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1. Introduction

Landis and Koch (1977) used one way random
effect model to describe a cluster sample, and
presented the ANOVA estimator of intracluster
correlation. This is an identical estimator as the
Kappa (Cohen, 1977); Fleiss, Nee, and Landis (1979)
when the data is balanced. Kraemer (1980), Davies
and Fleiss (1982), James (1983), O’Commnell and Dobson
(1984), and Kempthorne (1982, Unpublished thesis,
University of North Carolina) also discussed the
intracluster correlation for categorical data.

When the data are distributed as multivariate
normal, Anderson (1959) and Searle (1956) present
asymptotic variance of intracluster correlation
estimator.

The variance of intracluster correlation
estimator has been the problem when complex sample
survey data such as those collected by the NCHS.

A variance of ANOVA intracluster correlation
estimator is presented in this paper.

Following the introduction, Section 2 discusses
the variance of intracluster correlation for a single
level. Section 3 presents the estimator of overall
intracluster correlation with its variance.

1.1 Definition of Intracluster Correlation

Let Yhij = 1 if the (ij)-th unit is

classified as the h-th category with probability ™
for all i and j and Yhij = 0 with probability 1 - T

We use the subscripts h (h = 1, ., r) for r
response categories for the sample of "a" clusters
indexed by i (i =1, ., a) and the ith cluster
includes bi units indexed by j (j = 1,..., bi)'

We assume that the clusters are independent.
But the units in the cluster are correlated by P

in the level h and by p for overall categories and
that a probability sample of two stages is taken
with replacement.

Let Yhij be a random variable, discrete, which

is expressed as

Yhij " t Cni T nij M

and e, .. are with mean zeros and variance

where c, ., hi j

hi
2

2
Uhc and ahe’

are the random samples of size "a"

and ehij

= bi)

The variables ¢, .
hi

(n

respectively.

and "n"

from these two populations with not assumptions on the
distribution. But ¢, . 's and e _..'s are assumed
hi hij
uncorrelated.
2
and o, .
he

Ch+ eh

for all i and j where E and V are the expectation and
variance operators.

. 2
We use the notations °h and ey for e

From this model, E(yhij) =u and v(yhij)=
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Another expression for discrete data could be
°h = Ph wh(l - ﬂh) and ey = 1 - ph) rh(l - ﬂh),
where Py is a positive common intracluster correlation
for the cluster for the h-th category.

The intracluster correlation for the h-th
category is defined as

c
h
= 2
Ph (2)
ch + eh
and the intracluster correlation over all
categories is defined as
g (3)
c+ + e+
where c, = P <y and e, = z e

1.2 Estimator of Py,

The estimators of I and p are previously

presented in terms of the ANOVA sums of squares for
within and between clusters (Landis and Koch, 1977).

Searle (1956) wrote it in terms of the least square

estimators of ey and - We can express the estimator

of (2) as equation (4) below, this estimator is
the same as that of Landis et al and Searle estimator,
but in different form.

We can rewrite the ANOVA estimator

A a
. Yh ? (e1: Tini* ©2i Toni!
h - @)
A a
Dy f (e3s Tini * 41 Tonil
where c¢.= (n - l)/(a-l)bi,

¢ = (ci- 1)/(d(n-a))

d = (n2- % bi)/[n(a - 1]

C,. =ci/(d(n-a))

¢y = ey - d(1/by-1)- 1)}/(d(n-a))
¢,; = (¢; - d/b;)/(d(n-a))

b

i 2

Tini = §=1 g4

by
T, . =3 .. cor

2hi it ahlJ ahlJ



vwhere ahij = (yhij - yh)'

We assume that (&h - ?h) -+ 0 so that we can

replace the sample mean §h with the population mean ?h
in the derivation of its variance below.
2. Variance of ;h
The asymptotic variance of (4) can be obtained
by delta method as
- ’
Vo) = G VY G (5)

. 2 s : .
where Gh = (l/Dh, -Uh/Dh), partial derivative vector,

of ;h with respect to ﬁh and ﬁh, evaluated at the
(Uh, Dh)' The variance covariance matrix of Uh and Dh
is Vi with variances V(Up) and V(Dp) on the diagonal
and the covariance C(ﬁ , ﬁh) on the off-diagonal.
Thus, we can rewrite (5) as
A 2 A A A
V(py) =[1/D,,-U, /D 1|V e, D| |1/my | (6
A A A 2
C(Uh,Dh) V(Dh) -Uh/Dh
or
~ a 1 2
V(ph)=§il —[Ceqy = Ry e35) V(T ) (7)
Dy
2
+ ey - Ry o) V(Toyy)

t(egim By ©39)(0p; -

where Rh = h/Dh'
covariance C(T

Ry i) C(TypyoTong))

The variances V(T V(T2hi)’ and

lhi)’

1hi’ T2hi) are shown in Appendix 1.

3. Estimator of p

The overall intracluster correlation estimator
can be written as

r A A
A i h U+
p = = __ (say) (8)
r A A
z D
h h +
where ﬁh and ﬁh are already defined in Section 2.

The sign "+" means the sum over the subscript h.

3.1 Variance of ;

The variance of intracluster correlation over all
cells can be obtained by the same method as by that of
a single cell. The first order approximation of the
variance is given as

V(p) = G'V @ (9
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with G’ (Gl’ G2'

for h=1,...,r and the covariance matrix V includes the

2
. Gr)’ where Gh = (1/p, -U/D7)

submatrices th on the diagonal and submatrices V.

hh'’
on the off-diagonal.

The submatrix th has the variances V(ﬁh) and
V(ﬁh) on the diagonal and covariance C(ﬁh,ﬁh) on the
off-diagonal, while the submatrix V., , includes the
covariance C(Uh,Uh,) and C(Dh,Dh,) on the diagonal
c(, , Dh,) on the off-diagonal.

The equation (9) is rewritten as

V(p) = (6y,---1 6 | Voq Yy, LANEITN (10)
Vo1 Va2 Vor ?2
vrl vr2 ry Gr
~ r , r . . an
V) =% % Vhn Gt E%h,ch Yhne G
where G, is the partial derivative vector of ; with

h
respect to ﬁ and ﬁ, evaluated at the U = (Ul""

Ur) and D = (Dl’ ey Dr) under the usual

assumptions of first order approximation of ratio

estimate. We can rewrite (ll) as
N 1 r A A A 2 A 1o
V(p) = _ [i (V(Uh) - 2R C(Uy Dh) + R V(Dh)) (12)
D2
+
Tr A A A A
+ (C(Uh Uh') - R C(U_, Dh)
h#h'

A A

A A 2
- R C(Uy D) + R” G(D, D)) ]

A

where V(Uh)’ V(Dh), and C(U,, Dh) are shown before

in Appendix 1. . R .

. Tbe covariances C(ﬁh, Uh,), C(Dh’ Dh,), and
C(Up, D), and the final form of (12) is shown in
the Appendix 2.

4. Comments

Applications to actual data are needed to see
if these formulas are reasonable.
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Appendix 1
We derive the variances V(ﬁh) and V(ﬁh), and

covariance C(ﬁ , ﬁh) as

a
2
V({U) = f legs V(Tpg) *+ 2 ¢q5 95 ClTqpg0 Tong) (8D
2
+eyy Vo))
)
V(D) = f legy VCTipid* 2 35 S CTypgs Topg) (82D
vt ver, ]
Cai 2hi’ '’
a
C(Uh’Dh)=? le15031V Tni)* (5% ©23%312CTng Tong)
* 9%V (Topy) 1 (a3)
where the variances V(Tlhi)’ V(TZhi)’ and covariance

and C(Tlhi’ T2hi) are shown below as
4 22 2, 2.2
V(Tlhi)= bi A bi(bi-l) % - bi(ah) (ak)
22 211
V(T2h1)= Zbi(bi - 1)ah + 4bi(bi - 1)(bi - 2)ah
1111 11.2
+ bi(bi—l)(bi-Z)(bi-B)ah - (bi(bi -1 )ah } (as)
C(T T,..)=2b.(b, - 1) 13 (ab)
1hi* “2ni’T © PiMi “h
211 2 2 11
+ bi(bi-l)(bi-Z)ah - bi(bi-l)ah o -
2 4 11 22
The cross product moments % %ht %h v 9h 0
031, 0211, and 01111 are defined as following.
h h h
s
A B
s i %hij s
E(ahij) = ? ? = o (s=2 or 4) (a7)
3 aB,
i
Thij %
s t _ i ij ij* st
E(ahij ahij')— = =% (a8)

134" AB (B -1)
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where (s,t) = (1,1) or (2,2) or (3,1),

2 1 1
E(ayi5 ®hije ®hijr )

A B 2
-5 st ahlJ ahlJ' ahlJ" _ aill (a9)
1 34343

ABi(Bi-l)(Bi-Z)

E(an55 ®hijr ®nijr ®higer o)

22 gi %hij %hij'®hij’’ ®nij’’’
VA N O
AB (B, -1) (B, -2) (B, -3)
- 0111111 (say). (al0)

We should have at least four members in a cluster
for the existence of the fourth cross product moment.
For a cluster of less than four members, a cross
product of four or more members does not exist.

Different results can be obtained, depending on
how we define the cross product moments in the above
equations. For instance, these may be defined by a
probability model.

A set of unbiased estimates of above cross
product moments are

N a b, ‘s
a;=z = *hij (all)
+ abi
a b s t
a;t -5 st ahlJ ahlJ' (al12)
LA -1
ivi
2
~ a b, . csy sy
aﬁll - 5 st ahlJ ahlJ ahlJ (a13)
i 3430430
abi(bi-l)(bi-Z)
f111 2 By ®hij %hij’ %hij'r Zhijrre
o -5 s J 3 3 J
S DI
abi(bi-l)(bi-Z)(bi-3) (al4)

We can rewrite above expressions, using the

: c c fos .
notation X ahij = ahi+ for any positive integer c.

b,
z - (a . )% - &l (a15)
> ., %nij %nigr T “Phid’ T Chi+ a
3%

b,

o 2 3

?ﬁ,ahij %hij* T ®hi+ %hit+ " %hi+ (al6)



b.

1

s .3 _ 3 4
j#j,ahij %hij’ = ®hir %hi+ * 3his (al7)
by
2 2 2.0 4
?%j,ahij Zhije = (Gpidd” - g (al8)
st a.., a.
kA ahlJ ahlJ' ahlj" (al9g)
_ 3, .3 2
(ﬁdﬁ +2ﬁd+'3ﬁﬁ+ qhi+
b, ,
b> ..oa .. ..
AT AT ahlJ ahlJ' ahlJ" (a20)
_ 2 2 3 4 2 2
) i+ lapiy) ‘hm+%u+2%u'(%w)
ok ..oa ., .
j%j'%jl'#jlllahlj alllJ' at\lj', ahij”' (a21)
b, b,
=t a b gt A4
i ahl_]) j a'hlJ
. b, b
-3t 2 2 st 3
iAi a'hlJ ahlJ ' % ahij ahij'
b,
-6 = 2
[Py *hij ®hij’ ®hijer-
_ 4 4 2 2 3 2
(i) - Sapy, + 3@, )7 + 8 ®hi+ Phie Oapi, (3

From (al7)-(a2l), the computation of cross product
moments are more manageable than the original form.

Appendix 2

For h # h’, we can write the covariances

A a
2
CUy,- Uy = 2 leys CTipiTines? (b1)
+ 15 S5 0Ty Topg) * C(Tyyy Topeg))
e C(To . T, )]
21 “Tong Tonrg
A A a 2
COp» D) = % 10336 s Tinry) (62)
* 35 41 0T s Tong) + C(Tips Toney))
+e e, T, 0]
41 ©Tong Tonry
A A a
¢y D)= Fley50350CTpg Tanry) (®3)

* 3% CToni»Tonry)

+ c LC(T

1i %1 “TiniTonri) + ©2i%3:%T1n1Toni) 1
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Using the previous results of V(Uh)’ V(Dh),
and C(Uh,Dh) in Appendix 1, and above (bl), (b2),
and (b3), we can rewrite the variance (12) as

A

V(p) =

a r

[ (e Re 2 e V(T

30 (b4)
1

1
— 1hi)
52

+

r

+ 3
h#h’

CThs M)

r

+egj-Reg ) (ey;-Rey ;)12 ﬁ C(Tyni Tong)

r
+ 2

hyh '

(C(T i)+C(T

1hiT2h' 1h'iT2ni) 7}

g T r
+ (c,.- Re, ) {2 VT, .)+2

2i 41 h 2hi hth'
where the form of covariance between T1hi and Tihe1

TZhi and T

C(T

€Toni Tonri)? ]

and T

or T on'i 2Fe obtained as

1hi

2 2
= byby- 1) Elayyg ayegy0)

2h'i’

1hi’T1h' 1) (®3)
2 2 2

- by Blang) Elaygg)

c( (b6)

TinirTonry) =
2
= bi(bi- 1) (bi '2) E(ahij ah'ij' ah'ij")

2 2
= bi (bi - 1) E(ahij) E(ah'ij ah'ij')’

C( (b7)

Tonis Tonri) =

= bi(bi-l)(bi '2)(bi'3) E(ahij ahij' ah'ij"ah'ij"')

2 2
- by by - DT Elaygyg a5 By a0

C( ) is the same as (b6) except h and h'

TiheiToni

exchanged.

where the expected values of cross products are
defined as

) t
A By %55 iy

s t i _ st
E(ahij ah'ij')= ; ?%" - = ahh' (b8)
LI A (B,-1)
ivvi
(s,t) = (2,2) or (1,1) in (b5),
2
E(ahij a'hlijy a‘hvijv,) (bg)
A B. 2
-z =t %hij %%yaWﬁ”=aﬁh,
LOIAA

ABi(Bi-l)(Bi-Z)

as seen in (b6),



E(ahiJ ahi_]' ah:ijll ah'ij"') (b10)
A B,

> st 3hij Zhij’ *h'ij’r Pheijrr
i JAA 30

A Bi (Bi-l)(Bi-Z)(Bi-3)

1111
= ahhhlhl (Say)

as seen in (b7).

These expected values may be estimated from
the sample. The units in a cluster may be
distributed into categories. Let the number of unit
(or units) of the ith cluster falling into the hth
cell be bhi so that the sum of bhi over all cells

is bi' Since one unit can belong to only one cell,

the estimates can be written as

a b_. b S &t
;ﬁ: - 2h1 2h’1 ahlJ ah'lJ' (b11)
i3y
8 by By
A ab.b,. 2
R T B N PR R (b12)
hh'h’ T %, R
13=1 3'#4
2 B Ppog(T-bpoy)
"1111
°hhh'h’ ~ (b13)
2 byi by
== = pH %hij ®hij’ ®h'ij’r %hrijrre
i3#43" JrAT

aby s oy~ by (- by, )

Note that the following results may be used

to rewrite (bll), (bl2), and (bl3) for easier
computation.
bi bi 2
z D N NIt T
j j I%j t? lJ lJ lJ
b. b.
hi 2 h'i 2 h'i 2
=& e ) E a,15) -2 aigs)
i .« gen i i
j T g J
.2 . 2 .2
= a4 (e - Ay

where éhi+ is the sum of the subscript j over the

b, . elements.

hi
bi b.1
z b 33 330 [FEYN NN
b. b
hi h'i
- (= LA ) (S ves A, )
jﬁ'%u%” 34§ ahuahu
; 2 .2 .2
A TP FR I AC NFEPRIL NFPe
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Using these results, we can write (bll) - (bl3) as

s t
a
“st %hi+ *n’i+
o = (b14)
Phi Phrg
. 2, 2 .2
211 g &, D R
SLh'h' = ? ah1+((ah 1+) ah’1+) (b15)
8 by Py (A-byy)
1111
"hhh'h' T (b16)
a .2 .2 . 2 .2
-z Q)7 - A @y, 07 - A, )
i

@by (1= Byy) by - byy)

Using sample estimators, we can now obtain the
variance estimator from the variance formula (b4).

Bii

.C
Note that E(ahij) = ? ahij/ Bhi'
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