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1. What Are DEFFs? 
This is a quick and rough but broad and practical 

overview of "design effects," aimed at the many users of 
the results of sample surveys. Users are computing 
design effects more and more often, especially since the 
availability of several computing packages. This 
overview should help them to compute and to use them 
correctly- more often than now. 

Design effects have been defined commonly for 
sample means (~) in two similar ways: 

deff(~) = var(y--)/{_(1-f)s 2/n} and 
defff (~) = var(~)/{g~/n}. (1.1) 

The second definition introduces three minor 
improvements on the earlier version, a) The root 
deft(~) is used most often and it is easier to type than 
x/deft(y), b) The factor (l-f), when computed for the 
numerator, may be considered as part of the "design 
effects" and s2/n estimates variances of "unrestricted," 
simple random sampling with replacement, c) The 
factor (l-f) may be difficult to compute when the 
selection is not EPSEM (with equal probabilities). 

These minor differences and refinements should not 
be taken seriously here, because DEFFs should be 
viewed as rough measures for larger effects. Similarly 
we refrain from discussing here the factor (n-1)/n for 
computing, s2; especially when either pq/n or pq/(n-1) is 
used for S ~/n commonly for proportions ~'=p. On the 
other hand, we should distinguish the population values 
(parameters) Deft and Defff -Var  (y)/(S ~/n) from 
statistics based on sample results in (1.1). We also use 
Ste(~)- x/Var(y) and stex/(~)- x/var(~). Then DEFF 
should refer to the term and concept of "design effects." 
These sometimes also bear other names, such as 
variance ratios or factors. 

Design effects have also been formulated by analogy 
and computed for many other statistics: for aggregates 
Y =N~, for subclass means Ye and their differences (Y'c" 
Yb), for (partial) regression and correlation coefficients 
b~, rr~, and other analytical statistics. Writing b for 
other statistics generally, 

deft a (b) -- var(b)/srsvar(b). (1.2) 
The simple random variances in the denominator are 
derived mathematically in classical statistics under 
assumptions of independent selections (I.I.D.). For the 
variances of the numerator several good methods are 
now available; chiefly a) linearization, or delta or 
Taylor methods; b) balanced repeated replications 
(BRR); c) jackknife repeated replications (JRR); d) 
and perhaps bootstraps. 

The denominator is computed from the n sample 
cases as if" they were selected with SRS (section 6). This 
is a relatively straightforward method for measuring the 
effects of clustering primarily and of stratification 
secondarily in EPSEM selection designs. The effects of 
weighting need separate attention (Section 7). 
2. When DEFFS Are Unnecessary 

First, and most important, note that DEFFs are 

needed only for "inferential" statistics like var(b), but not 
at all for "descriptive" statistics, like b or ~. Then for a 
better view of limits for using DEFFs, note four 
situations when DEFFs are no_.__!t necessary, a) When 
selections are actually made with simple random 
selection (SRS), D E F F = I  by definition. However, 
judging what may be accepted as "approximately" SRS 
requires modelling and experience, to avoid pitfalls and 
bad surprises. 
b) Variances can be used directly, without referring to 
DEFFs, for probability intervals, like y+t~ste(~), when 
variances are self-sufficient, not requiririg pooling or 
averaging. This can happen when"  1) the survey 
statistics ~" (or b) are few, so that all the ste(~) = 
x/var(y) can be computed and presented; and 2) the 
values ste(y) possess adequate precision to be useful: 
with sufficient degrees of freedom, numbers of primary 
sampling units (PSUs), "ultimate clusters." 

m 

c) Coefficients of variation CV(~') = Ste(~)/Y can be 
useful for their direct relationship to probability 
statements. However, their "portability" for averaging 
is limited because they are inversely related to v/ft. 
These ratios do remove the units of measurement, which 
is their chief virtue. Thus, they are good for direct use 
for each statistic, but not for indirect uses for other 
statistics. Furthermore, their utility is limited to 
nonnegative variables. Moreover, many (or most?) 
survey results are based on a few, or a few dozen PSUs, 
and their variances lack adequate "measurability." Also, 
the large number of survey statistics impedes separate 
computation, presentation, and comprehension of 
standard error for all of them. 
d) For periodic samples, based on the same design, 
variances (or coefficients of variation) for specific 
statistics may be averaged directly over periods, without 
going through DEFFs, and such averaging may 
overcome the lack of sufficient precision for each period 
(but high correlations between periodic samples may 
interfere). 
3. When DEFFs Are Needed 

Very often the selections for surveys are not SRS, and 
then DEFFs are needed for pooling or averaging 
sampling errors, for several reasons. We discuss here 
why they are necessary, and later (4.5) why they may not 
be sufficient for external uses. a) The precision of the 
variance estimates, var(y) and var(b), may be too low in 
many clustered samples; the numbers of primary 
sampling units (PSU's, ultimate clusters, degrees of 
freedom) are too few for good "measurability." 
Sampling theory, by concentrating on "unbiased" and 
asymptotic variances, neglects this "dirty" topic. For 
example, a sample of 64 PSU's in 32 pairs yields roughly 
32 degrees of freedom and even less [Kott 1989]. 
Hence the coefficient of variation of sampling errors and 
of deffs will be over 1/x/64 = 1/8 or 12.5 percent; often 
not good enough alone. 
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b) There are too many statistics on most surveys to 
permit separate computations and presentations for the 
sampling errors of all those statistics. Most surveys are 
multipurpose for many survey variables. Furthermore 
for each of those survey variables, the statistics are 
needed not only from the entire sample for the overall 
target population, but also from subclasses for many 
kinds of domains, also for subclass comparisons, and 
often for other analytical statistics. Surveys are 
multipurpose in several dimensions. 

For all survey variables it is necessary to compute 
their distinct values of deft 2 from the entire sample 
because they can differ greatly. But these overall deft ~ 
will not be sufficient, because deft 2 can be greatly 
different and lower for subclasses and analytical 
statistics. 
c) Beyond those two needs "internal" to the surveys, 
sampling errors are also used "externally," in four ways. 
First, defts can be readily used for periodic surveys. 
Second, the sampling office may "borrow" for the other 
surveys the Deffs or the derived Rohs (as we see in 
Section 5), in order to save computations. Third, Deffs 
and Rohs are also needed for designing future samples 
by the same office. And fourth, the "borrowing" of 
values of DEFFs and Rohs by other institutions is more 
common than proper and admitted. 

Thus DEFFs and Rohs serve our needs for averaging 
either a) for greater precision, or b) for economizing on 
computations or presentation, or c) for borrowing for 
other survey samples. 
4. Where DEFFs Are Not Sufficient 

Having already noted in two sections the situations 
when DEFFs are necessary and when they are not, we 
now list four situations when they are not sufficient and 
must therefore be modified. 
a) For any specified survey variable the DEFFs will be 
different for subclasses. For "crossclasses" the DEFFs 
tend to approach 1 asymptotically, and even faster for 
differences of subclasses (section 5). For analytical 
statistics, like regressions, the situations are more 
complicated. 
b) For weighted samples, ordinary computations of Deft 2 
would combine the effects of weighting with design 
effects due to clustering and stratification. These would 
often be confusing, and we shall note methods for 
disentangling the effects of weighting from the other 
design effects in section 7. 
c) The values of deft z combine the several variance 
components of clustering and stratification that can arise 
in multistage sampling. These overall, rough deft 2 
values yield the convenience and liberty needed for 
sampling errors of multipurpose surveys. The price of 
that liberty is eternal vigilance in the form of 
methodological checks of those components when 
occasions permit. 
d) Those rough, approximate values of deft 2 and roh 
must also neglect some technical, theoretical factors - 
such as (n-1)/n, unequal clusters, sampling with/without 
replacement, etc. Such neglect may be necessary for 
their simplicity, portability, volume, presentation. 
5. Subclasses: from DEFFs to ROHs 

Portability was our chief reason for moving from 
variances to DEFFs. But we need even more 
portability, because deft 2 combine ~ o  distinct factors, as 

seen in deft 2 for clustered samples: deft 2 = 1 + roh (-b- 
1). From this we_may separate the effects of the 
average cluster size b from the average homogenei_.w of 
elements within primary clusters: roh = (deff-1)/(b-1). 
I coined the name ROH (ratio of homogeneity) instead 
of the classical rho (p) for this rough measure of 
homogeneity within primary (alias "ultimate") clusters_= 
which are usually stratifie_d and of unequal sizes. Thus b 
denotes average sizes b = n/a  of n elements in a 
primary ("ultimate") cluster; and moderate variations of 
size have been shown to have only trivial effects. 

Values of roh yield the portability needed often, and 
especially for three important tasks. First, we nee_d 
these for "crossclasses," when the average cluster sizes b e 
= ne/a are often much smaller than b. We then may 
use deft~ from the overall mean for deff e for the 
subclass: deff e = 1 + roht(be-1). This_may be improved 

r o  perhaps with deff e ~ 1 + ~ h e (be-1), where kg is 
slightly greater than 1, say 1.2, for subclasses that tend 
to be unevenly distributed in clusters, such as 
socioeconomic subclasses ( ) .  

Second, we may also use the roh t values to design 
future samples_from the same clusters, but with different 
average sizes b e = r~/a. 

Third, we have often used the relationship for 
differences of subclass means (Ye " Yb): 

/n e + ~/ r~  < var(~" e - Y'b) < var(ye) + var (Yb)" 
Thousands of computations have shown that the 
subtraction of positive covariances tends to reduce the 
effects of clustering, but not to eliminate them 
altogether. 
6. Computing the Values of deft and s 2/n 

For the estimates deft2(~) = var (y)/(s2/n) there 
exists a formidable literature for computing var(~), too 
large and varied to be summarized here. On the other 
hand, values of s2/n = ( ~  - ~) / (n-1)n  are computed 
from the n cases from complex clustered and stratified 
samples, with little justification either in the literature or 
in the minds of the computers. Fortunately, justification 
seems both simple and ample. 

Define ~ = r . ~ / n - ~  = ~(1-1/n), and then note that 
Exp(~) = Exp tg~ /n -~]  
= ~ Y T f N - _ E x p . ]  
= [~Y,/N-Y'~] - [Exp(~)] + y2 
= o" - Var(y). _ _ ( 6 . 1 )  

This justification relies on E ~ ( y )  = Y, Exp( r~ /n )  = 
Y~i/N, and Exp(~ - . ,  = Var(y). These 

expectations are unbiased for any selection method that 
uses fixed sample sizes n and equal probabilities of 
selection n/N. Usually sample sizes n are not fixed, and 
often the sample selections are unequal and weighted. 
However the biased estimates from large samples are 
consistent enough for practical purposes. 

From the above we deduce that-s 2 = ~ + var(~) or 
-s 2 = ~'2(l+deft2/n)will give adequate estimates; and 
even s2~.~  (1 + I /n)  will suffice when deft 2 is near 1. 

For analytical statistics there exist analogous but more 
complex methods. The values of var(b) can be 
computed with either Taylor methods or with repeated 
replications. The srs variances for the denominator of 
deft: (b) are often yielded by canned computer programs. 
7. DEFFs for Weighted Means 

This problem, mostly overlooked and neglected, 
because it is difficult to treat neatly, deserves at least 
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brief attention even here. How should deft2(y) be 
computed for weighted means ~ = r.ki.yi/r.l~? The 
weights may represent unequal selection'prob/tbilities, 
response rates, or adjustments. 
a) Sometimes def~(y) = var(y)../(~/n) has been 
computed, with both var(y) and ~ based on proper 
weights. This has several deficiencies, because both 
var(y) and def~ (y) confuse the effects of weighting with 
those of clustering and stratification, whereas n does 
not'. here ~ /n estimates the variance of a self-weighting 
srs sample of n cases. This is not highly portable. For 
example, increases due to weighting tend to persist 
undiminished, whereas effects due to clustering tend to 
disappear from small crossclass_es. Also I have seen two 
papers with roh = (deft2-1)/(b-1) > 1, absurd results 
due to weighting causing too large def~(~). 
b) It would be possible to compute def~(~) = 
varu(y)/(~/n ) with both varu(~ ) and ~ / n  unweighted, 
and thus the effects of weighting excluded from the 
ratio. However, this would yield def~(~') for an 
artificially distorted population, which could differ from 
DEFF for the target population. It would also add the 
burden of computing the unweighted var u (y). 
c) A preferred procedure may be to compute def~ (~) = 
defl~(y)/(1 + L), when the effects of "random" weighting 
can be expressed as the increase by (I+L) of the 
variances - in the decrease by (1 +L) of the effective 
sample size. The effects of weights on DEFFs clearly 
deserve more thorough treatment. 
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