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I. Introduction designs. The replicate weighting approach 

lends itself particularly well to frac- 
Most of the initial advances in the theory tional reuse of observations in forming 
and application of replication methods to the replicate samples. 
variance estimation have focused on a This paper extends earlier work (Fay 
small number of distinct methods, namely, 1984) on a broad class of replication 
the jackknife, half-sample replication, methods that can be easily represented 
the method of random groups, and the boot- through replicate weights. The general 
strap. A number of specific adaptations class includes methods constructed from 
and extensions have been proposed. In the eigenvalues and eigenvectors of a specific 
original version, each method forms the matrix. Section 2 extends the earlier 
replicate samples by reusing each of the theory to cover the replication methodol- 
original observations an integral number ogy that has been implemented in the post- 
of times. For example, the half-sample censal redesign of the Census Bureau's 
method constructs subsamples by using half current demographic surveys after the 1980 
or approximately half of the original census. 
observations to form a replicate sample, Section 3 illustrates an application of 
the random group method uses a relatively this theory to the derivation of replicate 
small portion of the original sample, and weights for the 1985 panel of the Survey 
the jackknife uses all but a small portion of Income and Program Participation 
of the original sample, so that each of (SIPP). The 1985 panel was the first 
these methods omits some observations and panel of the SIPP to be based on the rede- 
forms the replicate estimate based on the sign. Several complex features of the 
remaining observations. The original ver- design illustrate the flexibility of the 
sion of the bootstrap, implemented by general replication approach; in particu- 
resampling with replacement from the orig- lar, some of the eigenvalues and eigenvec- 
inal sample, in effect uses each of the tors required by the general theory of 
original sample observations zero, one, Section 2 had to be computed numerically 
two, or some other integral number of rather than obtained by simple inspection, 
times in composing each replicate sample, as is usually possible in practice. 

By permitting fractional weighting of Section 4 summarizes the possible 
observations, however, the class of repli- representation of multiple imputation cal- 
cation methods becomes considerably culations through a replicate weighting 
broader and more flexible. For example, approach and notes other ways in which 
it is possible to expand the class of approximate measures of the uncertainty 
methods to include those that give weight due to missing data may be obtained with 
1.5 times the original weight to some of the assistance of replicate weighting. 
the original sample while weighting the 
remaining part of the sample by .5 times 2. Theory of Generalized Replication 
the original weight. As a precedent, 
Kreski and Rao (1981) discussed several A previous paper (Fay 1984) established 

proposals to extend the jackknife to stra- through a constructive proof the existence 
tified samples, with the conclusion that 
the successful extensions would require of replication methods to represent a wide 
fractional reweighting of observations in class of variance estimators. This sec- 

some applications. Several researchers tion further generalizes the constructive 
have previously recognized this potential 
redefinition of replication to include aspects of the previous proof. 
fractional reweighting; for example, Efron Suppose the vector x w = {wixi) repre- 
(1982) describes this class as "resampling sents the weighted sample observations on 
plans" and recounts some of the earlier 
historical developments, a characteristic x i in a sample s, where 

"Replicate weighting" refers to repre- the weight w i for sample case i may depend 
senting the replication method through on s but not x i. The usual estimate of 
associating replicate weights (weights 
used to form the replicate samples) or total, based on the weighted sum of the 
replicate factors (multipliers of the sample characteristics, may be represented 
original weight to obtain replicate by l'Xw, where 1 denotes a vector of l's. 
weights) with the characteristics of the 

Virtually all of the familiar variance sampled cases. This representation has 
the effect of embedding as data in a file estimators for the variance of l'x w may be 
almost all necessary information for the expressed as 
calculation of sampling variances. Dippo, 
Fay, and Morganstein (1984) discussed a 
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Var*(l'Xw) = Xw'C(s)x w (2.1) with b r = Ar Cr-2- The vector fr repre- 

sents replicate factors by which to multi- 
where C(s) is a symmetric matrix that may ply each respective weight in w, that is, 
depend on s but not the values of x. For- 

Wir = fir wi- Each eigenvector is 
mula (2.1) may be adapted to estimate the involved in exactly one replicate in this 

covariance of any two weighted sums, l'x w approach. With this choice, the expecta- 

and l'Yw, tion operator in (2.2) is no longer 

Cov*( 1 ' x w, 1 ' Yw) = x w' C (s) Yw- required, that is, 

By extension of the previous definition 

(Fay 1984), we may define a ~ resampling plan of r=l 

order k corresponding to C (s) as a set of 

replicate weights w r = (Wir), r=l,...,k, To show (2.4), note that 

which depend on s and are possibly random k 

variables, and a set of coefficients, C(s) = 7. ~r V(r) V(r) 

br(S), possibly also depending on s, such r=l 

that : 

k 
br(Wr'X - w'x) 2 = Xw,C(S)Xw 

k 
E{7. br(s) (Wr'X - w'x) 2} = Xw,C(S)Xw 
r=l 

(2.2) 

(2.4) 

Substituting (2.3) into the left-hand side 

of (2.4) , the question reduces to 

k 
Ir Cr-2 (Cr V(r)' Xw) 2 = 

r=l 
k 

7, Ir Xw' V(r) V(r)' xw, 
r=l 

The expectation operator on the left-hand 

side of (2.2) refers only to any randomi- 

zation of the replicate weights; 

consequently, (2.2) is a statement condi- which in fact is an equality. This is a 

tional on the realized sample, s. In stronger result than the more general 

application, however, interest is in (2.2). On the other hand, because the 

strategies for definitions of resampling relative practical importance of the 

plans that can be defined for all or respective eigenvalues in their contribu- 

almost all s. tion to the overall variance is often 

Theorem 1 of Fay (1984) established unclear, this method should not be used 

the existence of plans satisfying (2.2) unless all k replicates are included or a 

for any C(s). Furthermore, if C(s) is random selection of replicates is carried 

positive definite or semi-definite, plans out. In other words, a variance estimate 

of orders as low as k=l are possible with based on an arbitrary subset of the k 

an appropriate choice of b I. Of course, a replicates may prove unsatisfactory. 

single replicate-weighting of the data, Note that the fact that c r in (2.3) 

even if (2.2) holds, would not give a denoted an arbitrary set of positive con- 

satisfactory variance estimate, but the stants provides great flexibility in 

significance of the theoretical result was choosing the replicates to meet other 

to show how replicates could be formed desired properties, for example, that all 

so that the b r were equal, the b r be equal. 

Other general methods to construct Another replication option resembles 

these generalized replicate weightings are half-sampling replication, in the sense 

important in application. If the rank of that each eigenvector participates in each 

C(s) is k, let ~I, "-', ~k be an enumer- replicate, just as half-sample replication 

ation of the non-zero eigenvalues of C(s), selects one of two halves from each of the 

including multiplicities, and v(1), ..., strata in forming each replicate sample. 

V(k ) a corresponding set of orthonormal Suppose all non-zero eigenvalues are posi- 

eigenvectors. One possible resampling tive. Let H = {Hmn } be a Hadamard matrix 

plan of order k is given for any arbitrary of order k'~k with 

set of c r > 0, r=l,...,k, by k' 
Hmn Hm, n = 0 

fr = i + c r V(r ) (2.3) n=l 
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for all m~m'. Then known positive probability of selec- 
k tion, thus enabling the use of the Yat- 

fr = 1 + c ~ Hmr ~½ V(m ) es-Grundy variance estimator. The more 
m=l usual forms of replication do not prop- 

erly represent this variance estimator. 
provides k' replicate factors with b r = 2. After the sample had been selected, a 
i/(k' c2). Again, this choice satisfies sample reduction was implemented. The 

(2.4). Unlike (2.3), however, this 

approach could be expected generally to 

yield reasonable estimates if it became 

necessary to employ only a subset of the 

initially constructed replicates, since 

each eigenvector appears in each repli- 

cate. 

3. Application to the 1985 Panel of SIPP 

The Census Bureau's program of current 
demographic surveys includes the Current 
Population Survey, the American Housing 
Survey, the National Crime Survey, the 

reduction in non-self-representing 
areas was accomplished through a random 
selection of whole strata for removal. 
Again, joint inclusion probabilities 
were known, but incorporation of the 
corresponding Yates-Grundy variance 
estimator to measure the resulting bet- 
ween-strata variance represented 
another layer of complexity. 

3. Ernst, Huggins, and Grill (1986) devel- 
oped a new weighting of between and 
within components of variance to be 
used in conjunction with the Yates- 
Grundy estimator. Special adaptations 
of the replication approach were 
required to integrate the results of 
this research. 

National Health Interview Survey, the Con- Each of these issues poses separate pro- 
sumer Expenditure Survey, the Survey of blems in developing a suitable replication 
Income and Program Participation, and oth- approach. For clarity, each issue will be 
ers. As part of the redesign of these addressed separately first, followed by a 
surveys following the 1980 census, a discussion of the integrated solution to 
replicate weighting approach was intro- the overall problem. Although the cre- 
duced. In most instances, the replication ation of replicate weights for the SIPP 
approach represented a relatively simple was a complex process, the resulting 
adaptation of half-sample replication, weights were consistent with (3.1) . A 
substituting replicate factors of 1.5 and total of k=100 replicate factors were 
.5 in place of factors 2 and 0 implicit in derived, although use of a smaller number 
half-sample replication. Variances may be of factors may be adequate for many appli- 
computed from the formula: cations to the SIPP. 

k 3.1 Durbin Selection of PSU's Suppose 

Vat* r(Y(0)) = (4/k) ~ (Y (r) -Y (0) ) 2 that a scheme of sampling without replace- 

r=l ment draws samples of fixed size n Z 2, 

(3.1) YI, "--, Yn, such that each Yi's uncondi- 

where Y(0) represents the estimate of a tional probability of selection, ~i, is 
characteristic based on the original known, as is each unconditional joint 
weights and Y(r) represents the estimate inclusion probability, ~ij, with ~ij > 0 
using the replicate weights for replicate 
r. Note that Y(0) is used in (3.1) to for all i~j. For simplicity, assume that 
denote not only weighted totals, as in the each Yi is measured without sampling 
previous section, but also smooth non- error; Section 3.3 discusses the effect of 
linear functions of weighted totals, such 
as means, ratios, and many descriptive sampling error in the measurement of the 
statistics defined for the weighted Yi's from further stages of sampling. 
sample. Formula (3. i) resembles one of Then, 
the usual variance estimators from half- Y* = ~ Yi/~i (3.2) 
sample replication, with the adjustment by i 
the factor of 4 arising from the use of .5 
and 1.5 in lieu of 0 and 2.0. For most 
current surveys, k=48 replicates were is an unbiased estimator of the population 

created, total. An unbiased estimator of its var- 
The sample design for the 1985 Panel of 

iance, Var*(Y*), is given by the Yates- the Survey of Income and Education 
includes several challenging or complex Grundy variance estimator, 
features that affect design-based estima- 
tion of variance. Briefly, these are: Var*(Y*) = ~ (~i~j/~ij-l) (Yi/~i-Yj/~j)2 
1. The use of a Durbin-Sanford method to i<j 

select two primary sampling units (3.3) 
(PSU's) within most of the non-self- 
representing strata. This scheme to Durbin (1967) proposed a sampling scheme 
select two units with probability pro- 
portional to size, without replacement, satisfying these conditions, with the 
gives each possible pair of units a advantage that the leading coefficient 
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(~i~j/~ij-l) in (3.3) is nonnegative. Cochran method (Cochran 1977: pp. 266- 

Negative values for this coefficient can 267). For example, in the instance of 

contribute to instability in (3.3) as a groupings of four strata, one of the six 

variance estimator, possible pairs of strata was selected at 

In the redesign of the SIPP following random with equal probability. From the 

the 1980 census, most of the non-self- selected pair, one stratum was retained 

representing areas of the country were with probability proportional to size and 

divided into strata from which n=2 primary the other dropped. If Ps represents the 

sampling units (PSU's) were selected measure of size for stratum s, then the 

according to Durbin's scheme. Application probability of retention in sample, ~s, is 

of (3.3) to this problem therefore takes given by: 

the form: = 1/2 + 1/6 Ps ~ (Ps + Pt) -I 
~s 

t~s (3.5) 
Var* (Y*) = 

Although the original Hartley-Rao- 

(ZisZjs/~ijs_l) (Yis/~is_Yjs/~js)2, Cochran method employed a conditional 
s 

(3.4) weighting of the sampled data given the 

pairing, weights for the SIPP were based 

where Yis and Yjs represent the totals for on the unconditional probability given by 

the two distinct PSU's in stratum s. Sim- (3.5) . Hence, the Yates-Grundy variance 

ilarly, ~is represents the probability of estimator, (3.3), is again appropriate for 

selecting PSU i within stratum s, etc. this problem. In this instance, however, 

(Again, issues of within-PSU variance are the summation in (3.3) was over three 

deferred to Section 3.3.) The realized pairs of retained strata for each grouping 

sample for the SIPP satisfied the condi- of four from which one stratum had been 

tion that the factor (~is~js/~ijs-l) was dropped. Each such grouping yields two 

less than 4 for each s. algebraic degrees of freedom in (3.3) , 

When (3.4) is given the general repre- since (3.3) has a zero eigenvalue corre- 

sentation (2.1), then each non-zero eigen- sponding to the vector with three identi- 

value of C(s) corresponds to a stratum, s, cally weighted stratum totals, Ys/~s. 

and takes the value 2(~is~js/~ijs-i ). The The joint inclusion probabilities 

corresponding eigenvector v whose compo- required in (3.3) are given by 

nents are O's outside s and 2 -% and-2 -% I 

within s corresponding to Yis and Yjs- ~st = 1/6 {i + Ps((Ps+Pu)-l+(Ps+Pv) -I) 

Application of (2.5) with bk' = 4 gives 
+ Pt((Pt+Pu)-l+(Pt+Pv) -I) ) (3.6) 

replicate factors within each stratum 

weighting one PSU by l+ (~is~js/~ijs-l) ½/2 where t, u, and v denote the remaining 

and the other by l-(~is~js/~ijs-i )½/2. strata in the grouping. Letting gst = 

Further comments on the exact form of the (~s~t/~st - i), the matrix C(s) corre- 

replicate factors appear in Section 3.4. sponding to retained strata s, t, and v, 

3.2 Sample Reduction in Non-Self- takes the form: 

Representing Areas After selection of the 

PSU's in non-self-representing areas, gst+gsu -gst -gsu 

reductions in the budget forced cuts in C(s) = -gst gst+gtu -gtu 
the sample sizes. The reductions in non- 

self-representing areas were implemented -gsu -gtu gsu+gtu 

primarily through random reductions in 

strata. Most of the strata were grouped In the instance of four strata of the 

into sets of three or four strata, and a same size, gst = 1/8 for each s and t. In 

single strata was selected randomly from turn, C(s) would consist of a matrix with 

each group for elimination. Both of the i/4 on the main diagonal and -1/8 else- 

sampled PSU's within each eliminated where. One eigenvector (1, i, i)', has 

stratum were dropped from the sample. The eigenvalue 0, but the eigenvalue 3/8 has 

selection was based on the Hartley-Rao- multiplicity two. Possible corresponding 
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eigenvectors include (I, -i, 0)' and of stratum s; ~ijs, the joint inclusion 

(i, I, -2)'. probabilities of PSU's i and j in stratum 

The actual eigenvalues and eigenvectors s, conditional on inclusion of stratum s; 

of C(s) for each reduction of four to Yis, the weighted estimate of a character- 

three strata were computed with a public- istic from PSU i in stratum s; and 

domain version of the EISPACK routines. Var(Yis), an estimate of the within-PSU 

The problem of reduction of three strata variance of Yis- Then, an estimate of the 

to two was handled in a similar manner, variance of the weighted estimate, Y*, 

but the single eigenvector of interest was over this group of strata is given by 

a scalar multiple of (i, -i)', so that 

numerical methods were not required. 

3.3 Incorporation of Estimates of Within 

Variance in the Yates-Grundy Variance 

Estimator The estimator (3.3) is appro- 

priate when primary units are measured 

without sampling error. In the applica- 

tion to the SIPP, however, the Yi/~i 

represent weighted totals for the primary 

sampling units based on further stages of 

sampling within the PSU. To extend (3.4) 

Var* (Y*) = 

Z { (~isZjs/~ijs -I) (Yis/~is-Yjs/~js)2 
s 

+ fisVar *(Yis/zis) + fjsVar *(Yjs/zjs) } 

( 3 . 7 )  

where Var*(Yis/~is ) represents an unbiased 

estimate of the within-PSU variance of the 

weighted estimate Yis/Zis. A possible 

Var*(Y*) = ~ (~s~t/~st -I) (Y*s+-Y*t+)2 + 
s<t 

~[ 1 - ( ~ s  s~t(~s~t/~st-l))l 

[ (~is~js/~ijs_l) (gis/~is_Yjs/~js) 2 

+ fisVar *(Yis/~is) + fjsVar *(gjs/~js)] 

(3.8) 

where the fis appeared earlier in (3.7) 

and summations are only over elements in 

sample and Y* , s+ denotes the weighted sum 

over stratum s. Separate eigenvectors are 

associated with each of the terms in (3.8) 

involving Y's: either two eigenvectors 

corresponding to the first term of (3.8) 

for reductions of four strata to three or 

one eigenvector otherwise; a separate 

eigenvector within each non-self repre- 

senting stratum for the between-PSU compo- 
choice for fis, 1 - (~is~js/~ijs-l), gives nent, and eigenvectors representing the 

an unbiased variance estimate, but fis can within-PSU variance, which was estimated 
take negative values in some circum- 

by dividing each PSU into appropriate 
stances. Ernst, Huggins, and Grill 

half-samples. 
(1986), proposed a modification to (3.7) A few strata included in the SIPP 
that is also unbiased but which avoids sample were represented by a single PSU. 
negative fis- These researchers furnished Such strata were paired and an eigenvector 

corresponding to a collapsed-stratum esti- 
the actual values of these factors to be mator, with a single degree of freedom, 
used in this application to SIPP. was created. Variance estimation within 
3.4 Replication Strategy The previous self-representing PSU's was also compara- 

tively simple, and most were divided into 
sections discuss contributions to total a pair of half-samples. Additional half- 
variance from the sampling of strata, the samples were created for the largest PSU's 
sampling of PSU's within strata, and fur- by dividing them into substrata for pur- 
ther stages of sampling within PSU's, that poses of the variance calculation. 

All together, there were several 
occurred in the majority of non-self- hundred possible degrees of freedom, sub- 
representing areas in the SIPP. Consider stantially more than intended to be repre- 

sented by replicates. Analogous situa- the variance over one set of either four 
tions frequently arise in application of 

or three strata grouped for the reduction replication when many more potential 
described in Section 3.3. Let m s repre- degrees of freedom may be present than are 
sent the unconditional probability of required to derive a reasonable estimate 

of variance. When the degrees of freedom 
inclusion for stratum s; ~st, the joint present substantially exceed the number of 
inclusion probabilities for strata s and replicates to be produced, creation of 
t; ~is, the inclusion probability for PSU replicates through independent randomiza- 

tion results in only modest losses in 
i in stratum s, conditional on inclusion 
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efficiency. Rather than forgo the bene- the eigenvectors will divide simply into 
fits of partial balancing, however, a those associated with variation due to 
Hadamard matrix (for example, Wolter 1985) missingness and those associated with the 
of order I00 was employed, and a different sample design. Consequently, replication 
approach was used, namely to employ the methods of this form represent a simple 
notion of confounding in experimental and direct way to implement the variance 
design to associate dissimilar degrees of calculations in the analysis of multiple 
freedom. Sets of dissimilar degrees of imputations. 
freedom grouped together for assignment to Replication also appears to offer a 
each of the rows of the matrix. For likely means to extend this methodology to 
example, a row of the matrix might be problems not fully dealt with by current 
assigned to one degree of freedom from theory, including representing the effect 
within-PSU variation in a self- of the complex design on the estimation of 
representing PSU, to one degree of freedom parameters in the missing data model. The 
for between-stratum variance in another generality of replication to represent 
region, and to another degree of freedom complex variance and covariance properties 
for between-PSU variance in a third would appear to offer the flexibility to 
region. The confounding was such that not address these problems in a computation- 
only would variances of estimates for ally feasible manner. 
national estimates preserve approximately 
the full i00 degrees of freedom, but esti- 
mates for important subdomains, including 
large central cities, regions, SMA's, and 1 This paper reports the general results 
other such areas would also be represented of research undertaken by Census Bureau 
by effectively this many degrees of free- staff. The views expressed are attribu- 
dom as well. table to the author and do not necessarily 

reflect those of the Census Bureau. Wil- 
4. Multiple Imputation liam Bell provided helpful comments on an 

earlier draft. 
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research is to impute for missing values REFERENCES 
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puter software is not prepared to deal cation Methods, " Proceedings of the Section on 
easily with such complexities. As Rubin Survey ResearchMethods, American Statisti- 
and others have observed, however, it is cal Association, Washington, DC, pp. 
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