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1. I N T R O D U C T I O N  

The comparison of  two or more domains of  the popu- 

lation on the basis of  their cumulative distr ibution func- 

t ions (cd~) and related parameters is an interesting alter- 

native to the usual comparison of  the respective means 
(Sedransk & Sedransk, 1979). Special problems arise if 
domains of  interest are small. Al though the l iterature on 

small domain estimation is extensive, only very few pa- 

pers (Fay, 1986, 1987) particularly discuss the estima- 

ting of the quantile function (q.f), and none could be 

found that  concern the estimation of the cd]. The  value 

of the cdl at y for domain d, Fd(Y), is defined as the pro- 
portion of domain units tha t  are less then or equal to y. 

The problem of  estimating the cdJ therefore comes out 

to be that  of  estimating the corresponding proport ion of  

the small domain. A related problem is that  of  estima- 

t ing the q.f, Qd(p)= in.f{y;F(y)>> ~}, for the small domain. 
Nearly all the relevant literature discusses the estimation 

of the quanti le funct ion under the assumption of  simple 
random sampling from an infinite population. Good re- 

views of  the literature, approaches and related results are 

given in Sedransk& Smith (1987) and Francisco (1987). 

This paper focuses on the estimation of  the cdJ and 

the qJ of  small subpopulations. In section 2, several diffe- 

rent estimators of  the cd.f for small domains are derived. 

Assuming heteroscedastic superpopulation model, M and 

DM estimators are presented. Section 3 presents a com- 

parison of  three types of  qJ estimators. Besides the natu- 

ral, an interpolated and a smooth est imator are propo- 

sed. Bootstrap resampli0g scheme with probabilit ies pro- 

portional to the weights of  sample units is found to be 

convinient for the variance estimating. 

2 . E S T I M A T I O N  OF T H E  CDF FOR SMALL  DOMAINS 

2.1 Basic notat ion and existing methods. We suppose 

Sarndal's (1984) setup for small domain estimation: 

The f ini te population CUL={I, .... N} is divided into D non- 

overlapping domains c l / .dof  known sizes N.d (d= l  .... D). It 

is also divided along a second dimension into Hnonoverlap- 

ping categories (or groups) C[.Lh. of sizes Nh. (h=l,...H). 
Assuming that  groups and strata are identical, a proba- 

bi l i ty sample n of  size n, a subset of  9.L, is drawn by 

given strati f ied sampling design p(~)that determines the in- 

clusion probabil it ies ~ h k = ~ r ( k ~ h )  and xhk, l = ~ r ( k ~ h , l ~ h )  

8 h is a sample of  predetermined size nh. from the h-th 

stratum and ~ h n h . = n .  Then, Shd is its part with the 

random size nhd coming from the cell Cl/hd, a part of  a 

domain d in the stratum h of  the size ]Vhd. Thus 

~h.=Ud ~hd and ~.d=Uh ~hd" In particular, we assume 
stratif ied sample design wi th x M =  nh/]Vh, k~%Lh. , de- 
noted by strs. Let 9J denote the variable of  interest with 

values ]"1 ..... YN on the populat ion cu.. 

The cdf of 9J on cU. is defined as Fu(!/)=N'l~-~Z{Yk<~/}'u 
for any real ~/, where ~ means summation over whole po- 

u 

pulation eLI, and 1[.4 i is the indicator funct ion of  the event 
~ J  

Jr. For the sakeofs impl ic i ty  wedenote I{Ylc<~/} by Ilc(~/). 
The es t imatoro f the  population cd.f based on the stratif ied 

sample s is [ 'u(~/)=~h WhJ;'h(~/), where the W h are strata 
weights and the F h(~/) are the estimators of  strata cd.fs, 

for h=l, .H, k h (~l) =~[ n = E • .. ~1. ~ ih k ( , ) / .hk ,  a d N A. 1/Tr hk 
~o '~h o 

denotes summation over all units in the sample s h- 
a h 
The cdJ for a small domain d is 

Ahd=Nhd/Nd is the relative size (weight)  of  the stra- 

tum h wi th in the domain d, and ~ h A h d  =1' for d=I,...D. 
A set {Ahd, h=Z .... H} describes the structure of  the do- 

main d wi th  the respect to the assumed strat i f icat ion. 

Fhd(~/) is the cd.f corresponding to the cell hd, 

The cd.f of a small domain d may be estimated by a di- 

rect estimator. There are two types of  the resulting esti- 

mators: separate and combined. In the case of a separa- 

te, for each cell hd we make the design-based estimate 

P hd .'A 

and then using strata weights the final separate form 

of  the direct estimator, P D8 (~)= ~ /~  Wh/bhd (:~) is obtain- 

ed. It is biased and in the case of  strs for given value of 

the bias is equal to ~_~h(Wh--Ahd)Fhd(~). An alternati- 
ve, also biased, is derived from a single combined ratio. 

A combined form of  a direct est imator is 

Fa°(~) =f¢ ha 

where /V.d and Nhd are the design-based estimates of a 

size of the domain d and the cell hd, respectively. It is 
known (Cochran,1977" pp.167) that  when a small sam- 
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pie is available f rom each cell hd and a rat io estimate is 

appropriate, the combined estimate is to be recommended. 

If value o f  Fhd(~l ) varies substantial ly among strata, for 

given ~/and d, the variance of  JThd(~/) can be very large. 

If cells hd are considered as the poststrata, weights W h 
in the separate direct est imator should be substi tuted by 

the weights o f  strata in the domain d, A hd. The resul- 

t ing poststrat i f ied est imator is 

~PS (y):  ~ Ahd~hd(~l) (2.2) 
h 

In the case of  strs (2.2) becomes asimptot ical ly design- 

unbiased and has a form ['~S(~l)=~hAhd]hd(~l ) , - _ . .  where 

J:hd(y ) is the empirical d istr ibut ion funct ion (edj~ for the 

sample Shd. The smaller the nhd are, the more ]hdO!) 
varies making j~PS(y)ex t remely  unstable. It should be 

noted that  i f  at least one nhd is equal to zero, the esti- 

mator (2.2) becomes inoperative as well as in the case 

of  the direct separate est imation. 

More eff icient est imators may be based on borrowing 

informat ion from wider domains. Borrowing informat ion 

is done by assuming a certain impl ic i t  or explicit model 

of  the actual populat ion structure. 

If we adjust the estimated cd] for the entire populat ion 

°CL to the small domain d, assuming that  the small do- 

main resembles populat ion at strata levels in sense of  

the cdfl, we have a synthetic est imator o f  the cd.f Fd(~l ) 
a s  

#SY O/) :~A hd ~ h 0/) (2.3) 
h 

If we suppose strs, the est imator (2.3) takes on the 

form lZbd'Y-_ (~l)=~hAhd:fhOi).. where :fh(~l) is the simpler e d.f 

for the sample from the h-th stratum. The design bias 

of  F~'Y(~I)-_ in this case is ~_~hAhd[Fh(~l)-Fhd(~t)], where 

F h(~l) and Fhd(~l ) are the cd:fs corresponding to the stra- 

tum h and cell hd, respectively. The bias becomes zero i f  

F h(~l)=Fhd(~l) for a given ~/and all strata. The design va- 

riance is often low and if  the implici te model assump- 

t ion is fulf i l led the synthetic est imator is a good choice. 

But, i f  i t  does not hold the synthetic est imator may be 

signif icant ly design biased. Another adventage of  the 

synthetic est imation is a possibil i ty of  gett ing as many 

as n dist inct values o f / ~ d .  In the case of  the direct and 

the poststrat i f ied est imation the set o f  values of  ~'d con- 

taines at most n.d(<n ) different values. 

2.2 Model-based est imation o f  the eel]. Let c~ denote 

an auxil iary variable, wi th the values X k known for all 

elements o f  the populat ion. A superpopulation model 

(~) for ~ could be specified as a regression through the 

origin wi th heteroscedastic errors: 

Yk=Xk#+vkek , k=l .... N (2.4) 

where ~ is an unknown parameter, the v k > O  are known 

numbers or known up to mult ipl iers that  cancel when /~ 

is estimated and the e k, k=l .... N, are lid random vari- 

ables wi th mean 0 and variance 1. 

A model-based est imator o f  the cd] for small domain d, 

under the superpopulat ion model ~ is"  

UdlS d 
~lkOi ) is the  predicted value of  Ik(~l ) for the  unobserved 

e lement  of  domain  d, based on the  model  ~ and the ob 

served data. 

A suitable predictor lk(~l)can be constructed fol lowing 

an idea of  Chambers and Dunstan (1986). For any k~CLL 

let us consider ek= (Yk--Xk#)/Vk as a t ransformat ion of 

Yk' say ek=Ek(Yk). Due to  the  na tu re  of  model ~c, the  

Ek(Yk) are iid r andom variables.  Let  us deno te  by 

Gu(y) the  cd:f of  Ek (Yk) on cu,. T h e n ,  f rom ~, for any 

k{Ct/ and given y 

E~ (I k (~1)) = Gu (dE k (~1)) =N" 1~  l {e I <E k (~1)} 

So, we can use a sample-based est imator GU(~k(~l))for 
estimating Ik(~l ). T h a t  est imator in the case of  model 

est imation is an ed], i.e 

k(~l)=Ou(1Ek(~l))=n'l E I{el< Ek(~l)} 

Subst i tut ing the unknown parameter ~ by its BLU esti- 

mate under model 

~= ( EXk  Yklv~)l( ~ X 2 / v  2~ (2.6) 
kes k / k / 

gives the  final form of  the  mode l -based  (M-) e s t ima to r  

=~r~~~1k(~)+,~-I ~ ~I } 
I,k"d t'~d I'e k,, {~k<_ ~--~z x~h} 

where, the ~k=(Yk--Xk#)/Vk are the standardized resi- 

duals obtained from the ordinary least squares regres- 

sion o f  Yk on X k, for k~s. 

M-est imators o f  totals and means are model-unbiased 

(Holt ,  Smith & Tomber l in  1979). However, in the case 

of  est imating the cd:f for small domain, the procedure 

becomes biased, in general. But, i f  we assume that  # is 

constant and model ~ holds, the model expectation of  

F7 (~/) is 

keu d 

T h u s ,  in this case the  M - e s t i m a t o r  is model-unbiased.  

The M-estimates depend on correctness of  the assumed 

model o f  the actual populat ion structure and, i f  ~ is mis 

specified, the bias o f  the est imator wil l increase. 

As an i l lustrat ion, let us take the one-way A N O V A  too- 
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del ~Co, such that  

Yhk=Ph+ahehk , h=1,...H and ke°d,h. (2.7) 

The eM~ are identicly distributed wi th the unknown dis- 

t r ibut ion funct ion Gu(.) but wi th the mean 0 and varian- 

ce 1. #h is estimated by #h=n~ 1.~-'~sh" Yhk' and the model- 
-based estimator of  the cdJ for domain cU'.d becomes 

leUh d IShd k~Sh" hk- h } 

Using ~hk =(Yhk-- [3h)/ah gives this e s t ima to r  the  form 

h ~" ~'.d 

which can be recognized as the synthetic est imator cor- 

rected in the direction of  its design bias. Design bias of  

the est imator (2.8) is 

n h Nhd 
=~--'A hd[1-- ~h.(1-- ~ )][Fh (Y)-- FAd (Y)] 

h 

The synthetic and the est imator based on the model 

(2.7) behave similarly wi th the respect to the design 

bias. Moreover, est imator (2.8) is model-unbiased, since 

where E h (~)=(~-- # h)/~ A" 

A model that  takes local differences among cells hd 

into account is the two-way ANOVA model, say ~1" 

Yhdk=Ohd+ahdehdk, keCLLhd, h=l .... H, d=l .... D (2.9) 

For all h, d and k the ehd k are iid with mean value 0 and 
the variance 1, wi th d.f Gu(. ). From the general form of 

the M-est imator (2.5) for model ~1, after certain hand- 

ling, we have model-unbiased estimator 

p Ml (y)=~ A ]hd (~) (2 .10) 
h 

This est imator coincides wi th the assimptoticaly design- 

unbiased poststrati f ied est imator (2.2) in the case of  a 

strs design. If ~1 rather than ~o holds but we still use 

estimator (2.8), model bias is 

=~(~e N.e, ~-EG~OE~e(~)) - C~(E~e(~))] 
h 

where Ehd(Y)=(y--#hd)/ahd. 

2.3 Generalized regression est imator o f  the cdJ. The ge- 

neralized regression est imator (GRE) of  the ¢df has the 

form 

~'GuR(,)=N'I{~-~ }}(,)+C~k/Xk} (2.11) 
k~u k~s 

where lk0t )  represents the predicted value of lkO/) ba- 
sed on the model ~, assuming tha t  the Yk are indepen- 

dent (k, CUL), and for k,s 6k=Ik(y)--~gk(y). The ~k are de- 

termined by the design p(s). 6 k may take on the negative 
values, so a coefficient C has to provide ~ .GR(y)w i th  the 

cdf properties. In the section 2.5 for the models ~o and ~1 

and the general stratif ied design we il lustrate f inding of C 

First, let us estimate Ik(Y ), for hod,. A predictor IkOt) 
can be constructed fol lowing an idea of  Chambers and 

Dunstan (1986) explained in 2.2. Here we can use a de- 

sign-based and a model-unbiased est imator C,u(1Ek(y)) 
for estimating /k(!/)' i.e 

k (~)=~ ~ (Ek (~ ) )=~ '~ ' ;~Z  
" ' "  {~<#-k(~)) 

# could be estimated either using a BLUE, already given 

by (2.6), say #', or the r-inverse estimator (Sarndall- 

z980) 
X 2 v 2 k,, Exk Yk/4"k)/( k/ k'k) 

Therefore,  

+C E ,'kl[Ik(~) - 0 ~(Ek(~))] } (2.12) 
k~s 

The GRE of  the cdf for the small domain d is 

p ~R (,)=~ {~,k,,,d ~ k (,)+ Cdk~d6k/, k ) 

Based on the one-way A N O V A  model ~o (2.7) for the 
general stratif ied design p(s), and using ~-inverse esti- 

mator ~3h=(~_,Sh Yhk~r'hlk)/(~-~ShTr'hlk ) of #h' the estimator 

~lhk(Y ) (keClJ, h) is equal to the sample-based J~h(Y) and 

pDMo(y)__ (2.1:3) 

=~ {,4 Ad # h (~)+ chd/v hd~.~ (F ~ (~)- P ~ (~))) 
h 

where Phd(Y), ~hd'  and Ph(y)  are design-based estima- 
tors of  corresponding parameters and Cr d is the con- 

. " DMo .'" s t an t  which has to  ensure  t h a t  F d (y) ~s cd/. A super-- 

script  DM emphasizes the design-model character of the 
estimator. Est imator (2.13) can be considered as the 
synthetic est imator corrected for some amount of the 

estimated design-bias. This est imator is still model-un- 

biased. If sample design is strs and Chd=nh./Nh., DM- 
estimator (2.13) becomes just  M (2.8). Design bias in 

that  case is 
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= ~ A  hd (1 -- Chd -I- Chd Nhd /N h )" (F h (y)-- Fhd (y))} 

It vanishes if for each h and given d Chd=(Nh-Nhd)/N h. 

For a two-way  A N O V A  model (~1) and for the gene- 

ral strat i f ied design p(8), with #hd estimated by 

hd =(~,Shd Yhk/Tr hk)/~,shd 1/Tr hk, the resulting estima- 

tor  of  the ~[hk (Y) is F hd (Y)' keCU.hd, and 

i, DMz 
d (Y)=~Ahdkhd(! l) (2.14) 

h 

Chd does not effect the est imator  (2.14),  which is the 

same as the poststrat i f ied est imator  (2.2).  

2.4 A general form of  the cd.f est imator.  In this section, 

for the purpose of  the unique numerat ion of  sample 

units in the whole sample s=UhSh, we employ the con- 

cept of  cumulat ive labels (cl). For the k-th unit  f rom the 

h-th s t ra tum the cl j is defined as 
h-1 

j=~'~ nl.-I- k (2.15) 
/=1 

where h=l,...H, and k=l,...n h. The use of cl allows us to  

consider e s t ima to r s  of  the cd] in the  general linear form 

[' d(y)= E Wd(Yj) Ij(y) (2.16)  
3es 

Weights Wd(Yj)=Wdj fulf i l l  the condit ion ~sWdj=l. 
Geometrically,  Wdj means the height  of  a jump of the 

cd.f es t ima te  a t  the  Yj, j~s. T h e  respective weights  of  

the  cdf es t ima to r s  discussed in previous subsect ions  are 

given by T a b l e  A.1. Consequent ly ,  we can interpret  

Pd(Y) as the cdf of  the data °'J)----{Yj,jes} tha t  puts pro- 

babi l i ty mass Wdj on the unit  j. In other words, F d(~l) 
can be considered as a reweighted edf of  the data ~ .  

Wdj is a positive number and Wdj= O(1/n), ie. Wdj---+O 
for n---*oo. In the  case of  a strat if ied design the assump- 

tion abou t  finite number  of s t ra ta  seems to  be impor tant .  

2.5 Determinat ion o f  the coeff icient C d for  the DMo 

est imator.  The GRE in the part icular case DMo given by 

(2.13) can be expressed in the form of  (2.16) as 

~DMo (y)=~ {k~s h Nhd -- Chd]V hd'l'ChdN h 

Nhd-  Chd fif hd I E -I- N d ~ "Ihk (y) J kes h iShd . h r hk 
T h e  jumps  at  the  keShd are always positive if Chd>__O. 
However, for kes h IShd weights  can take  on the  negative 

values. So, Chd has to  be chosen to  satisfy the  condi- 

tion 0<Chd<_Nhd/fVhd for h=l .... g and d=l,...D. If 

Chd=O for all h, the  e s t ima to r  (2.13)  takes  on the syn- 

thet ic  form (2.3).  If Chd=Nhd/.fVhd for all h, the estima-- 
tor  (2.14) becomes DM 1 est imator.  

As a reasonable solut ion for Chd one can find a dampe- 

ning factor  f rom the "dampened regression est imator"  

(H id i rog lou,M.A and SarndaI,C.E, 1986), that  is 

Chd=(Nhd/N hd )a with 

{~  1, i f N h d / N h d > _ l  
(::X= 

+~2, i f  Nhd/[V hd < l 
, ~ is any small real number. 

In the case of  strs design we found tha t  if 

Chd-Nh./(Nh.-Nhd ) DMo est imator  is design unbiased, 
but this value is accaptable if  and only if 

nhd <nh (Nhd/Nh.)[l" (Nhd/Nh )]" 

3. E S T I M A T I O N  OF  T H E  QF FOR S M A L L  DOMAINS 

The quanti le funct ion (q.f) of  the variable cLJ is defined 

as Q(p)=in.f{y; F(y)>p}, where O<p<l, and y is a real 

number.  A corresponding e s t ima to r  of  a q] is Q(p)= 

inI{y; P(y)>_p}, where P ( y ) i s  an e s t ima to r  of  the cd.f. 

In practice, the est imator  Q,(p)is obtained by arrang- 

ing data °'J)--{Yk; kes} into an ascending sequence 

(~)--  {Y( kes} and cumulat ing the jumps W(k ) until p 

is reached. In the fo l lowing, we discuss some estimators 

of  Q(p) in the case of  small domain est imation. 

3.1 The  natural and the interpolated ~ est imators The 

natural est imator  -1- "--0"d (~) is defined as the f irst (3JY~'~ 

such tha t  the cumulat ive sum of  the jumps exceeds p: 
3 

Since Q,d(P) is a step funct ion wi th  the jumps corres- 
1 

ponding to the values f rom the sample s, i t is desirable 

to smooth it. Jumps are specially high in the case of  the 

direct and poststrat i f ied est imat ion of  the cd.f. 

The f i rst  step towards a smoothing is linear interpola- 

t ing between the values Y(j-1) and Y(j)= 1Qd(p) , i.e 

[p-P d(ro_~))][y(j)- r(j_~)] 
2Q d(p)= Y(j.1)-I - Fd(Y( j l l _FTd(Y( j_ l l )  (3.21 

This  est imator  is applicable even if only very few observa- 

t ions come f rom domain d. Its form makes sure that  for 

dif ferent values of  p the corresponding quantiles differ, 

too. Th is  interpolated est imator  uses the informat ion 

just  f rom the two  neighboring sample quanti les taking on 

value of  their linear combinat ion,  i.e 

a [Fd(Y ) p]/w d 2Q, d(p)=a Y(j)-I-(1-a)Y(j_I), where =1- " (j) - (j) 

and j is such t h a t  0 < F d ( Y ( j ) ) - p < W d ( j ) .  

3.2 A smoo th  e s t ima to r  of  qf. We increase the number 
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of elements in the linear combination (3.2), giving larger 

weights to observations whose cdf values are closer to p. 

Such a smooth est imator of  the qf is 

where v is the number of  observations with positive 

value of  a weight function w(.), and ~ ( . )  is a real func- 
oo  

t ion so that  ~(t)>__O, ~(t)=~(-t)and J" ~(t)dt=l. 
- 0 0  

This est imator is somehow related to the "smooth non- 

parametric est imator of  the quantile funct ion" mentio- 

ned by Parzen(1979) 

O, (~)= f q(t) h "1 - 
0 

q(t) iS the  s a m p l e  quan t i l e s  func t ion  and h is a s m o o t h -  

ing w i n d o w  with  the  p rope r ty  t h a t  h---, 0 when  n---*oo. If 

we t a k e  the  na tu ra l  e s t i m a t o r  llff, d(p) as a s ample  quan-  

tile func t ion ,  P a r z e n ' s  n o n p a r a m e t r i c  e s t i m a t o r  b e c o m e s  

F d(Y(j-1)) 

where ~'(Y ) -  A possible app obtaine~02s-0.~ roximation of Q(p) can 
be 

j=1 
In general, the kernel-type estimators are essentially de- 

pendent on the choice of "smoothing parametar" h (Par- 

zen, 1979). If not enough smoothing is done, the estima- 

te will be rough, showing features which do not repre- 

sent the quantile function, but also, if too much smooth- 

ing is done, some important  features of the qS could be 

smoothed away. So by substi tut ing h with Wd(. ) we 

have the est imator (3.3). Our idea was to adapt the a- 

mount of  smoothing to the local qf of  the data. To  

show formally an advantage in using Wdj as the band- 

width is diff icult, although it seems reasonable to adapt 

the amount of  smoothing to the local data. Note that  

the wdj fulf i l l  all the conditions for being smoothing 

windows, that  is wdj --+0 when n---*oo, and wdj >0. 

3(~ (p) does not directly depend on the order of the ob- d 
servations. Therefore we can rewrite it as 

E Yak ~( fd (Yhk)'p) (3.4) 
rid(') is one  of  the  e s t i m a t o r s  of  the  cd:f for a small  do- 

main,  cons idered  in Sec t ion  2. W e  have to  a s s u m e  t h a t  

t he re  are  no t ies in the  s a m p l e  s. 

4. B O O T S T R A P  E S T I M A T E S  OF T H E  VARIANCE 

Let us designate by ~) a set of  data defined as 

~--{(Yj,  Wdj); j,s} and by ~ +  its subset ~ + - - { ( Y j ,  

Wdj); fls [ Wd(Yj)> 0}. Having observed data ~ +  we pro 

pose the fol lowing: 

1. Draw from ~ +  a bootstrap sample {Y~, w* dj; fls*} 
with unequal probabilit ies and with replacement. The 

size of the sample s* is the same as the size of  ~+ ,  say 

for convinience. As a set of  probabilities we use a set 

of  the weights {Wdi}. The weights are considered as the 

constants. 

2. Then, calculate 

• f*d(Y) is an ed.f of a bootstrap sample s*. 

3. Independently replicate steps 1 and 2 B times and 

for the given y calculate the corresponding estimates 

p,(b)(~), b=~, ..B. 
d 
4. T h e  b o o t s t r a p  e s t i m a t o r  E,(~'*d(y))of Fd(Y ) can be 

approximated by the Monte Carlo approximation 

~* (y)=~b F d 

and the bootstrap variance est imator of the F d ( Y ) i s  

given as 

with the  a p p r o x i m a t i o n  

, a  r ,  ('/~ d ('Y))-- /7 *( b ) (,y)__ (,y) d Fd 

It is easy  to  prove t h a t  the  b o o t s t r a p  var iance  es t ima-  

to r  becomes usual unbiased variance estimator: 

=F d (Y) (~ --  k d (~))/~ 

B o o t s t r a p  a p p r o a c h  can help in the  eva lua t ion  of  sug-  

ges ted  q / e s t i m a t o r s .  

Le t  m*.~ d e n o t e  a n u m b e r  o f  t imes  Yj appea r s  in the  

bootstrap sample and the corresponding vector m* as 

(m*)={ra*(1) .... m*(v)7. W e  have proved t h a t  / ~ ( y ) i s  jus t  

the  edS for  the  s a m p m  s*, t h e r e f o r e  

Let us define a random variable R=R('~,F)=O,(p)-Q(p). 

The bootstrap value of  R is 

or the difference between values of  an estimator of p th  

quantile based on bootstraped data and the same esti- 

mate based on actual sample. Now, to derive the df of 

R* in the case of  the natural est imator 1Q, d(p)we use a 

procedure similar to one Efron (1979) used for the me- 

dian estimation. Tha t  is: 

For any integer value r, l<_r<_u, and given p, O<p<l, 
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assuming that  1Q*d(P)=Y(J) 

Prob, {Q (~* )>  Y(r)}--Prob, {1 Q'*d(P)> Y(r) } 
=erob, {m*(1) +... +m*(r) <Cj-1} 

=P,ob{~(,, ~*(V +...+ ~*(,)) <_ i -q 
j-1 

--E (~k)(W*(1)"l'"'q'W*(r))k[1-(w*(1 ) -I-...-I- w*(r))]u'k 
k=O 

where ~(n,p) means a binomial distributed random vari- 

able. So, 

Prob, {R* = r ( , ) -  r (V }  

=Prob{CJ~(~,W*(l ) +... +W*(r.1))<j-1} 

-- P r o b {~J~ (u , w *(1 ) +... + W *(r) ) < j-1} 
and for any sample s we can compute 

v 2 Prob. {R* = - } 

and use this expression as an es t imator  of 

E(~2)=E(Q(p)_ Q(p))2, the expected squared error of 

the qf est imator for the specified value of  p. 

5. S U M M A R Y  AND CONCLUSION 

The main objective of  this paper was to investigate po- 

sibilities of  constructing M and DM estimators of the 

cdf for the small domains. The general stratif ied sample 

design was considered but the main properties of the re- 

sulting estimators were carried out under the strs de- 

sign. A general form of the cdf estimator was created 

and its convinience for derivating quantile estimators 

was shown. Big jumps are characteristics of design-ba- 

sed natural qf estimators, so we proposed a smooth qf 

est imator with the variable smoothing window. The use 

of  M or DM estimates of  a cdf in the natural estimator 

of  a qf gives good results. We constructed a resampling 

procedure which yields variance estimates for the cdf as 

well as for the qf estimators. In fact, that  procedure is 

bootstraping with the probabilities proportional to 

height of  the jumps. 
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A.I: Weights Wdj for different t!lpes of the cdf estimators 1 

Est imator nJdj Relevant 

observations 

DIR 1/(~[.dX hk ) kCShd 

0 kcs h IShd 

PS ~h d/(~. d ~ hd ~ ht) k"ha 

0 kcs h ]Shd 

SYN Nhd/(1V'.dX hk) k,s h 

(~hd'"hd)/(N.d"h.) k"h. I'hd 

M1 Nhd/(N.dnhd ) k'Shd 

0 kcs h IShd 

DMo 

DM 1 

(Nhd+ehdiV h.-- ehd~ hd)/(/V hN.d,hk) k,,hd 
(Nh~--Chdkhd)/(NhN.d~hk) ~"h.l'hd 

Nhd/(N.di~ hd, hk) k,,hd 

0 kcs h IShd 

1 ha l  .... H, and relationship of j with k and h is given by the 

(2.15) 
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