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As a discussant for a contributed paper session, I am 
fortunate that the papers presented in this session have very 
much a common theme, moreso than is often the case for 
invited paper sessions on a particular topic. The general 
theme most closely tying these presentations together is the 
issue of precision of sampling error estimation for complex 
sample surveys. Each of these papers is thought-provoking, 
and each sheds a somewhat different perspective on this 
common theme. In my discussion, I will concentrate on the 
questions which occurred to me as I reviewed the papers. 

Kott Paper 

Philip Kott uses a population modelling approach to 
evaluate the properties of linearization variance estimators for 
a ratio estimator. This approach of using a population model 
to evaluate a variance estimator (but not as the basis for the 
derivation of the estimator) has been used successfully in the 
past particularly as a means of comparing alternative 
approaches (for example, Brewer, 1963). 

The approach Kott takes is to use model expectation, 
rather than the randomization expectation, to evaluate the 
properties of the variance estimator with respect to a given 
sample. While this gives more insight than merely 
considering the randomization expectation, the difficulty 
with the approach is that the results depend upon the choice 
of model. For the finite population surveyed in a given case, 
it can be difficult to evaluate the appropriateness of the model 
used. 

The model used is 

where 

Ykj = g mkj + ekj 

E(e~j) = cmkj. 

It would be interesting to consider the effect of using a 
more general model. For instance, one could consider 

where 

Ykj = ~k + gk mkj + ekj 

but this is p robably  too unwie ld i ly  and 
overparameterized. A useful compromise might be to use 

with 

Ykj = ~ mkj + ekj 

Putting 7 = 1 gives the model used by Kott. Kott gives 

~(VD) = 2 

I speculate that for the more general model 

RIVIV(VD) = 2 
(Zmk~)2 

This expression could be used to estimate the appropriate 
number of degrees of freedom, as proposed by Kott, after 
establishing empirically an appropriate value for y. 

Kott proposed the use of both the relative model bias 
(RMB) and the relative model variance (RMV) to adjust the 
usual linearization variance estimator and associated 
confidence intervals. 

He proposes using V D = VD/(1 + RMB (VD)) to adjust 
the variance estimator to account for the model bias. Since 
the value of RMB is dependent upon the choice of the 
model, and the extent to which this adjustment improves the 
variance estimator (or otherwise) is dependent upon the 
appropriateness of the model, I would hesitate to use this 
adjustment in cases other than where there was good 
empirical or theoretical validation of the model fit. 

The use of RMV is proposed as a means of deriving an 
approximation of the number of degrees of freedom of the 
variance estimator (d) through the expression 

d = 2/RMV(VD) 

In view of the absence of the other good approximations 
to the value of d, I think that this approach will prove very 
useful. Also I am hopeful that the estimation of d will be 
somewhat robust to model misspecification. I would 
encourage Dr. Kott to pursue an investigation of this 
approach. 

Marker Paper 

David Marker's presentation emphasizes the importance 
of considering the balance between cost and precision of 
variance estimation, in the formation of sample replicates for 
use in replicated variance estimation. Needed precision can 
be lost, perhaps for little real gain, by arbitrarily reducing the 
number of replicates utilized, and Mr. Marker has shown an 
artificial but effective example of this. Particular caution is 
needed when separate estimates are required for subgroups 
which are highly correlated with the survey strata (e.g., 
region estimates) as very imprecise variance estimates can 
easily result if less than full replication is used. 

For some discussion of approaches which can be used to 
reducing the extent of replication without losing needed 
precision, see Lee (1972, 1973) for BRR, and Rust (1986, 
1984). With reasonable knowledge of relative contributions 
of the survey strata to total sampling variance, adequate 
precision for creating confidence intervals can generally be 
obtained using only a few dozen replicates. Caution is 
required, however, and Marker's warning against ill- 
considered reduction in the numbers of replicates to be used 
should be taken seriously by all practitioners. I note that in 
Dr. Fay's paper this careful consideration has been given to 
the level of replication required. 
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One final note in relation to this issue is to emphasize the 
point that when replication with a paired design is carded out 
to the fullest extent for linear estimators, it is immaterial 
which PSU in each pair is denoted at '1' and which as '2'. 
This designation can be purposive without introducing bias. 
When reduced replication is used, this assignment must be 
random, or bias will result from the fact that cross-product 
terms between strata no longer have zero expectation. 

Kish Paper 

The task of grappling with the impact of design 
considerations on survey inference has been made noticeably 
easier over the years as a result of Leslie Kish's efforts in 
popularizing the concept of the design effect. This present 
paper gives many points of helpful summarization as to the 
uses of design effects and also points out some of their 
limitations. I would suggest that survey practitioners at all 
levels of experience will benefit from a reading of Professor 
Kish's summarizations. 

As Professor Kish points out, care is needed in the use 
of design effects when the survey data are not approximately 
self-weighting. Here, both the weighting and the design 
features of stratification, clustering, and so on, have an 
impact. Care is needed in defining and interpreting the 
"simple random sampling variance"-- the denominator of the 
design effect -- in this case. I believe that there is tendency 
to compute the ratio of the unbiased sampling variance 
estimate to the variance estimate which is obtained if 
unweighted data are used in a statistical software package. 
This is not the design effect, which compares sampling 
variance with that which would have been obtained 
had a simple random sample been used. Rather, this 
is an analysis effect, which compares the true sampling 
variance to that which is obtained if the survey design 
and survey weights are ignored in the analyses. 

A 

To illustrate, consider an estimate of a proportion, p of 
p, from a weighted sample• The design effect is estimated 
by 

v a r ( ~ )  
deff (~) = 

A 

p (1-~)/n 

The "analysis" effect is 

_ var(~) 
aneff (~) - p* (1-p*)/n 

where p* is the unweighted sample proportion. With 
• . • A 

differential weighting p and p* can differ substantially, so 
that the design effect and analysis effect are not one and the 
same. Thus, I would add as a postscript to Professor Kish's 
paper a word of caution to distinguish between these two 
concepts, and to be sure to use the appropriate one in a given 
case. Those who practise survey design are interested in 
design effects, but those who analyze survey data will often 
be more interested in the impact of the sample design and 
weighting on the analysis of the data at hand, rather than in 
considering the relative precisions of alternative designs. 

Fay Paper 

Dr. Fay's paper deals with issues related to practical 
problems of variance estimation in a particular application, 
the Survey of Income and Program Participation. These 
issues are the use the Durbin-Sanford method to select two 

PSUs per stratum and the implications for variance 
estimation, the random reduction of the sample following 
initial selection, modification of the Yates-Grundy variance 
estimator to reflect the multistage design the development of 
replicated variance estimation procedures to reflect these 
steps, and the choice of Fay's modified method of Balanced 
Repeated Replication. 

The paper describes well the final procedures that were 
used, but I would be interested to learn more as to the 
considerations which led to these choice of methods. For 
example, how was the decision reached to use the Durbin- 
Sanford method to select PSUs, as opposed to using 
independent selections, or choosing one PSU per stratum? 

The use of Durbin's method permits unbiased estimation 
of the first stage sampling component of variance. 
However, this is at the expense of more complicated 
variance estimation for the second and later stage variance 
components, and the selection of two PSUs per stratum in 
this way may perhaps decrease the efficiency of the sample 
design by not maximizing the use which could be made of 
information available at the design stage. A discussion of 
the various trade-offs would be enlightening• 

The general approach given by Dr. Fay to approaching 
the problem of finding an appropriate replication approach 
for a given complex design appears to be a very useful one. 
The approach is to formulate the design appropriate explicit 
variance estimator for a linear estimator as 

t 

Var* (..1' ..Xw) = ~x w C(s) NXw 

where C(s) is a matrix of quantifies dependent upon the 
sample design but not the sample data. Then appropriate 
replicated variance estimators can be expressed in terms of 
eigenvectors and eigenvalues of C(s). This approach gives a 
method of obtaining an appropriate replication variance 
estimator for particularly complex designs as illustrated in 
the paper. I believe that this formulation should also prove 
useful in the future in comparing alternative "valid" 
replication approaches (e.g., BRR and jackknife) for a given 
design. 

The modification which Dr. Fay proposes for B RR of 
weighting cases in a given replicate by factors of 0.5 and 1.5 
in place of using 0 and 2 in the case of full BRR suggests 
that perhaps a "good" B RR procedure is one which is similar 
to the jackknife. However, the jackknife is known to the 
inconsistent for variance estimates for quantiles (Brillinger, 
1964), whereas BRR is not inconsistent (Rao and Wu, 
1987). Fay's approach seems likely to retain the consistency 
of standard BRR and, thus, be at an advantage over the 
jackknife. My colleague and Dr. Fay's, David Judkins, is 
empirically investigating this particular question at present. 

Finally, I will point out for the benefit of those who 
would like to analyze data using Dr. Fay's modified BRR 
approach that Westat's SAS procedure for variance 
estimation, PROC WESVAR, has recently undergone a 
number of enhancements, one of which gives it the 
capability to implement Fay's modified BRR, given an 
appropriate set of replicate weights. 

This is achieved by providing as input the factor br for 
use in the variance estimator 
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Var*(l' Xw) = Z br (w r x-  Wx)2, 
r 

described in the paper. 

Conclusion 

Finally, I wish to thank all of the speakers for their 
thought-provoking presentations and for their efforts in 
making this what I believe to have been a very useful, 
interesting and successful session. 
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