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1. INTRODUCTION

The comparison of two or more domains of the popu-
lation on the basis of their cumulative distribution func-
tions (cdf) and related parameters is an interesting alter-
native to the usual comparison of the respective means
(Sedransk & Sedransk, 1979). Special problems arise if
domains of interest are small. Although the literature on
small domain estimation is extensive, only very few pa-
pers (Fay, 1986, 1987) particularly discuss the estima-
ting of the quantile function (¢f), and none could be
found that concern the estimation of the cdf. The value
of the cdf at y for domain d, Fd(y)’ is defined as the pro-
portion of domain units that are less then or equal to 3.
The problem of estimating the cdf therefore comes out
to be that of estimating the corresponding proportion of
the small domain. A related problem is that of estima-
ting the gf, Qd(p)= inf{y;F(y)>p}, for the small domain.
Nearly all the relevant literature discusses the estimation
of the quantile function under the assumption of simple
random sampling from an infinite population. Good re-
views of the literature, approaches and related results are
given in Sedransk & Smith (1987) and Francisco (1987).

This paper focuses on the estimation of the cdf and
the gf of small subpopulations. In section 2, several diffe-
rent estimators of the cdf for small domains are derived.
Assuming heteroscedastic superpopulation model, M and
DM estimators are presented. Section 3 presents a com-
parison of three types of gf estimators. Besides the natu-
ral, an interpolated and a smooth estimator are propo-
sed. Bootstrap resampling scheme with probabilities pro-
portional to the weights of sample units is found to be
convinient for the variance estimating.

2.ESTIMATION OF THE CDF FOR SMALL DOMAINS

2.1 Basic notation and existing methods. We suppose
Sarndal's (1984) setup for small domain estimation:
The finite population U={1,...,N} is divided into D non-
overlapping domains ‘ll.‘dof known sizes N.d (d=1,..D). It
is also divided along a second dimension into Hnonoverlap-
ping categories (or groups) ‘ll.h' of sizes Ny (h=1,...H).
Assuming that groups and strata are identical, a proba-
bility sample s of size =, a subset of Al, is drawn by
given stratified sampling design p(s)that determines the in-
clusion probabilities =, . =%Pr(kes, ) and whk’1=‘5’r(kcsh,ksh}
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5 is a sample of predetermined size ny from the h-th
stratum and Ehnh.="' Then, s,, is its part with the
random size 7Y coming from the cell q"’hd’ a part of a
domain d in the stratum & of the size th Thus
s ‘Ud Y and "d‘Uh YL In particular, we assume
stratified sample design with LIy "h/Nh’ ke"l.l.h., de-
noted by strs. Let ‘U denote the variable of interest with
values Y;,...,Y, on the population al.

The cdf of Y on AU is defined as Fy(y)=N" EI{Y <y
for any real y, where E means summation over whole po-
pulation U, and I{A} |s the indicator function of the event
A. For the sake of simplicity we denote I{YkSﬂ} by Ik(y).

The estimator of the population cdf based on the stratified
sample s is Fu(y) Zh Wh 4 (v), where the W, are strata
weights and the Fh(-") are the estimators of strata cdfs,

for h=1,...H, F (y) =N}} Zlhk(y)/whk, and ¥, =Zh:l/1rhk.
E denotes summation over all units in the sample 5p-

3

h

The cdf for a small domain d is

Fd(v)=Nfﬁka(y)-:Zh:Ahthd(”)
¥

Ahd=th/N.d is the relative size (weight) of the stra-
tum & within the domain d, and EhAhdzl, for d=1,...D.
A set {4, ,, h=1,...H} describes the structure of the do-
main d with the respect to the assumed stratification.
th(y) is the c¢df corresponding to the cell &d,

Fia(0)=Niy 3 uyy Tk (0

The cdf of a small domain d may be estimated by a di-
rect estimator. There are two types of the resulting esti-
mators: separate and combined. In the case of a separa-
te, for each cell kd we make the design-based estimate

. e
Fry(v)=N hd;h;i “aelhe(v)

and then using strata weights the final separate form
of the direct estimator, ﬁ‘?’(y): YR Wi F () is obtain-
ed. It is biased and in the case of strs for given value of
v the bias is equal to Y_, (W, — A4, ,)F, ,(y). An alternati-
ve, also biased, is derived from a single combined ratio.
A combined form of a direct estimator is

F,Ii)(y)=N:11¥thth(y) (2.1)
where N.d and th are the design-based estimates of a
size of the domain 4 and the cell hd, respectively. It is
known (Cochran,1977; pp.167) that when a small sam-



ple is available from each cell kd and a ratio estimate is
appropriate, the combined estimate isto berecommended.
If value of F, ,(y) varies subst?ntially among strata, for
given y and d, the variance of th('y) can be very large.

If cells hd are considered as the poststrata, weights Wh
in the separate direct estimator should be substituted by
the weights of strata in the domain d, Ahd' The resul-
ting poststratified estimator is

Ffs(y)= % Ahthd(y) (2.2)
In the case of strs {2.2) becomes asimptotically design-
unbiased and has a form Ffs(y)=EhAhdfM(y), where
fh,4(v) is the empirical distribution function (edf) for the
sample v The smaller the n,g are, the more fhd(y)
varies making ﬁ‘fs(y) extremely unstable. It should be
noted that if at least one 74 is equal to zero, the esti-
mator (2.2) becomes inoperative as well as in the case
of the direct separate estimation.

More efficient estimators may be based on borrowing
information from wider domains. Borrowing information
is done by assuming a certain implicit or explicit model
of the actual population structure.

If we adjust the estimated cdf for the entire population
A to the small domain d, assuming that the small do-
main resembles population at strata levels in sense of
the cdfs, we have a synthetic estimator of the cdf Fd(y)
as

ﬁ'f"@):%Ahdﬁh(y) (2.3)
If we suppose strs, the estimator (2.3) takes on the
simpler form ﬁ“gy(y)zzhAhdfh(y) where fh(y) is the edf
for the sample from the A-th stratum. The design bias
of ﬁ‘fy(y) in this case is Y, A, [F, (v)-Fy,(3)], where
Fh(y) and th(y) are the cdfs corresponding to the stra-
tum & and cell hd, respectively. The bias becomes zero if
Fy (v)=F} ;(v) for a given y and all strata. The design va-
riance is often low and if the implicite model assump-
tion is fulfilled the synthetic estimator is a good choice.
But, if it does not hold the synthetic estimator may be
significantly design biased. Another adventage of the
synthetic estimation is a possibility of getting as many
as n distinct values of ﬁ‘d. In the case of the dir?ct and
the poststratified estimation the set of values of Fd con-
taines at most n_,(<n) different values.

2.2 Model-based estimation of the cdf. Let % denote
an auxiliary variable, with the values Xk known for all
elements of the population. A superpopulation model
(&) for qQJ could be specified as a regression through the
origin with heteroscedastic errors:

Y, =X B+v e, k=1,..N (2.4)
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where g is an unknown parameter, the "Ic>0 are known
numbers or known up to multipliers that cancel when 3
is estimated and the eps k=1,...N, are iid random vari-
ables with mean 0 and variance 1.

A model-based estimator of the cdf for small domain d,

under the superpopulation model € is :
Y =N {Tn0+% 1,0}
4 ugley
fk(y) is the predicted value of I (y) for the unobserved
element of domain 4, based on the model £ and the ob
served data.

A suitable predictor fk(y) can be constructed following
an idea of Chambers and Dunstan (1986). For any k<Al
let us consider e, = (Y, — X, 8)/v, as a transformation of
Y,, say °k=Ek(Yk)' Due to the nature of model &, the
Ek(yk) are jid random variables. Let us denote by
Gu(y) the cdf of E (Y,) on U. Then, from §, for any
kU and given y

= a1
EE(Ik(y))—Gu(Ek(y))_N Iczz:;I{eIS[Ek(y)}

(2.5)

So, we can use a sample-based estimator éu(Ek(y)) for
estimating Ik(y). That estimator in the case of model
estimation is an edf, i.e

“ A —n'l
I )=Gu D=3 Ty )

Substituting the unknown parameter g by its BLU esti-
mate under model §

b= (XX, /RN XE /)
kes kes
gives the final form of the model-based (M-) estimator

M=

NP Z ey Y

C.Sd

(2.6)

. _y—Xp
lewy s, kes {¢,< "II }

where, the élc=(Yk_Xk"3)/”k are the standardized resi-
duals obtained from the ordinary least squares regres-
sion of Yk on ch' for kes.

M-estimators of totals and means are model-unbiased
(Holt, Smith & Tomberlin 1979). However, in the case
of estimating the c¢df for small domain, the procedure
becomes biased, in general. But, if we assume that g is
constant and model £ holds, the model expectation of
Ma)is

Ee(FY ()}=N} 5 Gu(€,(0)=E({Fy(v)}
kcud
Thus, in this case the M-estimator is model-unbiased.
The M-estimates depend on correctness of the assumed
model of the actual population structure and, if £ is mis
specified, the bias of the estimator will increase.

As an illustration, let us take the one-way ANOVA mo-



del £,, such that

k=1,...H and kecl.l.h. 2.7)

Ypp=Pptopeps
The e, are identicly distributed with the unknown dis-
tribution function Gy(.) but with the mean 0 and varian-
ce 1. B, is estimated by By=nj! Z, Y,» and the model-
-based estimator of the cdf for domaln "U.‘d becomes

0(11) NdZ Y Iy(v)
€3hd

g D, DT
lewy {54 kesy,
Using &,,=(Y,,—B,)/7, gives this estimator the form

{éhkSU;,‘l(ll"ﬁh}}

f’"ﬁl"(y)=§{Ahdfh(y)+nN—'fUhd(w)—fh(y)]} 2.8)

which can be recognized as the synthetic estimator cor-
rected in the direction of its design bias. Design bias of
the estimator (2.8) is

Byfiory))=

n N
=§th X d[z—ﬁ’;:'(z——Nihd- NF, (v)—Fp 3 (3))

The synthetic and the estimator based on the model
(2.7) behave similarly with the respect to the design
bias. Moreover, estimator (2.8) is model-unbiased, since

RO NN N ALIO)

where Eh(y)=(y—ﬁh)/ah.

A model that takes local differences among cells hd
into account is the two-way ANOVA model, say 61:
Yhdk=ﬁhd +op dehdk ka‘ll,hd, h=1,...H, d=1,...D (2.9)
For all &, d and k the e, qk are iid with mean value 0 and
the variance 1, with df Gy (.). From the general form of
the M-estimator (2.5) for model {;, after certain hand-
ling, we have model-unbiased estimator

- M
Fy 1(3')=Zh:Ahd fra(v) (2.10)

This estimator coincides with the assimptoticaly design-
unbiased poststratified estimator (2.2) in the case of a
strs design. If £, rather than £, holds but we still use
estimator (2.8), model bias is

Efl{i‘fl”"(y)—f“d(y)}
=§(Ahd )lzndGuAE,,d(y)) Gu(E 4 (3))

where Ehd(y)=(11—ﬁhd)/"hd'

344

2.3 Generalized regression estimator of the cdf. The ge-
neralized regression estimator (GRE) of the cdf has the
form

Rey=N1Y 1 (+CT 6/} (211)
keu kes
where 1k(y) represents the predicted value of I (y) ba-
sed on the model f, assuming that the ch are indepen-
dent (keQ), and for kes 6k=Ik(y)—1k(y) The =) are de-
termined by the design »(s). 6k may take on the negative
values, so a coefficient C has to provide FJ R(y) with the
cdf properties. In the section 2.5 for the models £, and &,
and the general stratified design we illustrate finding of C

First, let us estimate I (y), for keU. A predictor 1k(y)
can be constructed following an idea of Chambers and
Dunstan (1986) explained in 2.2. Here we can use a de-
sign-based and a model-unbiased estimator éu(lEk(y))
for estimating Ik(y), i.e

i Gy =N-1
p(W=Gu(E(v) TE {e,-<[Ek(y}}

B8 could be estimated either using a BLUE, already given

by (2.6), say B,
1980)

or the =-inverse estimator (Sarndall-

Br=( ksz Y/ m )/ kEXf/v,fwk)

Therefore,

FER =N T 6o )+
+HOT U () Gy} (2.12)

The GRE of the cdf for the small domain d is

GR(y)=N} {Z ’m)+0,1k

eud

e/
esd
Based on the one-way ANOVA model &, (2.7) for the
general stratified design p(s), and using =-inverse esti-

mator th(z,h th";zlk)/(zsh";zlk) of g, the estimator

1hk(y) (kU ) is equal to the sample-based ﬁ'h(y) and

i'-'gMo(y)z (2.13)

=¥{Ahdﬁ’h(y)-i-Cththj(ﬁ'hd(y)—ﬁ'h(y))}

where ﬁ’hd(y), th, and ﬁ'h(y) are design-based estima-
tors of corresponding parametezrs A?Ind Chd is the con-
stant which has to ensure that F; " °(y) is cdf. A super--
script DM emphasizes the design-model character of the
estimator. Estimator (2.13) can be considered as the
synthetic estimator corrected for some amount of the
estimated design-bias. This estimator is still model-un-
biased. If sample design is strs and Chd‘_‘”h./Nh.’ DM-
estimator (2.13) becomes just M (2.8). Design bias in
that case is



B,,{i«"fMO(y)}-_-
=3 A (1= C g #Cp Ny /Ny )- (Fy (1) —F 4 (v)))

It vanishes if for each k and given d C) ,=(N,-N; )/ N,.

For a two-way ANOVA model (£;) and for the gene-
ral stratified design p(s), with Bhrd estimated by

Bra _—_(E_,hdth/whk)/z,hdl/rhk, the resulting estima-
tor of the I,.(y)is F,,(v), ’“cu'hd' and
M, .
Fy (y)=2h:Ahthd(y) (2.14)
Chd does not effect the estimator (2.14), which is the
same as the poststratified estimator (2.2).

2.4 A general form of the cdf estimator. In this section,
for the purpose of the unique numeration of sample
units in the whole sample ’=Uh’h’ we employ the con-
cept of cumulative labels (cl). For the k-th unit from the
k-th stratum the clj is defined as

h-1
j':Z np + k
=1

H, and k.—.—l,...nh. The use of ¢l allows us to
consider estimators of the cdf in the general linear form

(2.15)

where h=1,...

Fy(0)=3wy(Y;) I;(v) (2.16)
Jes
Welghts. wy(Y;)=wy; fulfill the condition Z,wdjzl.
Geometrically, Wy means the height of a jump of the
cdf estimate at the Yj, jes. The respective weights of
the cdf estimators discussed in previous subsections are
given by Table A.1. Consequently, we can interpret
F ;(y) as the cdf of the data G.D—{Y ,jes} that puts pro-
bability mass Wy on the unit 5. In other words, Fd(y)
can be conSIdered as a reweighted edf of the data 9.

wy. is a positive number and wyi= O(1/n), ie. wg; 0
for n— 0. In the case of a stratified design the assump-
tion about finite number of strata seems to be important.

2.5 Determination of the coefficient Cd for the DM,
estimator. The GRE in the particular case DM, given by
(2.13) can be expressed in the form of (2.16) as

DM, Ny =CpgN g #C3, N,
Fim)=34 2 ‘L,(v)

kesy N gV 7y
N,,—C
hd~ ChaN pa
k“’h‘shd .d" R Rk

The jumps at the ’“"hd are always positive if ChdZO.
However, for k"h"hd weights can take on the negative
values. So, Chd has‘ to be chosen to satisfy the condi-
tion 0<Cy <N, /N, for h=1,..H and d=1,..D. If
C),4=0 for all h, the estimator (2.13) takes on the syn-
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thetic form (2.3). If Chdzth/th for all k, the estima--
tor (2.14) becomes DM, estimator.

As a reasonable solution for Chd one can find a dampe-
ning factor from the "dampened regression estimator”
(Hidiroglou,M.A and Sarndal,C.E, 1986), that is

Chg=(Ny g /N 4 2)* with

-1, Ny /N>

P . , € is any small real number.
1+¢“, if th/th<1

a=

In the case of strs design we found that if

C,g=N, /(N, - N ;) DM, estimator is design unbiased,
but this value is accaptable if only if
g < (Npg /Ny 1= (N g /Ny )1

and

3. ESTIMATION OF THE QF FOR SMALL DOMAINS

The quantile function (gf) of the variable Y is defined

as Q(p)=inf{y; F(y)2>p}, where 0<p<1, and y is a real
number. A corresponding estimator of a g¢f is Q(p):
inf{y; F(y)>p}, where F(y) is an estimator of the cdf.

In practice, the estimator Q(p) is obtained by arrang-
ing data P={Y,; kes} into an ascending sequence
(‘.D)={Y(k); kes} and cumulating the jumps w(k) until p
is reached. In the following, we discuss some estimators
of Q(p) in the case of small domain estimation.

3.1 The natural and the interpolated gf estimators The
natural estimator Qd(p) is defined as the first Yj)
such that the cumufative sum of }he jumps exceeds p:

le(p)=m;j?3{Y(j); Elwd(k)Zp} (3.1)

Since Qd(p) is a step function with the jumps corres-
ponding to the values from the sample s, it is desirable
to smooth it. Jumps are specially high in the case of the
direct and poststratified estimation of the cdf.

The first step towards a smoothing is linear interpola-
ting between the values Y¥,. ., and Y,..= { i.e
9 (G-1) G)= 19a®

[p-F 4 (Y51 MY 5y V51)
FatY - Fa¥ 1))

2Qd(1’)=y(j_1)+ (3.2)

This estimatoris applicableevenif only very few observa-
tions come from domain d. Its form makes sure that for
different values of p the corresponding quantiles differ,
too. This interpolated estimator uses the information
just from the two neighboring sample quantiles taking on
value of their linear combination, i.e

zdd(p)zaY(J.)+(1-a)Y(J._1), where a:]-[fd(Y(j))-p]/wd(j)
and j is such that OSﬁ’d(Y(j))-pSwd(j).

3.2 A smooth estimator of gqf. We increase the number



of elements in the linear combination (3.2), giving larger
weights to observations whose cdf values are closer to p.
Such a smooth estimator of the ¢f is

Fd(yj)_ﬂ

0y (3.3)

v
SQ‘d(P)zJZ;:IYj ¥*
where » is the number of observations with positive
value of a weight function »(.), and %%(.) is a real func-
tion so that 36(1)>0, %(1)=%(-t) and [ 36(t)dt=1.
This estimator is somehow related t&oghe "smooth non-

parametric estimator of the quantile function” mentio-
ned by Parzen(1979)

1
a)=[a(t) K1%(5E) &

¢(t) is the sample quantiles function and & is a smooth-
ing window with the property that A— 0 when n—00. If
we take the natural estimator Qd(p) as a sample quan-
tile function, Parzen's nonparametrvc estimator becomes

Fyvg)
Q(P) =h" IE Y(])/
d(Y(J 1))

where F(Y 9))=0- A possible approximation of Q(p) can
be obtained as

SG(?T”) dt

u 1 Fd(yj )-p

A=K Yi)vag) %(_—h()—
In general, the kernel-type estimators are essentially de-
pendent on the choice of "smoothing parametar” A (Par-
zen, 1979). If not enough smoothing is done, the estima-
te will be rough, showing features which do not repre-
sent the quantile function, but also, if too much smooth-
ing is done, some important features of the gf could be
smoothed away. So by substituting k with "’d(‘) we
have the estimator (3.3). Our idea was to adapt the a-
mount of smoothing to the local ¢f of the data. To
show formally an advantage in using wy, as the band-
width is difficult, although it seems reasonable to adapt
the amount of smoothing to the local data. Note that
the wys fulfill all the conditions for being smoothing
windows, that is wdj -— 0 when n— 00, and Wy >0.

Qd(p) does not directly depend on the order of the ob-
servations. Therefore we can rewrite it as

F:d(yhk)'l’

Qd(l’) 2 E th Dhk

68
h
fd(.) is one of the estimators of the cdf for a small do-
main, considered in Section 2. We have to assume that
there are no ties in the sample s.

(3.49)

4. BOOTSTRAP ESTIMATES OF THE VARIANCE

Let us designate by 9D a set of data defined as
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D={(Y i g ); jes} and by D its subset Dr={(V,,
wgi)i ]es | "’d(y .)>0}. Having observed data 9% we pro
pose the folliowing:

1. Draw from 9% a bootstrap sample {Y;, wk‘j; jes*}
with unequal probabilities and with replacement. The
size of the sample s* is the same as the size of G.D+, say
v for convinience. As a set of probabilities we use a set
of the weights {wdj}' The weights are considered as the
constants.

2. Then, calculate

:@#@r’étwrﬁ L/ w;,,:él )v=fy()

f;(y) is an edf of a bootstrap sample s*.

3. Independently replicate steps 1 and 2 B times and
for the given y calculate the corresponding estimates
#x(b)

F, (v), b=1,...B.

4. The bootstrap estimator E,.,(f«”;(y)) of F,(y) can be
approximated by the Monte Carlo approximation

F’,}@)=Zb:ﬁ’;(")(y)/s

and the bootstrap variance estimator of the ﬁ‘d(y) is
given as

vara (k4 ()=B{ 30— F (1)

with the approximation
sira(F o) =S (F 0)=F ) /8-)

It is easy to prove that the bootstrap variance estima-
tor becomes usual unbiased variance estimator:

(w d,]())

v (F y0)=4{3> ~ (k)

=F (y) (1—F d(y))/u

Bootstrap approach can help in the evaluation of sug-
gested gf estimators.

Let m] denote a number of times Y appears in the
bootstrap sample and the correspondmg vector m* as
(m* )"{m(l)"“ 5 }. We have proved that Fd(y) is just
the edf for the sample s*, therefore

ﬁ‘;(Y'('j))=[m;1)+...+m?j)]/u
Let us define a random variable R=R(D,F)=Q(p)-Q(p).

The bootstrap value of R is

R =R(D",F)=Q(D*)-Q(F)=Q(D*)-Q(D)=Y};)-Q()
or the difference between values of an estimator of p-th
quantile based on bootstraped data and the same esti-
mate based on actual sample. Now, to derive the df of
R* in the case of the natural estimator IQd(p) we use a
procedure similar to one Efron (1979) used for the me-
dian estimation. That is:

For any integer value r, 1<r<w, and given p, 0<p<I,



assuming that Iéz(p)zY(j)

Prob, {Q(D*)>Y, ,-)}=PTOI’*{1Q2(P)> Y(,.)}
=Prob, {m?1)+...+m"('r) <j-1}

j-lzProb{".B(n, w?1)+...k+ w?'r)) <1} \
= v w* oo ‘u}’.l 1- w" vee 'W"l v-
Eo(k)( (1)t ) (g ) et )

where B(»,p) means a binomial distributed random vari-
able. So,
P'rob,,{R*:Y(T)- (J)}

=Prob{%(u,w?1)+...+w?r_1))5j-l}

— * * .
Prob{‘.B(u,w(I)+...+w(r))S] 1}
and for any sample s we can compute

E,.{(iz*ﬂ}:rg[y(r)- Y(J.)]z Probu{R*= Y/, )- ¥(,))

and use this expression as an -estimator of
E(Rz)zE(Q(p)- Q(p))z, the expected squared error of
the gf estimator for the specified value of p.

5. SUMMARY AND CONCLUSION

The main objective of this paper was to investigate po-
sibilities of constructing M and DM estimators of the
cdf for the small domains. The general stratified sample
design was considered but the main properties of the re-
sulting estimators were carried out under the strs de-
sign. A general form of the cdf estimator was created
and its convinience for derivating quantile estimators
was shown. Big jumps are characteristics of design-ba-
sed natural gf estimators, so we proposed a smooth g¢f
estimator with the variable smoothing window. The use
of M or DM estimates of a cdf in the natural estimator
of a g¢f gives good results. We constructed a resampling
procedure which yields variance estimates for the cdf as
well as for the ¢f estimators. In fact, that procedure is
bootstraping with the probabilities to
height of the jumps.
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A.1: Weights Wy Jor different types of the cdf estimators!

Estimator wyi Relevant
observations

DIR ) kes;
0 kes, |y g
PS N/ (N N gmpy) kesy
0 kesy 13y,
SYN Ny /(N go4n) kes,
Mo (Npg-rpatop J/(N gmy) kesy g
(Npg-npa)/(N gy ) kesy Vopg
My Nig/(N gmpg) kesy g
0 ks, |5y g
DM, (Nyg#ChgN = CpgN )/ (NN ympp) kesyy
(Nia— ChaV pa)/ (NN g74p) kesy 1544
DM, Nyg/(N N g gm ) kesy g
0 kes, \op g

1 k=1,...H, and relationship of j with k and k is given by the
(2.15)



