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1. Introduction 

The 1985 Continuing Survey of Food 
Intakes by Individuals (CSFII) is in many 
ways a typical complex multivariate 
survey. The results of a one-day survey 
of food intakes by women and children has 
been converted by the Human Nutrition 
Information Service (HNIS) into a data 
set that brakes down individual food 
consumption into measured intakes from 
among 60 food groups and 28 nutrients 
(not all mutually exclusive). This 
paper will focus on a estimated of mean 
intake (whether for a food group or a 
nutrient doesn't matter). 

HNIS has calculated many different mean 
intake estimates from the 1985 CSFII. 
All of them take the form of the ratio 
estimator. Variances were estimated 
using the linearization (Taylor series) 
formula inherent in the SESUDAAN (Holt 
(1977)) and PC CARP (Fuller et al. 
(1986)) programs. Under mild conditions 
this formula returns asymptotically 
unbiased variance estimates when with 
replacement sampling is used at the first 
stage of random selection. Unfor- 
tunately, the number of primary 
sampling units (PSU's) in the CSFII is 

finite. As a result, the variance 
estimators are biased. Moreover, they 
themselves have variances that can 
be problematic. This paper proposes a 
means for assessing the bias and variance 
of a linearization variance estimator. A 
formula for determining the effective 
degrees of freedom is introduced that is 
more reasonable than the naive approach 
conventionally used. The theory is then 
applied to the 1985 CSFII. It turns out 
that the variance of the variance 
estimator is generally a more troublesome 
problem than the bias. 

The literature contains many articles 
on variance estimators for complex 
samples. Rao and Wu (1985), for example, 
contains a very theoretical, design-based 
treatment of the bias issue. Empirical 
works, like Frankel (1971), also address 
the stability (variance of the variance 
estimator) and coverage issues. 

This paper is constructed in such a way 
that it begins at a very basic level and 
does not build onto the previous 
literature. Nevertheless, the reader 
should be aware that such literature 
exists. Two good sources of many of the 
relevant articles are Rust (1987) and Rao 
and Wu (1987). 

2. The Ratio Estimator 

Suppose we are interested in estimating 
the per individual use of some food or 
nutrition item among a certain domain of 
individuals called a cell. Let k=l, ..., 
K denote the strata, M k be the population 
cell count in stratum k, and Yk be total 
use of the item of interest by stratum k 
cell members. Let Y = Z ~k, and M = 

M k. The value R = Y/M Is what we want 
to estimate. 

For simplicity, only the two sampled 
PSU's per stratum case will be treated 
here. It is not difficult, however, to 
extend the analysis to more general 
situations (see the appendix. Let Ykl 
and Yk2 be the design unbiased estimates 
of Yk derived from each of the two PSU's 
sampled from k, and let mkl and mk2 be 
analogously defined estimates of M k. The 
nearly design unbiased estimator for R 
that HNIS uses is the ratio: 

~" (Ykl + Yk2 ) 
r 

Z(mkl + mk2) 

The design variance (more precisely, 
the design mean squared error) of r is 
(approximately) 

K 2 

Z Z (Ykj - Rmkj) 
E[ (r-R) 2] = E{[ ]2) 

Z Z mkj 
K 

Y[var(dkl) + var(dk2) ] 

4M 2 
(i) 

where dk~ = Yk' - Rmk'" This makes use 
of the f~ct that all ~he PSU were 
independently drawn, so that all the dkj 
are independent under the sampling 
design. 

If M and R were known, then a design 
unbiased estimator for the right hand 
side of (i) would be 

K 

~.(dk I _ dk 2)2 

4M 2 

since E[(dkl - dk2) 2] = var(dkl ) + 
var(dk2 ) . Of course, M and R are not 
known and have to be estimated from the 
sample. 

The estimators for M and R that are 
used in the linearization formula are m = 
Z Z mk~/2 and r. The resultant variance 
estimator is 

201 



K 
(dk I, _ dk 2,)2 

, (2) V D = 
4m 2 

where dkS' = Yk5 - rmkS" It can be shown 
to be nearly degign unbiased when the 
coefficients of variation of m and r are 
small. 

3. A Model-Based Bias Analysis 

One way to assess the damage caused by 
using r and m in place of M and R in the 
calculation of v D is to assume a model 
and evaluate the model bias of v D as an 
estimator of the model variance of r. 
The simplest model is 

Ykj = "mkj + ekj, (3) 

where the e~5 are independent random 
variables wlth mean zero. We will assume 
that E(R) = ~ and E[(R-~) 2] = 0, where 
denotes model expectation. This means 
that the population is so large that the 
model parameter, ~, and the finite 
population value, R, are virtually 
identical. In addition, we will assume 
that the population of PSU's is so large 
than no PSU is sampled more than once. 

The model in (3) is somewhat simplistic 
and may be doomed to failure (most 
critically, ekl and ek2 can be cor- 
related). Nevertheless, it is adequate 
for our purpose, which is presently to 
demonstrate the potential for negative 
bias in v D. 

Given the model in (3), r is unbiased. 
The model variance of r is (approxi- 
mately) 

K 2 

Z Z(~mkj + ekj) 
E[(r-~) 2] = E{[ _ ~]2) 

1 

4m 2 

T. T. mkj 

X ~E(ekj2 ). (4) 

Before we can evaluate the VD, we need 
to re-express dkj ' as 

dkj' = Ykj - rmkj 

K 2 

~. Z Yk'j' 
= Ykj - mkj 

Z Z mk, j , 

Z Z ek, j , 
= ekj - mkj. 

Z Z mk, j , 

The model expectation of (dkl' - , 2 
is then (after much manipulation) dk2 ) 

2 2 
[ (dk l,_dk 2,)2] = E(ekl ) + E(ek2 ) 

- [E(ekl 2) - E(ek2 2) ] (mkl - mk2)/m 

1 K 2 
+ --- ~. ~. E (ek, j ,2) (mkl _ mk2) 2 

4m 2 k'=l j'=l 

(5) 

By putting together (2), (4), and (5), 
the model bias of v D can be seen to equal 

E {VD-E [ (r-y) 2 ] ) = 

1 K 
Z [E(ekl 2) - E(ek2 2) ] (mkl - mk2) 

4m 3 
(6) 

1 K K 2 
~ ~. T. E (ek, j ,2) (mkl _mk2) 2, 

16m 4 k=l k'=l j'=l 

which is no simple matter to evaluate. 
Assuming that the model variances of the 
e~5 are proportional to the mk5 helps 
simplify matters considerably ~if all 
cell members had independent and iden- 
tically distributed behavior and the 
sample were self weighting, this rather 
heroic assumption would be strictly 
true) . 

Let E (ekj2) = cmkj " Consequently, 

c K 
E{VD-E[(r-~)2]} = Z(mkl - mk2)2. 

8m 3 

The relative model bias of v D (since, 
from (4), ~[ (r-~)2] = c/(2m)) is then 

1 K 
RMB(VD) Z(mkl - mk2)2 

4m 2 

y. (mkl-mk2) 2 

4 (Zmk) 2 

T var (mk) 

(Zmk) 2 
(7) 

where m k = (mkl + mk2)/2 is the estimated 
values of Mk4 and var(mk) = 
Z~(mk~ - mk)'/2 is the estimated value of 
t~e d~sign variance of m k. It can be 
shown that equation (7) also applies 
(with an appropriately redefined var(mk)) 
when there are n k > 2 sampled PSU's per 
stratum (see the appendix) . 

The right hand side of (7) can actually 
be calculated to determine the relative 
bias of v D under the simple model in (3) 
with E (ek~ 2) = cmki. Even though this is 
may not b~ the tru~ measure of the 
relative bias of VD, one should none- 
theless be wary of using v D when RMB(VD) 
is not small -- say not 5% or less. 
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With or without ~(ek52) = cmks, 
equation (6) tells us that the ~odel 
variance of v D will have only a small 
model bias when either: (i) mkl - mk2 is 
relatively small for all k, or (2) there 
are a large number of PSU's. 

4. Stability 

We now turn to what in practice may be an 
even more important issue than bias -- 
the variance of v D. Even if v D were 
unbiased, it is possible that its 
instability could impair the usual 
coverage properties (that is, whether one 
has 95% confidence that the real R is in 
the range r ± 2JVD). 
In this section, we will assume not only 

that the yk ~ satisfy (3) and are indepen- 
dent with ~eki2 ) = cmki, but also that 
they are normally distrlbuted (which 
makes 6(eki 4) = 3c2mki2). Since the Yk5 
are inherently weighted aggregates, the ~ 
normality assumption may not be too 
unreasonable. 

We simplify the exposition further (and 
only marginally effect the analysis) by 
assuming m k = mkl = mk2 for all k. As a 
result, v D can be expressed as 

K 

Z (ekl - ek2)2 
V n = . . . . . . . . . . . . . .  

4 (~.mk) 2 

The model expectation of v D is (from 
(4)) c/(2Z mk) . Its model variance is 
then 

E { [VD-~ (VD) ]2 } = 

K K 

~ (ekl 2 - 2eklek2 + ek22 ) - Z 2cmk) 
]2} 

4 (~.mk) 2 

K 2 
~. {y. ~[(ekj2 - cmk)2]+4E(ekl2ek22) ) 

1 6  (~.mk) 4 

K 
c 2 Z mk 2 

2 (Zmk) 4 ' 

since E[ (ekj2-cm k) 2] = 2c2mk 2. As a 
result, the relative model variance of v D 
is simply 

RMV(VD) = 2 Z mk2/(Z mk) 2. (8) 

It can be shown that when an n k is 
greater than 2, the corresponding mk 2 in 
the numerator of (8) gets divided by 
n k - 1 (see the appendix). 

If all the m k were equal, then the RMV 
of v D would be 2/K (this assumes two 
sampled PSU's per stratum). Note that 
the conventional variance estimator, S 2, 

for the mean of K+I independent normal 
variates also has a relative variance of 
2/K. Consequently, v D is very similar to 
a chi-squared random variate with K 
degrees of freedom. 

What if the m k were not all equal, 
which is very likely to case? Since a 
chi-squared random variate with d degrees 
of freedom has a relative variance of 
2/d, it seems reasonble to call 2/RMV 
the effective degrees of freedom for v D 
(since RMV = 2/d implies d = 2/RMV). It 
can be shown that this number is never 
greater (but often less) than K. 

When constructing confidence intervals 
based on ~VD, it obviously preferable to 
use a (perhaps interpolated) t-distri- 
bution with 2/RMV degrees of freedom 
rather than a standard normal distri- 
bution. This t-interval (in other 
contexts) has been called a Satterthwaite 
approximation. 

A common, but naive, practice is to 
treat v D as if it had K (rather than 
2/RMV) degrees of freedom. Consequently, 
we will call K the nominal degrees of 
freedom for v D (for a more general 
design, it is the number of PSU's minus 
the number of strata). 

5. Application to 1985 CSFII Data 

The indicators of the bias and variance 
of v D proposed in the text (the right 
hand sides of (7) and (8), respectively, 
modified to handle strata with more than 
two sampled PSU's) have been calculated 
for published cells from the 1985 
one-day CSFII. This was essentially a 
survey of women from 19 to 50 years of 
age and children from 1 to 5. There was 
a total of 84 cells: 

six age groups (1-3, 4-5, 19-34, 35-50, 
1-5, 19-50) , 

six age groups x four regions 
(Northeast, Midwest, South, West), 

six age groups x three levels of 
urbanization (central cities, suburbs, 

nonmetropol itan) , 

six age groups x three races (white, 
black, other) , 

six age groups x three income levels, 
(under 131% of poverty, 131-300%, 
over 300%). 

Every mean intake estimate in a 
particular cell whether for a food group 
or a nutrient uses the same variance 
estimation formula and thus has an 
identical model relative bias and 
variance (see equations (7) and (8)). 
Most of the cells have acceptably low 
indicators of relative bias -- that is, 
no more than 5%. The 14 exceptions are 
all six (unpublished) "other race" cells, 
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the three children cells both among 
blacks and in the Northeast region, and 
the 4-5 year old children cells in the 
West and in central cities. 

The indicators of the stability of the 
variance estimators tell another story. 
With 18 effective degrees of freedom, v D 
would have a model coefficient of 
variation (/RMV) of 33% and a t-based 95% 
confidence interval would be 5% thicker 
than a normal-based one. Only 36 out of 
84 cells have no less than 18 effective 
degrees of freedom. These are all six 
age cells both nationally and among 
whites, all 18 income level cells (three 
levels of income cross six age groups), 
five out of six suburban age groups 
(excluding the 4-5 years old cell), and 
women from the South in the 19-50 age 
group. 

The cell with the lowest effective 
degrees of freedom (roughly five) is 
"other race" ages 4-5. Among published 
cells, blacks ages 1-3 has roughly six 
degrees of freedom. Finally, among cells 
with acceptable biases, Northeasterners 
ages 19-34 has effectively 7.8 degrees of 
freedom. 

Table 1 displayes the relative model 
biases (in absolute terms), effective 
degrees of freedom, and nominal degrees 
of freedom for linearization variance 
estimators for all 84 cells. 

6. Discussion 

In Kott (1989a, 1989b), I proposed 
adjusting the linearization variance 
estimator v D so that it would be unbiased 
under a model. With the model under 
discussion, this means replacing v D by 

v D 
v D ' .............. . 

1 + RMB(v D) 
(9) 

The adjusted variance estimator in (9) 
has the same asymptotic design-based 
property as v D -- it is a consistent 
estimator for the design mean sqared 
error of r. Moreover, unlike v D, it is a 
model unbiased estimator for the model 
variance of r under some, albeit 
simplistic, model. 

The bias (model and otherwise) of v D 
has received extensive attention in the 
literature, as the many references in 
Kott (1989a) can attest. If we are to 
take confidence intervals and hypothesis 
tests for r based on ~v D with any 
seriousness, however,i£ is clear that 
the stability of VD merits, more active 
theoretical consideratlon. The empirical 
shortfallings of confidence intervals 
based on linearization variance 
estimators is already well known (see 
Rust (1987, pp. 42-43)). 

My own view is that our ability to 
construct meaningful confidence intervals 
based on data from complex samples is 
questionable (other forms of direct 

variance estimation face the same 
stability problem as linearization). If 
one insists on constructing them, 
however, then it is far more reasonable 
to produce Satterthwaite approximate 
t-intervals using the model-driven 
effective degrees of freedom developed 
here rather than t-intervals based on the 
nominal degrees or freedom, or worse (but 
certainly not unheard of), z-intervals 
based on the normal distribution. 

Table i. Relative Model Bias and 
Effective Degrees of Freedom 
for Particular Cells 

Cell : Rel. Effec. Nominal 
Ages Bias DOF DOF 

(%) 
. . . . . .  

All 1-3 
All 4-5 
All 1-5 
All 19-34 
All 35-50 
All 19-50 

R a c e  
W h i t e s  1 - 3  
W h i t e s  4 - 5  
W h i t e s  1 - 5  
Whites 19-34 
Whites 35-50 
Whites 19-50 
Blacks 1-3 
Blacks 4-5 
Blacks 1-5 
Blacks 19-34 
Blacks 35-50 
Blacks 19-50 
Others 1-3 
Others 4-5 
Others 1-5 
Others 19-34 
Others 35-50 
Others 19-50 

I n c o m e  
Low 1-3 
Low 4-5 
Low 1-5 
Low 19-34 
Low 35-50 
Low 19-50 
Middle 1-3 
Middle 4-5 
Middle 1-5 
Middle 19-34 
Middle 35-50 
Middle 19-50 

High i- 3 
High 4-5 
High 1-5 
High 19-34 
High 35-50 
High 19-50 

0.8 42.6 61 
1.4 36.3 61 
0.8 42.7 61 
0.4 46.7 61 
0.3 45.4 61 
0.2 49.8 61 

0.8 39.9 61 
1.4 34.5 61 
0.8 40.5 61 
0.5 44.5 61 
0.5 43.5 61 
0.3 48.1 61 
5.9 6.1 61 
7.5 8.6 61 
5.2 8.0 61 
2.9 8.7 61 
3.9 11.4 61 
2.6 10.3 61 

11.3 11.5 61 
23.8 4.9 61 
8.7 13.4 61 
8.8 8.8 61 
9.0 9.7 61 
7.5 10.8 61 

2.3 23.9 61 
3.4 19.1 61 
2.3 24.8 61 
1.5 27.1 61 
1.2 28.9 61 
1.0 31.1 61 
1.8 33.9 61 
2.7 25.9 61 
1.6 35.5 61 
0.8 41.9 61 
0.8 35.6 61 
0.6 43.9 61 

1.7 20.9 61 
4.9 19.1 61 
1.8 26.2 61 
i.i 34.5 61 
0.9 32.0 61 
0.6 38.7 61 
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Table I. (continued) 
................. 

Cell : Rel. Effec. 
Ages Bias DOF 

(%) 

Nominal 
DOF 

Region 
NE 1-3 6.3 7.6 12 

NE 4-5 11.2 6.6 12 
NE 1-5 7.4 7.4 12 
NE 19-34 2.5 7.8 12 
NE 35-50 i. 5 9.1 12 
NE 19-50 i. 5 8.6 12 
MW 1-3 1.7 12.5 15 
MW 4-5 3.2 9.7 15 

MW 1-5 1.5 12.2 15 
MW 19-34 i. 0 12.6 15 
MW 35-50 2.0 ii. 3 15 
MW 19-50 0.9 12.4 15 
SO 1-3 2.5 16.2 21 
SO 4-5 2.2 14.4 21 
SO 1-5 1.4 17.1 21 
SO 19-34 1.0 18.5 21 
SO 35-50 0.9 17.6 21 
SO 19-50 0.6 19.3 21 
WE 1-3 4.2 8.2 13 
WE 4-5 7.9 7.2 13 
WE 1-5 5.0 8.3 13 
WE 19-34 2.0 9.9 13 
WE 35-50 I. 2 8.6 13 
WE 19-50 0.9 i0.7 13 

Level of Urbanization 
City 1-3 3.5 10.7 17 
City 4-5 7.0 9.1 17 
City 1-5 3.7 10.4 17 
City 19-34 1.2 13.2 17 
City 35-50 0.7 10.3 17 
city 19-50 0.6 13.7 17 
Suburb 1-3 1.6 21.9 29 
Suburb 4-5 2.4 18.8 29 
Suburb 1-5 1.7 22.2 29 
Suburb 19-34 0.9 22.7 29 
Suburb 35-50 0.8 23.5 29 
Suburb 19-50 0.5 24.3 29 
Nonmetr 1-3 2.9 10.8 15 
Nonmetr 4-5 3.5 10.4 15 
Nonmetr 1-5 1.8 11.6 15 
Nonmetr 19-34 1.3 11.3 15 
Nonmetr 35-50 1.4 12.9 15 
Nonmetr 19-50 1.0 12.5 15 
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APPENDIX 

Let stratum k (which may be a collapsed 
variance stratum) contain n k > 2 distinct 
PSU's. The ratio estimator for R is 

Z Yk 
r = 

Z m k 

where z k = ~.j Zkj/n k (z can be either y 
or m) . 

Assume that ekj = Yk' - ~m~5 (k = i, 
• .., K; j = i, ..., nk~ are l~dependent 
random variables (in the model-based 
sense) satisfying E(ek5).= 0, E(ekj2) = 
- ) ~ Ere-. ~ = 3o~-- ~, and R ~ ~. 
Th~ model varl~nce of r is thus 
(approximately) 

2 
K akj 
Z 

2 
n k 

E[(r-~) 2] = " . (AI) 
(~. mk ) 2 

So that 

C ! 

~[ (r-~) 2 ] .......... 

~. m k 
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when o k -2 = c,nkm k-. 
The l~nearizatio~ variance estimator is 

v D = 

nk 
K nk dk j,2 (Z dkj')2 
Y. { Y. 

k= 1 j = 1 n k ( n k- 1 ) nk 2 ( n k- 1 ) 

(Z mk )2 

where dkj' = y~. - rmk.. Deriving 
equation (7) wl~h var(~k)= 
Z,j (mkj .- mk)'/[nk(nk-l)] and Oki2 = 

c nkm k- is cumbersome but straight- 
forwar~. 

Now assume 

v D 

n k 
K nk ek j2 (y. ek j)2 
Z { Y 

k=l j=l nk(nk-I ) nk 2 (nk-i) 
I 

(y. mk ) 2 (A2) 

Equation (9) ~ould follow from (AI) 
(A2), and a k- = c'nkmkj if the following 
lemma is true: 

Lemma If Xl, ... x n are independent 
random variables satisfying E(xi) = 0, 
Elxi21 = oi2~ and 
E xi 4 3ai ~, then 

E { [ 

n n n 
Z xi 2 (~. xi )2 Z o i2 

n-i n (n-l) n 

]2) = 

(n-l) 2 
[(1 

2 n 1 n 
.... ) Z ai 4 + --- (Y. ai2)2 

n n 2 

Proof The key step in the proof of this 
lemma is observing that 

n n n 
~. xi 2 (Z xi )2 Z o i 2 

n-i n(n-l) n 

n n 
Y. (xi 2 - oi 2) 2.Z.xix j 

i=l i>3 

n n (n-l) 
(A3) 

The expectation of the square of the 
first term on the right hand side of (A3) 
is 2Y.ai4/n2; the expection of the square 
of the second term is 

n n 
(Y. oi2) 2 - Z oi 4 

2 
n2 (n-l) 2 

the cross term has an expectation of 
zero. Since (i - i/(n-1)2) = 
(n 2 - 2n)/(n-l) 2, the lemma soon follows 
after rearranging terms. 
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