variable P14, the reliability ratio had the 
value 0.998 in each of the three months. However, the 

model was not successful for other variables, including 
counts of barren stalks, stalks with ears (P15) and ears or 
ear shoots (P16). For each of these three variables, the 
estimated error variance was negative by a substantial 
amount. We interpret this result as an indication that the 
assumption of constant error variance, and hence the 
model, is not appropriate. Number of ears and number of 
stalks with ears are stable from month two to month 
three, but are very unstable early in the season. When 
the early season measurements are apparently subject to 
much larger error, the model considered in this section is 

not appropriate. 
Given the high reliability ratios for number of ears 

with kernels and number of stalks, it is clear that the 
measurement errors at month one in the counts of stalks 
with ears and ears or ear shoots are not simple counting 
errors. Instead, there appears to be a period of inherent 
unreliability in the growth of the ears, during which many 
ear shoots begin to form, but which ultimately die off. 
The inherent unreliability in the count is due to the 
difficulty in distinguishing ears that will survive from ears 
that will die off. 

IV. A Two Variable, Two Wave Model for Size of Ears 
Two variables are used as predictors of grain 

weight: average length over husk (P18), and total length 
of five kernel rows (P19). The size of an ear of corn 
should, of course, be represented by at least two 
dimensions - length and diameter or circumference, as if 
its shape was a cylinder. Using simple geometric shapes 
for modeling has worked well for fruit crops (Fecso, 
1975). Recently Bigsby found that including diameter 
measures for corn reduced the mean square error by 30 to 
50% from models with only length measures. However, 
there are no measures of diameter or circumference 
available in this data, thus we will examine only measures 
of length. For the analyses in this section, we use P19 
divided by 5.0, to give average length over the five kernel 
rows. This transformation was done so that the metrics 
of the two X variables would be approximately in the 
same units. Neither of the X variables is an ideal 
measurement: we would like to have a measurement of 
grain weight at each month of the growing season, but 
obtaining it would destroy the ear being measured. So, 
the length of the cob, over the husk, is measured instead. 
To get a measurement that is closer to the actual grain 
weight, the length of the kernel row is measured for five 
ears. But again, since this measurement destroys the ear 
in terms of future growth, it is done on five ears that are 
outside the unit, and are on plants for which grain weight 
will not be determined at the end of the season. Thus, 
there may be substantial error in both the manifest 
variables as measures of the same underlying variable. 

Neither of the two variables for grain weight are 
measured for three consecutive months, so the model 
given in the previous section cannot be used. However, 
since both variables are available in months two and 
three, the two variable-two wave model shown in Figure 
8 can be used instead. The general form of this model is 
the same as the form of the model in Figure 1: 

and 
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but nowX~ = average length over husk (P18), at 
month two 

X2 = average length of five kernel rows 
(P19) at month two 

X3 = average length over husk at month 
three 

X4 = average length of five kernel rows at 
month three 

~ = true (average) length of corn cobs at 
month two 

~2 = true (average) length of corn cobs at 
month three 

Identification conditions for this model are 
discussed by Wiley (1973). If we impose additional 
restrictions, 

1 0 
A~= ;~, 0 , ~ = ~ ,  

o 

then all parameters are identifiable in terms of the 
covariance matrix among the X variables. Since the 
covariance matrix among the X variables contains ten 
unique elements, and the model has only nine unknown 
parameters, there is 1 degree of freedom to test the 
constraint 

cov(xxx,) cov(x~,x~) = cov(x~x~) cov(x~x,) (8) 
Estimates of the parameters may be calculated 

directly from the sample covariance matrix, but if we 
adopt the assumption that 

x 0 00 ! 0 0 
--. N ~ ' 

_ _ 0 0 0 o ,  

where W.. and O, are diagonal (i.e., all errors are 
uncorrelated), then maximum likelihood estimates, as well 
as estimated asymptotic standard errors, may be obtained 
from general purpose computer packages such as LISREL 
(Joreskog and Sorbom, 1984) or LISCOMP (Muthen, 
1988). Under these distributional assumptions, we will 
also be able to perform a likelihood ratio test of the 
constraint given in expression (8). 

Parameter estimates were obtained using data from the 
second and third months of the Objective Yield Survey. 
One aspect of the data that should be kept in mind is that 

mind is that month three data regarding length of the cob 
is available only for the plants that were the slowest to 
mature. If the crop was already mature at month three, 
which was the case for just over one half of the sample 
locations, the corn would have been harvested and no 
measurements would have been taken regarding length of 
the cobs. For the model as specified above, the 
maximum likelihood estimate of ~2z, the error variance of 
~2 was negative by a small amount, so the additional 
specification W~ = 0 was added. This model shows a 
poor fit, since the likelihood ratio statistic is 104.39 on 
two degrees of freedom. Such a poor fit is usually taken 
as an indication that correlation of errors across occasions 
is present (Kessler and Greenberg, 1981). Residuals given 
by the LISREL program suggest that the covariance 
between length of five kernel rows (P19) at month two 
and at month three is not very well replicated under the 
model. Unfortunately, the model could not be identified 

if the covariance among the measurement errors from 
months two to month three were specified as a free 
parameter for both length over husk (P18) and length of 
five kernel rows (P19). However, the model is just 
identified if the second covariance, between the 
measurement errors for X2 and X4, is a free parameter to 
be estimated. The estimate of this parameter is 0.505, 
indicating a correlation among the errors of about 0.4. 
We refer to the model with this covariance as a free 
parameter as model B. With one degree of freedom for 
the likelihood ratio test obtained from restraining W=--0 to 
avoid a negative value for the estimated variance, the fit 
of this modified model is G2=0.703, df=l. For the other 
parameter estimates, the new values show a slight increase 
in the error variance for X2 and X4, with a corresponding 
decrease in the path regression coefficients from A~. The 
measurement error variances are large under either 
specification for O k. 

These error variances correspond to the following 

reliabilities: 

2 

Pxl = P2(P18m2) = 0.73 

2 

p,~ = p2(P19m2) = 0.16 

2 

Px3 = P2(P18m3) = 0.78 

2 

Px4 = P2(P19m3) = 0.16 

Clearly, P18, average length over husk, appears to 
be the preferable measure. In assessing these results, it 
is important to keep in mind that measurement error 
encompasses not only errors that literally occur with a 
tape measure in the field, but also components of the 
measured variable that are unrelated to the true value. 
That is, there appears to be some systematic variance in 
length of kernel rows (x2 and x4) that is unrelated to 
average length over husk (xl and x3), and may be 
unrelated to end-of-season grain weight. Psychometricians 
use the term parallel measurements for two variables if 
their latent variables are linearly dependent and their 
measurement errors are independent. Clearly length of 
kernel rows and average length over husk are not parallel 
measurements. An important difference between these 
two variables is that length of kernel rows, since it is a 
destructive measure, is taken on the first five ears outside 
the unit. Also, since the ears used for the measurement 
in month two are destroyed, length of kernel row has to 
be measured on a different five ears in month three. 
Apparently, these features of the variable affect its 
reliability significantly, vis-a-vis length over husk which 
is measured inside the unit. The correlation among the 
errors from month two and month three is difficult to 
explain, but could be due to a possible bias in the 
selection of ears outside the unit for the measurement of 
kernel row length. Model B appears to fit the data well, 
with a likelihood ratio statistic of 0.703 on 1 degree of 
freedom. Nevertheless, it is not necessarily the correct 
model. The error covariance between length over husk 
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and length of kernel rows within month one or month two 
appear as zeros simply because they are not identified. 
Similarly, there may be significant covariance between the 
errors for length over husk from month one to month two, 
but that parameter is not identified in this model, either. 

One reason for examining measurement errors is to 
assess their effect on parameter estimates used in 
forecasting models discussed in Section II. One way to 
approach this question is to introduce the end-of-season 
grain weight as a variable into the panel model, as shown 
in Figure 2. We refer to the model including end-of- 
season grain weight as model C. Since end-of-season 
grain weight has only one measurement, we must assume 
that it is measured without error, or equivalently, that the 
measurement error is absorbed into the disturbance term. 

In this model, we are able to specify that the covadances 
between the disturbance term for grain weight and the 
measurement errors for length of kernel rows are free 
parameters to be estimated. We also calculated 
covariance matrices for each year separately, and found 
evidence that these within-year covariance matrices are not 
equal. For some of the years (1980, 1983 and 1984), 
there were not enough observations to estimate separate 
models, but for the years 1979, 1981, 1982, and 1985, we 
were able to estimate a model using the separate within- 
year covariance matrices simultaneously, with some 
constraints on parameters across years. If all parameters 
were constrained to equality across years, the model 
showed a poor fit (G2=84.34, df--47). If we allowed only 
error variances and covariances to be free across years, 
then the fit was satisfactory (G2=26.07, df=23). 
Parameter estimates are shown by year in Table 2 under 
Model C. The largest difference across years occurs in 
1982, where 092 is much smaller than in the other years. 
Changes in error variances across years implies changes 
in reliability ratios. Reliability ratios are shown by year 
in Table 3. Average length over husk, month three, 
appears to be the most reliable measurement. 

The correlations among disturbance and error terms 
is important for the asymptotic properties of estimators 
based on ordinary least squares. Judging from the 
estimates and standard errors shown in Table 2, the error 
covariances are significant, although their magnitudes are 
small. We might want to compare estimates for the 
parameters from the structural equations in this model to 
estimates when the three error covariances are fixed at 
zero. Under such restrictions, the fit of the model is 
poor, with G2=65.03 on 4 degrees of freedRm, but the 
~stimates for ~ are affected only slightly: 1~21=1.064 and 
~32----0.057, as compared with the values 1.104 and 0.048 
under model C. However, due to the identification 
conditions for the parameters in model C, the error 
covariances could not have Aa large effect on the beta 
parameters. For example, ~32 is identified by cov(x:,xs)/ 
cov(x:,x3), which is not affected by serially correlated 
measurement error because the error covariances between 
variables x:, x3 and x5 are not identified in the model. As 
we stated before, even though the model C fits well, it 
may still not be the correct model. 
V. Conclusions 

In this paper, we have used models of month to 
month changes to assess measurement errors in the 
Objective Yield Survey. Although measurement error 
incorporates errors made during data collection, such as 
miscounts, judging from the results for number of ears 

with kernels over months two to four, such errors appear 
to be minimal during the Objective Yield Survey. 
Measurement error can also incorporate other variability 
in an observed variable that is unrelated to the associated 
latent variable. During each month of the Objective Yield 
Survey, ideal measurements would be the number of ears 
that will have kernels at the end of the season and the 
average grain weight of these ears. Grain weight is 
inherently more difficult to measure, because the ear of 
corn must be destroyed to make the measurement, and so 
proxy variables must be used instead. Counting ears that 
will develop to full maturity is subject to large errors at 
the beginning of the season, because development of ears 
is very unstable at that time. 

Indicators for size of ear were studied over months 
two and three, when month to month values are fairly 
stable. Length over cob, measured on the same plants 
over time, appears to have a reasonably high reliability 
ratio of 0.76. Length of kernel row is measured outside 
the unit, so variability of month to month changes in the 
panel model includes plant to plant variability, although 
it would still not include field to field variability. 
However, plant variability is apparently quite high, since 
the reliability ratio of length of kernel row is much lower. 

When the objective is prediction, the deleterious 
effects of measurement error may not be severe. If the 
prediction is for X~.:, a random element from the same 
distribution as the other X and Y values, and X and Y 
are bivariate normal, then the optimal prediction of Y.+a 
is given by ordinary least squares estimators even in the 
presence of non-zero covariance between the equation 
error and the measurement error. However, sometimes 
when predicting to a new year, the new X observation 
could be considered to be from a different population. 
Severe weather conditions and technological changes can 
produce year to year differences. With a new population, 
there may be circumstances under which it is desirable to 
give a prediction which would be conditional on the 
predictor without error. (See Fuller, 1987, p. 74-79.) 
Under any circumstances, however, the measurement of 
length of kernel row would benefit if the monthly sample 
size per field was increased over the five ears presently 
used. A larger sample of ears would lead to a reduction 
in the standard error for the estimated regression 
coefficient, which would lead to a reduction in the 
standard error of the forecast. 
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TABLE I 
Availability of Variables 

by Month 
(Number of Observations) 

Month 
Variable 1 2 3 4 

(P14) 702 1212 1405 NA 

(P15) 714 1212 1405 NA 

(P16) 714 1212 1405 NA 

(P17) NA 1196 1405 1405 

(P18) NA 1191 687 NA 

(P19) NA 1192 697 NA 

TABLE 2 

b) Parameter Estimates for 
Two Variable, Two Wave Models 

Model C 
1979 1981 

Estimate (s.e.) 

1321 1.143 (0.086) Constrained 

~32 

~'21 

0.043 (0.004) to equality 

0.570 (0.083) across 

0.488 (0.069) years 

I'I/11 (=(I) 11 ) 0.420 (0.047) 

Wz2 0.0 (fixed) 

0~xl 0.360 (0.061) 0.257 (0.052) 

0o.2 1.275 (0.153) 1.869 (0.247) 

0~33 0.152 (0.057) 0.087 (0.051) 

0~ 1.115 (0.134) 1.105 (0.147) 

0~42 0.439 (0.109) 0.722 (0.151) 

0~2 0.022 (0.006) 0.013 (0.008) 

O~ 0.019 (0.006) 0.022 (.006) 

1"I/33 
(=0~5) 0.004 0.0005 0.004 (.0005) 

1982 1985 

0~11 0.279 (0.048) 0.149 (0.041) 

0~ 0.883 (0.105) 1.406 (0.186) 

0~33 0.137 (0.049) 0.145 (0.051) 

0~ 0.990 (0.117) 1.006 (0.134) 

0,2 0.090 (0.079) 0.563 (0.124) 

0~2 0.000 (0.004) 0.022 (0.007) 

o~ 0.013 (0.005) 0.013 (0.005) 

Kt/33 
(=0~5) 0.003 (0.0004) 0.003 (.0004) 

G2=26.07 
df=23 

TABLE 3 

c) Reliability Ratios by Year 

P18M2 P19M2 P18M3 P19M3 

1979 0.488 0.066 0.746 0.056 

1981 0.641 0.045 0.870 0.101 

1982 0.560 0.107 0.798 0.095 

1985 0.770 0.175 0.816 0.208 
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F I G U R E  1 

Single Indicator Model for Number  of Ears with Kernels (P17) 

n = 620 

^ 

^ V( 
V( ~ 1 ) = 254.179 

~ . . . , , , ,  ,, ,, 
13 21 = 0.854 32 

,,,,..._ 

1 

= 1.0 = .0 

,, , l 
V(e 1 ) = 2.21 ^ V(e  2 ) = 2.21 

2 ) = 32.603 

= 0.982 

= 1.0 
3 

,, t 
v (  e 3 ) = 2 . 2 1  

^ 

v ( ;  3 ) = 1.007 

F I G U R E  2 

MODEL INCLUDING GRAIN W E I G H T  (P42) 

n = 604 

A V(~ 2 ) = 0.0 
V(~ 1 ) = 0.537 / ^ 

~21 = 1.104 ~ 3 2  = 0.048 

1 5 8  3 .547 ~ 

t t 
A 

V(e 1 ) = 0.273 

e 2 c: 3 e 4 e 5 ] ~  

O¢(e 2 ) = 1.412 ^ 
0e5,2 = 0.017 

'0(e 3 ) = 0.130 ~r(e 4 ) = 1.122 
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