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1. I N T R O D U C T I O N  

Data from large-scale sample surveys are often used to 
estimate the probability that an individual falls into a particular 
survey classification or has a certain characteristic• For 
example, data from the National Crime Survey (NCS) is used 
to estimate the probability of being victimized, and data from 
the Current Population Survey is used to estimate the 
probability of being unemployed• It is often of interest to 
obtain such estimates for sub-groups of the population, such as 
neighborhoods or age/sex/race groups, as well as for the entire 
population. If the amount of data available for a population 
sub-group is small, then it may be difficult to obtain an accurate 
estimate of the desired probability within that sub-group. A 
further complication is that not all sampled units respond to a 
survey and the probability that a sampled unit responds may be 
related to the survey classification of that unit. The work 
described here addresses this problem of estimating 
probabilities in population sub-groups in the presence of 
possibly nonrandom nonresponse. 

This paper presents hierarchical models for the probabilities 
of the classification of interest and the probabilities of response 
within sub-groups of the population. Under these hierarchical 
models, we think of the probabilities that individuals within 
sub-groups have the characteristic of interest or respond to the 
survey as belonging to distributions of such probabilities. The 
advantage to using such models is that information from the 
entire sample may be used to estimate parameters of the 
distributions of probabilities and, hence, information from the 
entire sample is used to estimate the probabilities for a single 
sub-group (see, for example, Morris, 1983). Such hierarchical 
models have been proposed in the survey sampling context by 
Lehoczky and Schervish (1987), who worked with data from 
the NCS and modeled the distribution of the probabilities of 
victimization as a beta distribution. 

In this paper, we extend the model for victimization 
probabilities proposed by Lehoczky and Schervish to allow for 
nonresponse. The models presented here allow the 
nonresponse probabilities to come from a single distribution, 
which corresponds to random nonresponse, or from two 
distributions depending on the presence or absence of the 
characteristic of interest, which corresponds to informative or 
nonrandom nonresponse. 

The general hierarchical model for survey classification and 
nonrandom nonresponse is presented in Section 2 of this paper. 
The special case of the model corresponding to random 
nonresponse is presented in Section 3. In Section 4 the models 
are fit to simulated data, which were generated based on 
probabilities obtained from NCS data, and to actual NCS data. 
Conclusions and areas for future research are presented in 
Section 5. 

2. THE GENERAL HIERARCHICAL MODEL 

This section presents a general form of the hierarchical 
model for the probabilities of having a particular survey 
classification and of responding to the survey. The model is an 
extension of the hierarchical model for victimization 
probabilities proposed by Lehoczky and Schervish (1987). We 
shall refer to the sampled units as "individuals" although they 
may actually be households or some other units rather than 
single persons. We will refer to the population sub-groups of 
interest as "strata". We will assume that the sample is chosen 
using a stratified randomsampling plan and that the goal is to 

estimate the probabilities that individuals within each stratum 
have the characteristic of interest. In practice, of course, one 
will typically wish to estimate probabilities in sub-groups of the 
population that are smaller than strata. In smaller sub-groups, 
it is often the case that limited data are available for estimating 
the desired probability within a sub-group. In such cases, the 
empirical-Bayes procedure, which allows us to borrow 
information from the entire sample in order to estimate 

probabilities in small sub-groups, may provide more accurate 
estimates within sub-groups than do standard procedures. 

Since the example of Section 4 uses data from the NCS, in 
the development of the hierarchical model we will let the 
characteristic or survey classification of interest be whether or 
not the individual reported being victimized• The model, of 
course, is applicable to surveys other than the NCS. 

2.1 Model for the Observed Data 

Suppose that the population of interest has been divided into 
K strata. We assume that individuals within a single stratum 
have a common probability of being victimized while 
individuals in different strata may have different probabilities• 
Let Pi be the probability that an individual in the i th stratum is 
victimized• We will model the distribution of the Pi as a beta 
distribution with parameters a and b. That is, we will assume 
that Pi iid Beta(a,b) for i = 1, 2 ..... K. 

Within each stratum, suppose we take a random sample of ni 
individuals and observe the survey classification of each 
individual• Thus we observe, say, 

=~1  if j  th individual in i th stratum is victimized 
Xij 10 otherwise. 

We assume that the victimizations within a stratum are 
conditionally independent of each other given the probability of 
victimization within the stratum. Thus, 

Xil, Xi2 . . . . .  XinilP i iid Bernoulli(pi) for i = 1, 2 ..... K. 

Naturally, we only observe the Xij for individuals who 
respond to the survey. Let us denote the response status for a 
sampled individual by Yij, where 

YiJ = {10 if jth individual in ith stratum resp°nds otherwise. 

In the following, we denote summary counts for the observed 
data in stratum i as follows: 

Yi+ = # of respondents, 
ni-Yi+ = # of nonrespondents, 

Zi+ = E ni, Xij Yij = # of responding victims, and 
j = t  

Yi+-Zi+ = # of crime-free respondents. 

We now add the hierarchical model for the response 
probabilities to the hierarchical model for the victimization 
probabilities. We allow the probability of nonresponse to differ 
by stratum and by victimization status. For i = 1, 2 ..... K let 

Kil = probability a victimized individual in stratum i is a 
respondent (ie X i =  1) and • j 

rri0 = probability a crime-free individual in stratum i is a 
respondent (ie. Xij = 0). 
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We also model the distributions of the x.. and x.,. probabilities 
as beta distributions. In particular, we assume ~at ,  given Xij, 
the xil and xi0 are random samples from beta distributions wim 
parameters CXl and 131, and ct0 and 130 respectively. That is, 
71;ivlXij= v iid Beta(av,13v) for v = 1, 0. We assume that the 
response statuses of individuals within a stratum are 
conditionally independent of each other given the probability of 
responding within the stratum and the victimization status of the 
individual. Thus, for i - 1, 2 .. . . .  K 

Y il, Yi2 . . . . .  YinilXij = v, Kiv iid Bemoulli(xiv). 

We take an empirical Bayes approach to estimating the 
parameters of the model described above. (Note that a full 
Bayes approach could also be taken by placing prior 
distributions on the a, b, Ctl, 131, cx0, and 130 parameters. We 
will not, however, consider the full Bayes approach here.) 
From the likelihood for the observed data, we integrate over the 
unobservable Pi, x.., and xi0 parameters to obtain the marginal 
distribution of th~ data gxven the a, b, o~1, [31, o~o, and 13o 
parameters. Then we obtain maximum likelihood estimators 
(MLE's) of the a, b, o~1,131, et0, and 130 parameters from this 
marginal distribution. The Pi, X.~l, and. .x't0 parameters. . are then 
treated as a random samole^ ^ frg0a adlstrlbu~on with parameters 
equal to the MLE's, or, 1~, o~1, 131, S0, and [30. This distribution 
is used as a prior distribution, for. the. Pi, x..,,, and /I;i0 
parameters, and a posterior distribution given the data, {Xij, 
Yij }, is computed. The means of the posterior distribution are 
used as estimates of the Pi, Xil, and xi0 parameters. 

2.2 Estimates of the Parameters of the Beta Distributions 

Under the model described above, the probabilities for each 
possible type of observation in the survey data for individual j 
within stratum i are as follows: 

P(Xij = 1, Yij = 1) = P(responding and victimized) 
= P(Xij = 1)P(Yij = 11 Xij = 1) 

= Pi~il 

P(Xij = 0, Yij = 1) = P(responding and crime free) 
= P(Xij = 0)P(Yij = 11 Xij = O) 
= (1 - pi)71;io 

P(Yij = 0) = P(nonresponding) 
= P(Xij = 1)P(Yij = O[ Xij = 1) 

+ P(Xij = o)P(Yij  = ol x i j  = o) 

= pi(1 - 71;il) + (1 - Pi)(1 - xiO) 

Thus, the likelihood function for the observed data using the 
hierarchical model described above is 

K ni 
l"I { (Yi+) (Yi+'~[pixia]zi+\zi+] [(1-pi)gi°]Yi+-zi+ 
i=1 

x [pi(1-Xil) + (1-pi)(1-Xi0)] ni'Yi. 

To find the marginal distribution of the data given the a, b, 
CZl, 131, cto, and 130 parameters we must complete the following 
integration: 

f({Xij, Yij}l a, b, ~1,131, ct0, 130) 
1 1 1 K 

= I 0 I 0 I 0 l'I { (yii+)(Yix++)[PiXil]Zi+ [(1-pi)~i0] Yi+- zi+ 
X [pi(1-~711) + (1-pi)(1-Xi0)] ni'Yi 

x [F(a+b)/F(a)F(b)] pi a-1 (1-pi) b-1 (1) 

x [F(al+131)]l-'(CZl)F(131)]X~ll-1 (1-gil) 131-1 

x [F(ao+13o)/F(ao)F(13o)]nio a°-I (1-nio) [~°-1 } dpi dnil dxio 

Using only the terms involving the Pi in the inner-most 
integral of equation (1), we can use a binomial expansion to 
complete that integration as follows: 

I i p  Zi++a-1 (1-pi) [pi(1-Xil)+(1-pi)(1-gi0)] ni'Yi dpi Yi+- Zi++b-1 

= I10 piZi++a-1 (l_pi)Yi+-Zi++b-1 ni~ i+ (ni-Yi+~ 
r=0 \ r ), 

x [pi(1-Xil)]r[( 1-pi)(1-xi0)] ni-Yi-r dpi 

ni-Yi+ (ni-Yi+) 
= ~ (1-Xil)r(1-Xi0) ni-Yi-r l"(Zi++a+r) 

r=0 

x F(ni-Zi++b-r)/F(ni+a+b) 

where the final step is obtained by rewriting the integrand as a 
beta probability density function. The remaining two integrals 
can be solved simply by rewriting the integrands as beta 
probability density functions. The result of the integration, 
therefore, is 

K ni-Yi+. 
{il"I 1 r~O (vii+)(Yi+'~(ni-rVi+)B(Zi++a+r,kzi+ ] ni-Zi++b-r) 

x B(Zi++cq, 131+r) x B(Yi+-Zi++ao, ni-Yi++lg0-r) } 

x { B(a,b)B(al,131)B(cx0,130) }-1 (2) 

where B(a,b) = F(a)F(b)/1-'(a+b) is the complete beta function. 
Note that the summation in equation (2) is over all possible 
combinat ions  of v ic t imized and crime free for the 
nonrespondents in each stratum. 

The expression in equation (2) must be maximized using 
numerical methods in order to obtain the MLE's of the a, b, oq, 
131, a0, and 13o parameters. The methods used to obtain the 
MLE's for the examples in Section 4 will be discussed in that 
section. 

2.3 Estimatine the Probabilities of Victimization and Resoonse 

The MLE's described in the previous subsection are now 
used to obtain the joint posterior distribution for the Pi, Xil, and 
x. parameters In the i th stratum, the desired posterior .to . . . • 

distribution is 

f(Pi, Xil, xi0[{ Xij, Yij } ) 

= { f({Xij, Yij}l Pi, Xil, xi0) {(Pi, 71;il, 71;i0) } 
1 

× { I i I i I 0 f ( { X i j ,  Yij}lPi, 71:il, 71;i0) 

X ~(Pi, nil, xi0)dpi dXil dxio }-1 (3) 

where {(Pi, Xil,.Xi0)A = ~v(pil~',~) ~R(xillXij = 1, ~Xl, ~1) 
~g(xi0lXij = 0, ~o, 130). Using the MLE's obtained from 
maximizing equation (2) and the same binomial expansion as 
was used in the integration of equation (1) we have that the 
numerator of equation (3) is 

f({Xij, Yij}l Pi, 71:il, 71:i0) ~(Pi, 71:il, Ki0) 

ni Yi+ ^ A B A A -1 
= (yi~~_~Zi+){ B(a,~)B (Ota,~ 1)(ct ,~0) } 

i- i+ n.Y. ^ ~+ Z,++a+r 1 n~ Z~++g r 1 
x {  Y, ( -r ) P i "  - (1-pi) . . . . .  

.. _.zi+O~l - 1,, _ ,~1 +r-1 ..Yi+-Zi++/~t0-1 
7. ~il t" x-~l'il) t~i0 

X (1-giO) ni-Yi++~O-r-1 }. 

447 



The integral of the above function with respect to Pi,/gil, and 
7g i , needed in the denominator of equation (3), is found using 0 
the same methods that were used to complete the integration of 
equation (1). Canceling the common terms in the numerator 
and denominator, we find that the desired joint posterior 
distribution is 

f(Pi,/I;il, ~i0[{Xij, Yij}) 

= { ni~i+ (ni-Yi+) pZi++~+r-1 (1 _pi)ni- zi++~-r-1/l:zi++~Xl-1 
r=0 il 

× (l_~il)~l+r-1/i;Yi+-Zi++~0-1 (l_~i0)ni-Yi++~0-r-1 } 
i0 

× { ni~i+(ni-rYi+ ) B(Zi++~+r ' ni-Zi++~}-r) 
r = 0  

A 

× B(Zi++~Xl, ~l+r) × B(Yi+-Zi++~x0, ni-Yi++130-r) }-1. 

The expected values of the Pi, x.., and n., parameters under 
11 1U 

the posterior distribution may be used as the corresponding 
parameter estimates within each stratum. For any stratum i, the 
integration is easily completed to show that the expected value 
of pi is 

ni-Yi+ . . ^ ni-Yi+ 
{ ~ Ki[Zi++~+r/ni+~+~]}/{ ~ Ki} 

r=0 r=0 

where K i = (ni-.Yi+~B(Zi÷+~+r, ni-Zi++~-r)xB(Zi++~Xl, ~l+r) 
. ~ ,  • . z  ^ . . 

×B(Yi+-Zi++(x0, ni -Yi++130-r). Similarly, the expected value of 
rql may be shown to be 

ni-Yi+ - - A - ni-Yi+ 
{ ~ Ki[Zi++~tl/Zi++~l+[~a+r]}/{ ~ Ki} 

r=0 r=0 
and the expected value of ~i0 may be shown to be 

ni-Yi+ A A A } / { niYi+z., 
{ Z Ki[Yi+-Zi++a0/ni-Zi++a0+[~0-r] Ki}. 

r = 0  r = 0  

3. S P E C I A L  CASE OF R A N D O M  N O N R E S P O N S E  

In this section we consider the special case of the model 
described above in which individuals within different stratum 
may have different probabilities of responding but those 
probabilities do not depend directly on victimization status. 
The distributional assumptions concerning the Pi are as in 

n d  Section 2. But we now assume that/l;il =/I;i0 = ~i with ni ~ 
Beta(a, 13) for i = 1, 2 ..... K. The likelihood function for the 
observed data using this model is 

K ni rI { (yi+)(Y~+)[pi/1;i] Zi+ [(l-pi)~i] Yi+" zi+ [(l_~i)]ni-Yi} 
i=1 

To find the marginal distribution of the data given the a, b, 
a, and 13 parameters we must complete the integration: 

f({Xij, Yij}l a, b, a, 13) = 

~i ~i ~ { (yii+)(Z~+)[Pi~i]Zi+ [(1-pi)/l:i]Yi+" Zi+ [1-/l:i]ni-Yi 
i=l 

X [1-'(a+b)/1-'(a)l"(b)] pi a-1 (1-pi) b-1 

x [F(a+B)/I-'(a)F(13)]~ -1 (1-/I;i) ILl } dpi d/I;i. 

This integration can be solved simply by rewriting the 
integrands as beta probability density functions. The result of 
the integration is 

{ IIK ~,Yi+)(ni "~ (Yi+'~\zi+ ] B(Zi++a, Yi+ -Zi++b) B(Yi++a, ni-Yi++[3) } 
i=l 

x { B(a,b)B(a,13) }-1 (4) 

where B(a,b) = F(a)F(b)/l"(a+b) as before. The expression in 
equation (4) must be maximized using numerical methods in 
order to obtain the MLE's of the a, b, a, and I] parameters. The 
maximization is made easier, in this case, by the fact that 
equation (4) may be factored into two parts - one a function of 
the a and b parameters alone and the other a function of the a 
and 13 parameters alone - which may be maximized separately. 
The part of tke likelihood function involving only the a and b 
parameters for the distribution of the probabilities of 
victimization is the same as that given by Lehoczky and 
Schervish (1987). 

The MLE's of the a, b, a, and 13 parameters are used to 
obtain the posterior distribution for the Pi and ni parameters. 
Then the expected values of these parameters under the 
posterior distribution are used as the parameter estimates within 
each stratum. 

For any stratum, i, the e~xpected value of Pi is easily shown 
to be (Zi+ + ~)/(Yi÷ + ~ + b). Note that this is the usual mean 
of a posterior distribution for the binomial parameter, p, with a 
Beta(a,b) prior. For any stratum, i, the exagected value of ~i is 

A I~1-. . . 
easily shown to be (Yi+ + ~x)/(ni + a + [3 ). This IS also the 
usual mean of a posterior distribution for the binomial 
parameter with a beta prior. 

4. FITS OF T H E  M O D E L S  TO NCS DATA 

In this section, we first present a brief description of the 
NCS and the data from that survey. Then we discuss the 
algorithm used to fit the two hierarchical models described in 
Sections 2 and 3. Finally, we present the results of fitting 
those models to NCS data and some randomly generated data. 

4,1 The National Crime Survey 

The NCS is a large-scale, household survey conducted by 
the U.S. Bureau of the Census for the Bureau of Justice 
Statistics. Data from the NCS is used to produce quarterly 
estimates of victimization rates and yearly estimates of the 
prevalence of crime. The survey uses a rotating panel of 
housing units (HU's) under which members of households 
(HH's) living in sampled HU's are interviewed up to seven 
times at six-month intervals. Individuals interviewed for the 
NCS are asked about crimes committed against them or against 
their property in the previous six months. The survey covers 
the following crimes and attempted crimes: assault, auto or 
motor vehicle theft, burglary, larceny, rape, and robbery. 
Crimes not covered by the NCS include kidnapping, murder, 
shoplifting, and crimes that occur at places of business. In this 
analysis, we let the probability of interest, Pi, be the probability 
that anyone within a HH in stratum i reports at least one 
victimization of any type for the previous six-month period. 

Previous work with NCS data suggests that nonresponse in 
the data does not occur at random with respect to victimization 
status (see, for example, Saphire (1984) and Stasny (1989)). 
Thus, the hierarchical model of Section 2, under which the 
probability that a HH responds may depend on the victimization 
status of the HH, seems to be the more reasonable model to 
consider. The random nonresponse model of Section 3 will be 
fit for the purpose of comparison. 

The data used in this work are from a large, longitudinal data 
set which includes all the regular NCS interview information 
collected from January 1975 to June 1979, except for the HU's 
that rotated into the sample in 1979. To make it easier to handle 
the data, this research uses only a subset of this large data set. 
The subset was created by taking a random start at the record 
for the eighth HU in the full data set and then every fifteenth 
record after that. Because the HU's on the original longitudinal 
file are ordered in such a way that units from the same cluster 
appear together, the 1-in-15 systematic sample should not 
include two or more HU's from a single cluster. Thus, this 
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research does not consider the problem of correlations among 
HU's within clusters. 

Additional information on the design and history of the NCS 
is provided, for example, by the U.S. Department of Justice 
and Bureau of Justice Statistics (1981). 

4.2 The Data 

In the following, we describe the fits of the hierarchical 
models of Sections 2 and 3 to two sets of data. The first set of 
data was randomly genera ted  from distributions based on 
summaries of the NCS data. The raw NCS data suggests that 
the probability that a HH is touched by crime in a six-month 
period is about 0.2 and the overall probability that a HH 
responds to the survey is about 0.9. The data set, therefore, 
was generated to agree with these probabilities. The data was 
generated for K = 10 strata within the population with a sample 
of n i = 100 HH's sampled from each stratum. The probability 
of victimization within the i ~ stratum, Pi, was randomly chosen 
from a Beta(15,60) distribution so that E[pi] = 0.2. For those 
HH's that were victimized, the probability of responding to the 
survey for HH's within stratum i, ~il, was randomly chosen 
from a Beta(7,3) distribution so that E[/1;il ] = 0.7. For HH's 
that were not victimized, the probability of responding to the 
survey, 7ri0, was randomly chosen from a Beta(19,1) 
distribution so that E[71;i0 ] = 0.95. IMSL subroutines were 
used to generate the values of the Pi, gil, and gi0 parameters 
and the resulting data. The randomly generated data set is 
shown in Table 1. 

The second set of data is NCS data which was collected in 
the first half of 1975. The data are post-stratified according to 
three neighborhood characteristics: 1) urban and rural, 2) 
central city, other incorporated place, and unincorporated or not 
a place, and 3) low poverty level (9% or fewer of families 
below poverty level) and high poverty level (10% or more of 
families below poverty level). Since it is practically impossible 
for a rural area to be a central city, this post-stratification results 
in K = 10 strata. The NCS data summarized according to 
these ten strata are shown in Table 2. Note that the sample 
sizes within eight of these ten strata are rather large and that it 
may not be necessary to borrow information from other strata 
in order to estimate the probabilities within a single stratum. In 
practice, the post-stratification used would most likely define 
much smaller sub-groupings, the corresponding sample sizes 
within each stratum would be much smaller, and the 
hierarchical, empirical-Bayes models may provide more 
accurate est imates within sub-groups than do standard 
procedures. We use the larger strata here for illustrative 
purposes. 

4.3 Algorithm for Fitting the Model 

Numerical algorithms for obtaining the MLE's of the a, b, a, 
and 13 parameters under both the nonrandom and random 
nonresponse models must be carefully written in order to avoid 
overflow, underflow, and rounding error problems on the 
computer. The computer programs for the analyses described 
here were written in double precision FORTRAN using IMSL 
subroutines to perform the required maximizations, to evaluate 
the complete beta functions, and to compute combinations. 
Since the complete beta function, B(a,b) = F(a)F(b)/l-'(a+b), is 
large even for moderate values of a and b, the calculations were 
carried out using logarithms wherever possible. 

In the case of the random nonresponse model, the logarithm 
of equation (4) was maximized using IMSL functions to 
evaluate the logarithm of the complete beta function. For the 
nonrandom nonresponse model, since the combinations may be 
expressed in terms of gamma functions, equation (2) may be 
rewritten as follows to facilitate maximization: 

K ni -Yi+  

1-I ]~ exp { ln[F(ni+ 1)] - ln[F(Zi++ 1)] - ln[F(Yi+-Zi++ 1)] 
i = l  r=0  

- ln[F(r+ 1)] - ln[F(ni-Yi+-r+ 1)] 

+ ln[B(Zi++a+r, ni-Zi++b-r)] - ln[B(a,b)] 

+ B(Zi++Otl, ~l+r) - ln[B(oq,131)] 

+ ln[B(Yi+-Zi++a0, ni-Yi++130-r)] - ln[B(ao,130)] }. 

Again, the logarithm of the above equation was used in the 
maximization. 

An additional problem encountered in the data analyses 
described here was that, because the probability of responding 
was rather large, the maximization routine tended to converge 
towards an estimate of 1.0 for the probability of responding, 
skipping possible estimates which gave larger values of the 
likelihood function. To avoid this problem, each Beta(a,b) 
distribution in both the random and nonrandom nonresponse 
cases was reparameterized in terms of a/(a+b) and (a+b). In 
addition, in the nonrandom nonresponse case a partial grid 
search was used to locate a reasonable starting point for ~i0 in 
the iterative procedure. 

4.4 Results 

The random and nonrandom nonresponse models were used 
to obtain parameter estimates from both the simulated data and 
the actual NCS data. These parameter estimates are given in 
Table 1 for the randomly generated data and in Table 2 for the 

Table  1. Data randomly generated with Pi N Beta(15 60), ~ , i  -~ Beta(7,3), and 7r, ,-- Beta(19,1) ' i "0 
so that E[pi] = 0.2, E[/I;il ] = 0.7, and E[/I;i0 ] = 0.95. Sample Sizes of ni = 100 for i = 1, 2 .... 10. 

Randomly Generated Randomly Generated 
Dam Probabilities 

i Yi+-Zi+ Zi+ ni-Yi+ Pi gil  gi0 

1 72 19 9 .267 .765  .920 
2 73 21 6 .222 .813  .966 
3 76 17 7 .243 .768  .977 
4 72 17 11 .226 .541 .977 
5 68 15 17 .210 . 796  .860 
6 80 10 10 .211 .629  .986 
7 83 12 5 .189 .738  .976 
8 72 14 14 .215 .803  .879 
9 76 10 14 .175 .527  .954 

10 86 10 4 .171 .565  .986 

N~ve Random Nonrandom 
Estimator Nonresponse  Nonresponse 

A 
Pi ~i ^ Pi ~i ^ P i  ~ i 1  ~ iO  

.209 .91 .168 .906 .176 .861  .914 

.223 .94 .170 .921 .179 .861  .931 

.183 .93 .164 .916 .172 .861  .927 

.191 .89 .165 .897 .173 .861  .903 

.181 .83 .163 .867 .171 .861  .866 

.111 .90 .153 .901 .161 .861  .913 

.126 .95 .155 .926 .163 .861  .940 

.163 .86 .161 .882 .169 .861  .886 

.116 .86 .154 .882 .161 .861  .889 

.104 .96 .152 .931 .159 .861  .946 

where Y. = number responding in stratum i, Y . - z .  = number reporting crime free in stratum i, _ 1+ . . . . . . .  1+ 1.~ 
zi+ = numoer reporting VlCUmlzatxons m stratum 1, and ni-Yi+ = number of nonrespondents in 
stratum 1. 
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NCS data. In addition to the parameter estimates obtained 
under the two hierarchical models, "naive" parameter estimates 
are provided in both tables. These estimates are obtained using 
only the information in an individual stratum to obtain the 
estimates for that stratum. Thus, the naive estimators in 

^ 

stratum i are Pi = zi+]Yi+ and ~i = Yi+/ni • 
Consider the effects of the hier~chical estimation schemes 

on the parameter estimates in the case of the randomly 
generated data in Table 1. The naive estimates of p. are simply 

. . . .  1 

the observed proportions of victimized HH's m the ten strata 
ignoring nonrespondents. The estimates of Pi in Table 1 under 
the random nonresponse model are pulled from the naive 
estimates towards the overall proportion of victimized HH's, 
z++/Y+÷ = 145/903 = .  161. Similarly, the estimates of ni under 
the random nonresponse model are pulled from the naive 
estimates, the observed proportions of respondents in each 
stratum, towards the overall proportion of respondents, Y++]n+ 
= 903/1000 = .903. In this way the information from all strata 
is used to estimate the probabilities of victimization and 
nonresponse in each individual stratum. 

Under the nonrandom nonresponse model, the estimates of 
p. shown in Table 1 are again pulled towards an overall 

1 . . . 

probablhty of victimization but in this case that overall 
probability is somewhat larger than the naive overall estimate 
because it has been adjusted for the fact that victimized HH's 
are less likely to respond than are crime-free HH's. Thus the 
estimates of the probabilities of victimization are all larger under 
the nonrandom nonresponse model than under the random 
nonresponse model. The estimates of the probabilities of 
responding for crime-free HH's are generally larger under the 
nonrandom nonresponse model than are the single response 
probabilities under the random nonresponse model (the only 
exception occurs in the fifth stratum). The estimates of the 
probabilities of responding for victimized HH's are all smaller 
under the nonrandom nonresponse model than are the single 
response probabilities under the random nonresponse model. 
The values of ~ti0 shown in Table 1 are all identical to three 
decimal places because, in this example, the estimated value of 
a0 + [30 is very large. Since this term appears in the 
denominator of the variance of the prior beta distribution for the 
~i0, the prior variance is quite small. Thus, the information 
from the sample does not greatly effect the estimates of gi0's. 

Using the results presented in Table 1 for the simulated data, 
we may compare the naive, random nonresponse, and 
nonrandom nonresponse estimates to the actual parameter 
values to determine how effective the hierarchical models are. 
The mean absolute errors and root mean squared errors for the 
A A 

Pi, gil, and ~i0 are given in Table 3. Note that for the naive 

and random nonresponse estimators, the single estimator of the 
probability of responding, %i, is compared to both gil and ~i0 
since in those cases the probability of responding is taken to be 
the same for both victimized and crime-free HH's. The errors 
shown in Table 3 indicate that the naive and random 
nonresponse estimators are approximately the same in terms of 
mean absolute errors and root mean squared errors while the 
errors associated with the nonrandom nonresponse model are 
somewhat smaller. 

Now consider the results for the actual NCS data presented 
in Table 2. Again, the estimates of the Pi under the random 
nonresponse model are pulled from the naive estimates towards 
the overall proportion of victimized HH's, z++/y++ = 727/3630 
= .2003. Similarly, the estimates of gi under the random 
nonresponse model are pulled from the naive estimates towards 
the overall proportion of respondents, Y l J n l  = 3630/4155 = 
.8736. In this way the information from'all'-strata is used to 
estimate the probabilities of victimization and nonresponse in 
each individual stratum. Note, of course, that in the stratum 
where the sample sizes are particularly large the estimate is not 
pulled towards the overall proportion as much as it is in cases 
where the sample size is smaller. 

In the case of the nonrandom nonresponse model, the 
estimates of the p.. are again pulled towards a larger overall 
probability of victil~aization which has been adjusted for the fact 
that victimized HH's appear to be less likely to respond than are 
crime-free HH's. Thus the estimates of the probabilities of 
victimization are all larger under the nonrandom nonresponse 
model than under the random nonresponse model. The 
estimates of the probabilities of responding for crime-free HH's 
are all larger under the nonrandom nonresponse model than are 
the single response probabilities under the random nonresponse 
model. The estimates of the probabilities of responding for 
victimized HH's are all smaller under the nonrandom 
nonresponse model than is the single probability of responding 
under the random nonresponse model. The values of ~il are all 
identical to three decimal places because the estimated value of 
a l + 131 is very large and, hence, the variance of the prior 
distribution of/l;il is quite small. Thus, the information from 
the sample does not greatly effect the estimates of nil. 

5. C O N C L U S I O N S  AND F U T U R E  W O R K  

We have developed hierarchical models for the probabilities 
of victimizations and nonresponse and fit those models to 
randomly generated data and actual data from the NCS. The 
hierarchical models allow for either random or nonrandom 
nonresponse. The nonrandom nonresponse model fit to the 

Table 2. National Crime Survey data from 1/75 - 6/75 stratified by neighborhood characteristics 
urban or rural (U or R), central city, other incorporated place, or unincorporated or not a place (C, 
I, or N), and low or high poverty level (L or H). 

N~ve Random Nonrandom 
NCS Dam Est imator  Nonresponse Nonresponse 

strata Yi+-Zi+ Zi+ ni-Yi+ ~i ~i Pî  ~i ^ ~i Pi 1 

U/C/L 555 156 104 .219 .872 .217 .873 .272 .689 
U/C/H 364 95 73 .207 .863 .205 .869 .265 .684 
U/I/I. 557 162 101 .225 .877 .222 .876 .276 .692 
U/I/~ 262 72 36 .216 .903 .212 .885 .254 .694 
U/N/L 297 92 79 .237 .831 .230 .855 .305 .679 
U/N/H 40 15 9 .273 .859 .228 .872 .287 .687 
R/I/L 36 11 7 .234 .870 .210 .873 .265 .687 
R]~H 105 10 20 .087 .852 .130 .870 .185 .682 
R~/L 274 35 32 .113 .906 .129 .886 .166 .687 
R~/H 413 79 64 .161 .885 .165 .879 .213 .686 

~i0 

.937 

.933 

.937 

.937 

.937 

.937 

.933 

.937 

.933 

.937 

where Y. = number responding in stratum i, Y . - z .  = number reporting crime free in stratum i, 
1 +  . . . . . . .  1 +  l . t  

zi+ = number reporting victimizations m stratum 1, and ni-Yi+ = number of nonrespondents in 
stratum 1. 
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Table 3. Errors in estimation for randomly generated data. 

Naive Random 
Estimator Nonresponse 

A 
Pi ~il ~i0 Pi ~il ~i0 

mean absolute error .052 .209 .045 .052 .208 .047 
root mean squared error .058 .240 .054 .057 .237 .055 

Nonrandom 
Nonresponse 

A 
Pi ~il 

.045 .167 

.050 .200 

~i0 
.039 
.047 

simulated data succeeded in capturing the difference in response 
probabilities for victims and non-victims which was present in 
the distributions from which the data were generated. Since the 
parameter estimates obtained when the nonrandom nonresponse 
model was fit to the actual NCS data show similar differences 
for victims and non-victims, it seems reasonable to conclude 
that nonresponse in the NCS is informative nonresponse. The 
values of the parameter estimates suggest that victims of crime 
are less likely to respond to the survey than are non-victims. 
Any estimation procedures that do not allow for this difference 
will result in estimates of probabilities of victimizations that are 
biased downwards. 

The empirical-Bayes approach taken here has the advantage 
of allowing information from all strata to be used to provide 
estimates of probabilities within each stratum. The disadvantage 
is that the computations are more difficult than for the standard, 
non-hierarchical approach. It may be possible to improve the 
computation procedure in the future. Obtaining variance 
estimates under these hierarchical models is an additional 
problem. One must be wary of variance estimates based on 
using the MLE's as the parameters in the beta priors for these 
hierarchical models because such variance estimates would not 
include the uncertainty in the MLE's themselves. A possible 
remedy for this problem is suggested by Morris (1983). 

Areas for future research include extending these hierarchical 
models to allow the probabilities of victimizations to be 
influenced by covariates in the data. Saphire (1989) has 
developed hierarchical models for estimating the number of 
victimizations experienced by a HH which make use of 
covariates but do not address the nonresponse problem. 
Another extension of the models would be to allow them to 
handle the longitudinal nature of NCS data. Lehoczky and 
Schervish (1987) suggest a hierarchical Markov-chain model 
for victimizations and Stasny (1987) has presented Markov- 
chain models which are not hierarchical but which do allow for 
random or nonrandom nonresponse. Perhaps these ideas could 

be combined to develop hierarchical Markov-chain models for 
both victimizations and nonresponse. 
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