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I. Introduction 

Landis and Koch (1977) used one way random 
effect model to describe a cluster sampl~, and 
presented the ANOVA estimator of intracluster 
correlation. This is an identical estimator as the 
Kappa (Cohen, 1977); Fleiss, Nee, and Landis (1979) 
when the data is balanced. Kraemer (1980), Davies 
and Fleiss (1982), James (1983), O'Connell and Dobson 
(1984), and Kempthorne (1982, Unpublished thesis, 
University of North Carolina) also discussed the 
intracluster correlation for categorical data. 

When the data are distributed as multivariate 
normal, Anderson (1959) and Searle (1956) present 
asymptotic variance of intracluster correlation 
estimator. 

The variance of intracluster correlation 
estimator has been the problem when complex sample 
survey data such as those collected by the NCHS. 

A variance of ANOVA intracluster correlation 
estimator is presented in this paper. 

Another expression for discrete data could be 

Ch = Ph ~h (I - ~h ) and e h = (I - ph ) ~h(l - ~h ), 

where Ph is a positive common intracluster correlation 

for the cluster for the h-th category. 
The intracluster correlation for the h-th 

category is defined as 

c h 
Ph = (2) 

c h + e h 

and the intracluster correlation over all 
categories is defined as 

C + 
p = 

c+ + e+ 

(3) 

where c+ = E c h and e+ = E e h. 

1.2 Estimator of Ph 

The estimators of Ph and p are previously 
Following the introduction, Section 2 discusses 

the variance of intracluster correlation for a single presented in terms of the ANOVA sums of squares for 
level. Section 3 presents the estimator of overall 
intracluster correlation with its variance. 

I.i Definition of Intracluster Correlation 

Let Yhii = i if the (ij)-th unit is 

classified as the h-th category with probability ~h 

for all i and j and Yhi j = 0 with probability I - ~h" 

We use the subscripts h (h = I, ..., r) for r 
response categories for the sample of "a" clusters 
indexed by i (i = i ..... a) and the ith cluster 
includes b. units indexed by j (j = I bi). 

i ' "" " ~ 

We assume that the clusters are independent. 
But the units in the cluster are correlated by Ph 

in the level h and by p for overall categories and 
that a probability sample of two stages is taken 
with replacement. 

Let Yhii be a random variable, discrete, which 

is expressed as 

Yhij = Uh + Chi + ehij (I) 

where Chi and ehi i are with mean zeros and variance 
J 

2 2 
and ahe, respectively. The variables Chi and ehi i ahc 

are the random samples of size "a" and "n" (n = E bi) 

from these two populations with not assumptions on the 
p w distribution. But Chi s and ehi; J s are assumed 

uncorrelated. 
2 2 

We use the notations c h and e h for ahc and ahe. 

From this model, E(Yhij) = u h and V(Yhij) = Oh+ e h 

for all i and j where E and V are the expectation and 
variance operators. 

within and between clusters (Landis and Koch, 1977). 

Searle (1956) wrote it in terms of the least square 
estimators of e h and c h. We can express the estimator 

of (2) as equation (4) below, this estimator is 
the same as that of Landis et al and Searle estimator, 
but in different form. 

We can rewrite the ANOVA estimator 

^ a 

^ U h E [Cli Tlhi + c2i T2hi] 
i 

ph = = ^ a 

D h 7. [c3i Tlh i + c4i T2hi] 
i 

(4) 

where c.-- (n- l)/(a-l)b i 
i 

Cli (c i- l)/(d(n-a)) 

d = (n 2 E b 2 
- i)/[n(a - I)]. 

c2i =ci/(d(n-a)) 

c3i = {c i - d(I/bi-I )- l)}/(d(n-a)) 

c4i = (c i - d/bi)/(d(n-a)) 

b° 

= El 2 

rlhi j=l ahij' 

b° 

T2hi j~j, ahij ahij, ' 
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where ahi j = (Yhij " Yh )' with G' = (GI, G 2 ..... Gr), where G h = (l/D, -U/D 2) 

for h=l ..... r and the covariance matrix V includes the 

We assume that (Yh - Yh ) * 0 so that we can 
submatrices Vhh on the diagonal and submatrices Vhh , 

replace the sample mean Yh with the population mean Y h on the off-diagonal. 
A 

in the derivation of its variance below. The submatrix Vhh has the variances V(Uh) and 

2. Variance of Ph 

The asymptotic variance of (4) can be obtained 
by delta method as 

A 

V(Ph) -- G~ V h G h (5) 

V(Dh) on the diagonal and covariance C(Uh,Dh) on the 

off-diagonal, while the submatrix Vhh , includes the 
^ ^ ^ ^ 

covariance C(Uh,Uh, ) and C(Dh,Dh, ) on the diagonal 
A A 

C(Uh, Dh,) on the off-diagonal• 

The equation (9) is rewritten as 

V21 V22 .-. V2r 
. . . . . .  

Vrl Vr2 ... Vrr 

where G~ = (I/Dh, -Uh/D~), partial derivative vector, V(p) = (G I ..... G r) VII V12 ... Vlr 

of h with respect to O h and Dh, evaluated at the 

(Uh, Dh). The variance covariance matrix of O h and Dh 

is V h with variances V(Uh) and V(~) on the diagonal 

and the covariance C(Uh, Dh) on the off-diagonal. 

Thus, we can rewrite (5) as 

^ 

V (ph) -- [ i/Dh, - Uh/Dh 2 ] 

^ 

V(U h) C(U h D h) 

^ ^ ^ 

C (Uh, D h) V (D h) 

lID h 

-Uh/D2 

(6)  

2 
__[(Cli - R h c3i) V(TIh i) (7) 

2 
+ (c2i R h c4i) V - (r2h i) 

or 

a I ^ 

V(Ph)= Z 
i 2 

D h 

+(Cli- R h c3i)(c2i - R h c4i) C(Tlhi,T2hi)] 

where R h = Uh/D h. The variances V(Tlh i), V(T2h i), and 

covariance C(Tlhi, T2hi) are shown in Appendix I. 

3. Estimator of p 

The overall intracluster correlation estimator 
can be written as 

r ^ ^ 

Z U h U+ 
^ h 
p = = (say) (8) 

r ^ ^ 

D h D+ 
h 

G I 

G 2 

G r 

(io) 

r r 

V(p) = 7~ G~ Vhh G h + E G~ Vhh , Gh, (Ii) 
h=l h~h ' 

the partial derivative vector of p with where G h is 

respect to U and D, evaluated at the U-- (U I .... 

.., Ur)  and  D - -  (D 1 . . . . .  Dr)  u n d e r  t h e  u s u a l  

assumptions of first order approximation of ratio 
estimate. We can rewrite (ii) as 

Vr~,~,j = i r 2 ^ 
__ [E {V(U h) - 2 R C(U h Dh ) + R V(Dh)} (12) 

h 
D 2 
+ 

r ^ G , )  - R C  ^ ^ 
+ E (C(U h h (Uh' Dh ) 
hT~h' 

A ^ A 

where V(Uh), V(Dh), and C(U h, Dh ) are shown before 

i n  A p p e n d i x  1. 
A ^ ^ 

The covariances C(U h, Uh,), C(D h, Dhw), and 

C(Uh, Dhr), and the final form of (12) is shown in 

t h e  A p p e n d i x  2. 

4. Comments 

Applications to actual data are needed to see 
if these formulas are reasonable. 

^ ^ 

where U h and D h are already defined in Section 2. 

The s i g n  "+" means  t h e  sum o v e r  t h e  s u b s c r i p t  h .  

3.1 Variance of 

The variance of intracluster correlation over all 
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2 I I 
E(ahi j ahi j, ahij,,) 

2 
A B i ahi j ahij, ahij, , 

= E 

i j ~ j ~ j '  AB i(Bi_l) (Bi_2) 

Appendix I 

We derive the variances V(0h) and V(Dh) , and 
A ^ 

c o v a r i a n c e  C(Uh, D h) as  

a 
2 

V(Uh) = Z [Cli V(TIh i) + 2 Cli c2i C(Tlhi, T2h i) (al) 
i 

2 
+ c2i V(T2h i) ], 

a 

V(Dh) = Y. [c23i V(Tlhi)+ 2 c3i c4i C(TIh i, T2hi) (a2) 
i 

2 

+ c4i V(T2h i) ], 

211 
= a h 

E ( a h i  j a h i  j ,  a h i j , , a h i j , , , )  

A B. 
= Z Z 1 

i j~j'~...j''' 
ahij ahij,ahij,, ahij,,, 

AB i(Bi-l) (Bi-2) (Bi-3) 

(a9) 

IIIi 
= a h (say). (al0) 

We should have at least four members in a cluster 
for the existence of the fourth cross product moment. 
For a cluster of less than four members, a cross 
product of four or more members does not exist. 

Different results can be obtained, depending on 
how we define the cross product moments in the above 
equations. For instance, these may be defined by a 
probability model. 

(all) 

a 

C(Uh,Dh )=Z [CliC3iV(Tlhi)+(CliC4i + c2ic3i)C(Tlhi,T2hi ) - A set of unbiased estimates of above cross 
1 product moments are 

+ c2ic4iV(T2hi ) ]" (a3) ^ a b 
s Ei ahij 

a h = Z where t he  v a r i a n c e s  V ( T l h i ) ,  V ( T 2 h i ) ,  and c o v a r i a n c e  i j ab .  
1 

and C(Tlhi, T2hi) are shown below as 

4 
V(Tlhi)--b i a h + bi(b i 

-i) a2h 2 . b 2 2 2 
i (ah) (a4) 

22 - i) - 2)ah 211 
V(T2hi)-- 2b i(b i - l)a h + 4b i(b i (b i 

+ bi(b i -1)  (bi- 2) (bi-3)allll ii 2 
- {bi(b i - I )a h } , (a5) 

13 
C(Tlhi, T2hi)= 2 bi(b i - I) a h (a6) 

211 b 2 2 ii 
+ bi(bi-l)(bi-2)a h - i(bi-l)ah a h • 

2 4 11 22 
The c r o s s  p r o d u c t  moments ah,  ah,  a h , a h , 

31 211 iiii 
a h , a h , and a h are defined as following. 

S 
AB 

s zi ahij 
E(ahi j ) = E 

ij AB. 
l 

S 
= a h (s=2 or 4) (a7) 

s t 

^st a b i ahi j ahij, 
a h = Z 

i j C j '  abi(bi_ i ) 

(a12) 

^211 a b. 
a h = Z E 1 

i j ~ j  ' d j ' '  

2 
a h i j  a h i j ,  a h i j , ,  

abi(bi-l) (bi-2) 

(a13) 

^iiii a b. 
a h = Z E 1 

i j~j'~j''~j''' 

ahij ahij, a h i j , ,  a h i j , , ,  

ab i (bi-l) (bi-2) (bi- 3) (a14) 

We can rewrite above expressions, using the 

c C 
notation Y. ahi j -- ahi + for any positive integer c. 

b. 

l 2 2 

Z ahi j ahij, = (ahi+) - ahi + j~j' 
(a15) 

s t 
s t A B i ahi j ahij, 

E(ahi j ahij,)-- Y. 

i j~j' ABi(Bi.I ) 

st 
-- a h 

(a8)  
b• 

1 
2 2 3 

Y- ahi j ahij,-- ahi + ahi + - ahi + j~j' 
(a16) 
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b• 
1 

3 3 4 
E ahi j ahij, = ahi+ ahi+ _ ahi+ j~j' 

Using the previous results of V(Uh) , V(Dh) , 

(a17) and C(Uh,Dh) in Appendix i, and above (bl), (b2), 

and (b3), we can rewrite the variance (12) as 
b•  

1 
2 2 2 2 4 

ahij ahi j , = (ahi +) - ahi + (a18) j~j' 
b. 
r. 1 
j~j'~j'' ahij ahij' ahij '' (a19) 

= (a hi+)3+ 2~i + - 3~i + ahi + 
b. 

l 
2 

Z ahij ahi j, ahij,, (a20) j ~j '  ~ j ' '  

2 2 3 4 2 2 
(ahi +) 

b. 

j ~ j , ~ j , , ~ j , , , a h i j  ahi j ,  a h i j , ,  a h i j , , ,  (a21) 

b b. 
= (zi n j~i -)4 _ El 4 

J j ahiJ 

2 3 
ahij, - 4 jMj ahij ahij, 

, b .  
_ 3Zl 2 

j~j, ahij 

^ a 

V(p) = __I Z [ (Cli- Rc3i ) 
i 

D 2 
+ 

r 

+Z 
h~h' 

r 

{7- V(Tlh i) 
h 

C(Tlh i Tlh,i )} 

(b4) 

+(c 
r 

li-Rc3i) (c2i-Rc4i) { 2 Z 
h 

C(TIh i T2h i) 

r 

+Z 
h~h' 

(C(TlhiT2h , i)+C(Tlh , iT2hi ) ) } 

r r 2 
+ (c2i- Rc4i) { Y. V(T2h i) + Y. C(T2h i T2h,i)} ] 

h h~th ' 

where the form of covariance between Tlh i and Tlh ,I, 

T2h i and T2h,i, or Tlh i and T2h, i are obtained as 

2 2 
C(Tlhi,Tlh,i ) --bi(b i- I) E(ahi j ah,ij,) (b5) 

- 6 
b° 
Ez 2 

j~j,~j,, ahij ahij, ahij,,. 

4 _ 4 + 2 2 3 2 2 
~ (%i~_) 

From (a17)-(a21), the computation of cross product 
moments are more manageable than the original form. 

Appendix 2 

C(Tlhi,T2h ,i) -- (b6) 

2 
= bi(b i- I) (b i -2) E(ahi j ah, ij , ah,ij,,) 

- b 2 (b - I) E(~ ) E( ) 
i i ij ah'ij ah'ij' ' 

For h ~ h', we can write the covariances C(T2hi, T2h ,i) -- (b7) 

^ ~h a 2 C(U h, ,) = y. [Cli C(TlhiTlh, i) 
i 

(bl) 

+ eli c2i {C(TIh, i T2h i) + C(Tlh i T2h,i)} 

2 
+ c2i C(T2h i T2h, i )] 

^ ^ a 2 
C(Dh, Dh,) - Z [c3iC(Tlh i Tlh ,i) 

i 
(b2) 

+ c3i c4i{C(Tlh, i T2h i) + C(TIh i T2h, i)} 

2 
+ c4i C(T2h i T2h,i)] 

^ ^ a 

C(U h, D h,)-- Z[CliC3iC(Tlh i Tlh,i ) 
1 

(b3) 

+ c2ic4i C(T2h i,T2h,i ) 

+ Cli c4i C(TlhiT2h, i ) + c2ic3iC(Tlh ,iT2hi )]" 

= bi(bi-l)(b i -2)(bi-3) E(ahi j ahi j, ah, i j , , a h ,  i j , , , )  

- b 2 (b - I)2 E( ) E( ). 
l i ahij ahij' ah'ij ah'ij' 

C(Tlh,i,T2hi) is the same as (b6) except h and h' 

exchanged. 
where the expected values of cross products are 
defined as 

s t 
A B s t zi ahij ah' ij ' st 

E(ahi j ah, ij, )~ Z -- ahh, 
i j ~ j '  ABi(Bi_ I ) 

(s,t) = (2,2) or (i,I) in (b5), 

(b8) 

E(~ij ah'ij' ah'ij'' ) (b9) 

A B. 
= Z Z I 

i j~j'~j' ' 

as seen in (b6), 

2 
ahij ah' ij ah' ij ' 211 

, , = ahh, h, 

AB i(Bi-l) (Bi-2) 
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E(ahi j ahij, ah, i j , ,  a h ' i j ' ' '  ) 
(blO) 

A B. 
= Z Z I 

i jMj'M...j'" 
ahij ahij' a h ' i j ' '  ah'ij''' 

A B i (Bi-l) (Bi-2) (Bi-3) 

iiii 
= ahhh,h, (say) 

as seen in (b7). 

These expected values may be estimated frQm 
the sample. The units in a cluster may be 
distributed into categories. Let the number of unit 
(or units) of the ith cluster falling into the hth 
cell be bhi so that the sum of bhi over all cells 

is b.. Since one unit can belong to only one cell, 
1 

the estimates can be written as 

s t 
^ a ~hi b , s t  zh i ahij  a h ' i j '  
ahh , = Z 

i j J' a bhi bh, i 

(bll) 

^211 

ahh' h' 

^iiii 
ahhh' h' 

a b b 2 
= Z Z hi zh'i ahi j a h ' i j '  % ' i j ' '  

i j--I j'~j'' 

a bhi bh,i(l-bh,i) 

(b12) 

(b13) 

a ~i =Z 
i j~j' 

~h'i ahi j 
j''~j''' 

ahi j, ah,ij,, ah,ij,,, 

abhi(bhi-l) bh,i (I - bh, i ) 

Note that the following results may be used 
to rewrite (bll), (b12), and (b13) for easier 
computation. 

b. b. 
Zz El 2 
j j,~j,,ahij ah'ij'ah'ij'' 

b b b 
=(zhi ~ i 2 i 2 

j ij ) { (Zh' ah' ij ) - Zh' ah' ij 
j ~ j '  j 

= ~i+((~,i+) 2 - ~,i+ ) 

where ~i+ is the sum of the subscript j over the 

bhi elements. 

Do Do Z x Z x 

j~j j''~j''' ahij ahij, ah,ij,, ah,ij,,, 

j~j' 

b e 

ahij ahij, ) (Z h 
i 

j~j' ah, ij ah, ij, ) 

= [ (~hi+) 2. ~i+][(~,ij )- ~, i+ ] 

Using these results, we can write (bll) - (b13) as 

s t 

^st  a ahi + ah, i+ 
ahh , =~ Z i 

bhi bh, i 

(b14) 

^211 

°hh' h' 

^IIii 
ahhh'h' 

a .2 2 .2 

-- Z ahi+{ (ah' i+ ) -ah' i+ } 
i 

a bhi bh, i (l-bh' i ) 

(b15) 

(b16) 

a 2 .2 2 .2 

= Z {(aih+ ) " aih+}{(aih'+ ) " aih'+ 
i 

a bhi (I - bhi ) bh, i(l - bh,i) 

Using sample estimators, we can now obtain the 
variance estimator from the variance formula (b4). 

Bhi 
.C 

Note that E(ahij) -- Z ahij/ Bhi. 
J 
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