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The purpose of this paper is to discuss Westat 's 
computer software for the estimation of variance when a 
complex survey design has been used and our general 
approach to sampling error estimation and survey inference. 
We define a complex sample design as any probability 
design other than a simple random sample. These designs 
typically involve both stratification and multiple stages of 
sample selection. Additionally, different sample units 
generally have different probabilities of selection and often 
there are correlations between the observations. These facets 
of the sample design almost always lead to the use of sample 
weights. Although the word complex is often thought of as 
referring to the sample design, the sample design is not the 
only element to which the term should be applied. Often the 
population parameters for which estimates are desired and 
the estimates themselves are also complicated. Estimators 
are often nonlinear functions of sample variables and 
weights, where the weights themselves are random variables 
which are adjusted for nonresponse and poststratification. 

1.1 Sample Design 

It is a relatively common misconception that variance 
estimation software completely "corrects" for the use of 
complex sampling. In fact, for the sample designs 
commonly used in practice, unbiased estimates do not exist. 
For example, in many applications of multi-stage sampling, 
stratification is used to the maximum extent possible (i.e., 
one unit is selected from each stratum). Another popular 
sample selection technique for which unbiased estimates of 
variance do not generally exist is systematic sampling from 
an ordered list. This technique is also frequently used in the 
selection of second-stage units for one PSU per stratum 
sample designs. For PSU's selected with certainty, this 
means that the segments serve as first-stage units. None of 
these techniques have unbiased variance estimation 
procedures, even for linear statistics. Frequently, variance is 
estimated using formulas appropriate for'with-replacement' 
sampling even though a more efficient 'without-replacement' 
method was used. This leads to variance estimates with a 
positive bias. Additionally, it must be kept in mind that 
designs allowing for the "unbiased" estimation of variance 
only produce unbiased estimates for linear statistics. For 
nonlinear statistics, no unbiased estimate of variance will 
typically exist. Usually, for nonlinear statistics the true 
sampling variance cannot even be explicitly expressed in 
terms of parameters of the joint population distribution of the 
variables involved. Approximations for use with nonlinear 
estimates will be discussed later. 

1.2 Estimation of Basic Parameters 

In most large scale surveys, the sampling units have 
different probabilities of selection. For each of these 
sampled units (selected without replacement), a weight is 
calculated reflecting the probability of selection. If Pi is the 
probability of selection for the i-th unit selected for the 
sample, the base weight, wi, is simply calculated as the 
reciprocal of Pi for each sampled unit. 

This base weight can be used to produce unbiased 
estimates of population totals. If X is a population total for a 
particular random variable and x i is the value of x for the i-th 
selected sample unit, the Horvitz-Thompson (unbiased) 
estimate for X is 

X =  w i x  i . 
i=l 

Most parameters estimated from large scale surveys are 
either population totals, like the above, or functions of 
population totals. By far the most common function is the 
ratio of two population totals, say Y/X, which is typically 
estimated using the following nonlinear function of estimated 
population totals: 

n 

E w i Y  i 
A i=l 
R 1 = n 

Z w i x  i 
i=l 

If y and x are suitably defined, the ratio estimator can be 
used to provide estimates of means for population 
subgroups. For example, if z is the variable for which the 
mean is desired, define x and y using the following: 

Yi = 

x i = 

zi, if i is from subpopulation of 
interest 

0, otherwise. 
1, if i is from subpopulation of 

interest 
0, otherwise. 

When defined in this manner, R is the mean for the 
subpopulation of interest. More complex functions of 
population totals can also be calculated. For example the 
odds ratio is frequently of interest in health surveys. 
Suppose there are two responses: "success" and "failure". 
Define the following variables: 

Yli = 1, if i is in subpopulation 1 and 
is a "success"  

0, otherwise; 
x li = 1-yli, if i  is in subpopulation 1 

0, otherwise; 
Y2i = 1, if i is in subpopulation 2 and 

is a "success" 
0, otherwise; 

x2i - 1-Yei, ifi  is in subpopulation 2 
0, otherwise. 

The ratio of the odds of a success in population 1 to the odds 
of a success in population 2 is calculated as: 

A 
R 2 = 

n 

E w i Y l i  w i x 2 i  
i=1 i=l 
n 

E W i X l i  w i Y 2 i  
i=l i=l 

1.3 Weight Adjustments 

It was shown above that the base weight, wi, based 
upon the probability of selection, is an integral part of 
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population estimates and it is found in most of the formulas 
presented in sampling textbooks. In practice, this simple 
weight is seldom used directly for estimation• Instead, the 
simple base weight is adjusted for nonresponse and then 
poststratified to either known population totals or to precise 
survey estimates derived from larger surveys (e.g., CPS). 
Both of these modifications to the base weight take on the 
form of ratio adjustments. As we will discuss later, the 
effect of these adjustments, which generally is to reduce the 
mean square error, should be incorporated in the variance 
estimation system. 

One common way of compensating for survey 
nonresponse is through a nonresponse adjustment to the 
weights used for estimation. Typically, it is assumed that 
the nonresponding units, within a particular nonresponse 
category, are a random sample of the initially selected cases. 
This means that the completed interviews can be "weighted 
up" to compensate for the nonresponding units. Generally, 
this estimation procedure results in the use of nonlinear 
functions of population totals. Therefore, there is no explicit 
unbiased estimator of variance. 

As an example of a nonlinear nonresponse adjustment, 
consider the situation where sampled units are assigned to 
one of c nonresponse adjustment cells. These cells are 
formed based upon characteristics known for all selected 
persons, regardless of whether or not the unit completed the 
survey. For example, in household surveys the region of 
the country and the sex of the sampled respondent are 
known, even if the respondent refuses to cooperate with the 
survey If n. units (note n. is generally a random variable) 

." , J 
were Initially selected for the j-th nonresponse cell, the 
nonresponse adjustment factor for the j-th cell is calculated 
as: 

~ w j i  
i=l 

aj ~ rjiwj i 
i=l 

where the ji subscript refers to the j-th nonresponse 
adjustment cell and the i-th sample unit, and rji is 1 if the 
sampled unit responded and O, otherwise. Using the 
nonresponse adjustments, the estimate of a total takes on the 
following form: 

Y = a j  r j i  w j i  Y j i  • 
j=l i=l 

Because the response indicator variable, r, i is a random j '  

variable, the adjustment factor a: is also a random variable, 
• ' j ,  

which makes the estimated total a nonlinear combination 
(product) of random variables. 

Survey estimates are often improved by adjusting sample 
totals to equal known population totals. This is called 
poststratification. In this type of adjustment, sample 
elements are classified into a number of poststratification 
cells that are possibly different from both the original 
stratification cells and the nonresponse adjustment cells. 
This procedure is very similar to the ratio adjustment 
calculated for nonresponse, except that the cell total used for 
adjustment is a known constant. The poststratification 
adjustment, in the absence of nonresponse adjustment, for 
the k-th poststratification cell can be calculated using the 
following: 

N k 
b k = nk 

Z W k i  
i=l 

where N k is the population total for the k-th, n k is the 
number of sample units for the k-th poststratification cell. 
This adjustment factor is then used in an analogous manner 
to the nonresponse adjustment factor. 

Nonresponse and poststratification adjustments are 
typically used concurrently. When the nonresponse cells cut 
across poststratification cells, the nonresponse adjustment is 
generally calculated first. The poststratification adjustment is 
then calculated using the nonresponse adjusted weights. 
This process is performed using the following: 

~ Wkji 
k=l i=l aj = ; and 

Z rkjiWkji 
k=l i=l 

Nk 
b k = , 

~ ~ J  aj rkjiWkji 
j=l i=l 

where nk, is then number of sample units in the k-th 
• ,J • 

poststratlfiCatlon cell and the j-th nonresponse cell, d is the 
number of poststrata cells, and the subscript i refers to the i- 
th sample unit within the kj-th combined adjustment cell. 

An estimated total for a variable y, adjusting for both 
nonresponse and poststratification, takes on the following 
form: 

Y = Z b k aj rkj i Wkj i Ykji • 
k=l j=l i=l 

It can be seen that the estimated total is a function of both the 
randomly chosen observations, and random weight 
adjustments, which are a function of the particular sample 
drawn. Note that in calculating the weight adjustments, the 
original stratification variables and clusters (if any were 
used) have not necessarily been incorporated into the 
formation of adjustment cells. This will have important 
implications in the estimation of variances. 

In addition to calculating totals for the complete 
population, most large surveys produce estimates of means. 
In the presence of weights, means are typically calculated 
using ratio estimates. General ratio estimates are calculated 
using: 

A ^ y 
R - ^ - 

X 

n 

Z bi ai ri w i Yi 
i=l 

n 

Z bi ai ri w i x i 
i=l 

The above estimates can also be calculated for subgroups of 
the population. For example, means can be calculated 
separately by sex. This is accomplished by introducing an 
indicator variable into both the numerator variable and the 
denominator variable. The indicator variable is 1 when the 
sampled unit is a member of the subgroup of interest, and 0 
otherwise. 

To a certain extent the weight adjustments and estimators 
described above represent only the most basic procedures 
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followed in large scale surveys. Often there is more than 
one stage of nonresponse adjustment and poststratification 
adjustment. The weights might also be trimmed to reduce 
the effect on variance of extreme weights. Additionally, 
more complex weighted estimates such as odds-ratios, 
weighted averages of subpopulation means, correlation 
coefficients, etc., are frequently calculated. 

2. Variance Estimation and Inference 

Complex sample designs usually involve selection 
schemes that lead to statistical dependence among selected 
sample units. Often, this dependance takes the form of a 
positive correlation between members of the sample. This 
positive correlation leads to a negative bias in estimates of 
variance based upon the assumption of simple random 
sampling (i.e., as is common to most statistical packages). 
To produce at least approximately unbiased estimates of 
variance, aspects of the sample design must be taken into 
account in estimating variance. This has led to the creation 
of a number of computer programs that utilize various 
approximations to adjust for the complex nature of the 
sample design. The following design elements have an 
impact on the estimation of variance and will be discussed: 

With- or without-replacement sampling; 
Stratification; 
Multiple stages of selection; 
Unequal probability of selection; and 
Certainty selection of clusters. 

In spite of the fact that most complex sample designs 
have a net increase in variance over simpler sample designs, 
certain aspects of the sample design can actually result in a 
decrease in variance. The use of without-replacement 
sampling is one of these; under simple random sampling, the 
variance is reduced by a factor equal to one minus the 
sampling rate. In more complex sample designs, an 
analogous situation exists. For simplicity, estimates of 
variance are calculated under the assumption that with- 
replacement sampling has been used. This is especially true 
when unequal probability sampling has been used because in 
without-replacement sampling, unbiased estimates of 
variance require known joint probabilities of selection of all 
sampled units. Formulas based upon with-replacement 
sampling require knowing only the probability for selection 
of each sampled unit. Additionally, sampling past the first 
stage is not explicitly taken into account in with-replacement 
formulas, since this is not necessary for obtaining unbiased 
variance estimates when with-replacement sampling of first- 
stage units is used. 

The simplicity of variance estimation under the 
assumption of with-replacement sampling has a price. When 
with-replacement formulae are used for without-replacement 
designs, the variance estimates are biased. This bias is 
actually equal to two times the reduction in variance brought 
about by using without-replacement sampling. This results 
in an interesting paradox. Without-replacement sampling is 
used to lower variance, but the easiest approach to variance 
estimation results in treating estimates as if they were less 
precisely measured than would have been the case had a 
with-replacement design been used. Often, the first-stage 
sampling rate will be low enough, or the first stage 
component of variance small enough, that it is reasonable to 
assume this effect will not be too great. 

Often, prior to selecting the sample, the population is 
grouped into strata based upon characteristics thought to be 
related to the variable or variables of interest. This 

stratification usually reduces the variance of the population 
estimates. The stratification of primary sampling units can 
be taken to the point where only two are selected from each 
stratum. This allows the maximum stratification to be used 
while still allowing for the estimation of variance. If the 
stratification is ignored when variance is estimated, a 
positive bias will be introduced because the resulting 
estimate of variance will contain a "between strata" variance 
component. Where stratification has been carried out to the 
point where only one unit is selected per stratum, this 
"between strata" component is not easily avoided. In this 
situation, similar strata are combined so that a "within strata" 
variance component can be estimated with what is hoped to 
be a little, albeit positive, bias. 

The above discussion is for the estimation of variance for 
linear statistics. Most statistics of interest are not linear. 
What is more, as discussed previously the weights often are 
modified for nonresponse and/or poststratification. The 
approximations typically employed are discussed in the next 
section. In summary, approximate variance estimators are 
required for the following reasons: 

No explicit variance estimator is available 
because the design does not allow for one in the 
case of systematic sampling or one PSU per 
stratum designs; 
Adjustments have been made to the sample 
weights; 
The variance of a nonlinear estimator is desired; 
and 
It is too much trouble to use one of the exact 
formulas. 

2.1 Alternative Approximate Estimators 

Two differing approaches are currently in widespread 
use for the estimation of survey sampling errors for complex 
parameter estimators: linearization and replication. The 
method of linearization provides a general approach through 
the use of linear approximation to the nonlinear estimation of 
interest. Explicit formulas for the estimate of variance for 
these linear approximations can then be derived. Variance 
estimation is achieved by estimating the variance of a linear 
combination of simple estimators whose variance is close to 
that of the complex estimator of interest. Linearized variance 
estimators have been described in a number of textbooks for 
estimating variance with ratio estimators (Cochran, 1977; 
Kish, 1965). Binder (1983) has developed a general method 
for obtaining an appropriate linearization estimator for a high 
proportion of the cases likely to be met in practice. It is 
important to keep in mind that the linearization approach 
does not actually yield an estimate of variance. Instead, the 
linearization approach provides a linear approximation to the 
quantity for which variance is to be estimated, after which 
the usual textbook formulas for the variance of a linear 
statistic are applied. 

Replication (sample re-use) methods repeat the 
estimation process on a sequence of subsets of the full 
survey data set, and then compute the variance from the 
variation among these subsample estimates. The available 
replication methods differ as to their specification of the 
sample subsets or replicates and subsequent variance 
estimation formulae. Three general approaches in use are 
known as balanced repeated replication (BRR) or balanced 
half-sampling, jackknifing or jackknife repeated replication, 
and bootstrapping. Each method has variations of 
application which affect the number of replicate estimates 
derived in a given case. Wolter (1985), Rust (1985), and 
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Kalton (1977) give details of the implementation of BRR and 
jackknifing. Rao and Wu (1984, 1988) discuss the 
application of bootstrapping for a variety of sample designs. 

Even for relatively simple quantities like means and 
totals, typical survey estimators involve the use of 
nonresponse and ratio adjustments to the weighting, 
resulting in weights that are random quantities, dependent 
upon the sample actually selected. A question to be 
addressed when comparing linearization with replication is 
the relative contribution of these adjustments to the variances 
of parameter estimates. While linearization can be 
undertaken in a manner accounting for this weight 
variability, such variance estimation does become 
cumbersome, whereas it remains relatively straightforward 
with replication. On the other hand, if the variability in 
weights can be safely ignored, for many parameters 
estimated from surveys, linearization can be undertaken 
straightforwardly in a much less computationally intensive 
manner than replication. Kish and Frankel (1974), and Bean 
(1975) have suggested that the contribution of such variation 
in weights to variance can be reasonably ignored, whereas 
Lemeshow (1979) cautions against this. Lemeshow's 
findings from simulation studies suggested that a substantial 
increase in the bias and variance of variance estimates could 
result from ignoring variability in the weights. Lago et al. 
(1987) describe an example of the analysis of data from the 
Hispanic Health and Nutrition Examination Survey in which 
the effects of ignoring the randomness of the 
poststratification adjustments led to a large upward bias in 
variance estimates. 

2.2 Comparisons Appearing in the Statistical 
Literature 

A number of investigations have been conducted into the 
properties, both theoretical and empirical, of linearization 
and replication. Though these studies did not investigate the 
effect of nonresponse and poststratification adjustments, the 
results are still of some interest. The results of many of 
these are reviewed in Rust (1985). Important among the 
empirical studies has been the work of Kish and Frankel 
(1974), and Frankel (1971), who undertook a large scale 
empirical study comparing the properties of linearization, 
BRR, and the jackknife. Their major finding was the 
similarity in performance of all three methods across a range 
of parameter estimators of varying complexity, from means 
to multiple correlation coefficients. They concluded that 
there was evidence that linearization gave somewhat greater 
accuracy (as measured by the mean square error) in variance 
estimation, but that replication methods, and in particular 
BRR, gave confidence interval coverage which was slightly 
closer to the nominal coverage rate. 

Subsequent investigations have in the main concentrated 
on the aspects of bias and precision of variance estimation. 
Rao and Wu (1985) examined the asymptotic biases of 
linearization, BRR and jackknifing, considering a number of 
alternative forms of the replication methods. They showed 
that jackknifing in a number of forms and linearization were 
almost equivalent, while B RR was not nearly as equivalent 
to the other two procedures. These results were for 
multistage designs in which two primary sampling units 
(PSUs) are selected independently per stratum. Considering 
the combined ratio estimator specifically, Rao and Wu 
showed that the biases of the jackknife and B RR exceeded 
that of linearization under a particular population model. 

Empirical studies, although few in number, are generally 
consistent with the theoretical results of Rao and Wu. 

Hansen and Tepping (1985) and Kovar, Rao and Wu (1988) 
used simulated data from a design with two PSUs selected 
independently from each of 32 strata. For the ratio 
estimator, both studies concluded that all methods performed 
well when the coefficient of variation of the denominator 
was below 10 percent. With a larger coefficient of variation 
for the denominator, BRR and the bootstrap became 
substantially positively biased, while the linearization and 
jackknife variance estimators showed slight negative bias. 
Kovar et al. concluded that for regression and correlation 
coefficients the substantial positive biases of BRR and the 
bootstrap, and the slight negative bias of linearization and the 
jackknife were evident regardless of the coefficients of 
variation of the component variables. Thus, these empirical 
results accorded well with the asymptotic results of Rao and 
Wu, demonstrating the similarity in performance of 
linearization and the jackknife, and the divergence of BRR 
from these two. 

2.3 Inference 

One might regard the results of such investigations as 
indications that the less biased methods of linearization and 
jackknifing are superior to BRR in terms of the resulting 
quality of variance estimation. Since the practical advantages 
and disadvantages of BRR are similar to those of the 
jackknife, if this conclusion is well-founded then it would 
seem that BRR should begin to lose favor. However, it 
must be remembered that the primary purpose of variance 
estimation in surveys is for making inference about 
parameters of the population, rather than about sampling 
errors. Thus, as suggested by Kish and Frankel (1974), the 
coverage of confidence intervals formed from variance 
estimates would seem to be of primary importance in 
assessing the relative merits of variance estimation 
techniques. Such assessment involves consideration of the 
joint properties of the parameter estimate and its variance 
estimate, making investigation of this issue complex. 
Franke~examined intervals of the forr~ ~ + za/2 ~ v(O), 
where 0 is the estimated parameter, v(0) is the estimated 
variance and zoq2 is the or/2 critical value from the standard 
normal distribution. Empirical studies by Bean (1975), 
Campbell and Meyer (1978), Kovar et al. (1988), are 
notable for the similarities of their conclusions to those 
reached by Kish and Frankel (1974). In these investigations 
there was evidence that, in considering confidence intervals, 
BRR was somewhat superior to linearization and jackknifing 
(Bean did not consider jackknifing). These studies also 
indicate that the use of the confidence interval coefficients 
derived from an appropriate t-distribution may improve 
confidence interval coverage, but that the use of the number 
of strata as the degrees of freedom may not always be 
appropriate. 

Thus, in considering the relative qualities of these 
different methods of variance estimation, further theoretical 
developments and empirical investigations of confidence 
interval coverage properties appear warranted. Such studies 
should also include consideration of bootstrap methods to 
assist in determining situations in which these present a 
better practical alternative than the established methods. 

In addition to making inference using simple confidence 
intervals, it is frequently of interest to conduct tests of 
independence in two-way cross-tabulations using chi- 
squared statistics. Consider the situation where two 
variables, A with r levels and B with c levels, are cross- 
tabulated, producing weighted cell proportions Pij, row 
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totals expressed as proportions, p.j.and column totals 
expressed as proportions, Pi.. These estxmates of proportion 
have estimated variances vij, for Pij, v.j for p.j, and vi. for 
Pi.. 

The usual Pearson's chi-squared statistic, with (r-1)(c- 1) 
degrees of freedom, can be calculated for the weighted 
sample estimates using the following formula: 

n ~ ~  (Pij-Pi.P.j) 2 
X 2 = i=1 j=l , (2.3.1) 

Pi.P.j 
where n is the unweighted sample size. It is widely accepted 
that the use of this statistic will result in too frequent 
rejection of the null hypothesis of independence. Various 
approaches have been suggested for modifying the Pearson 
chi-squared statistic to take into account the sample design. 
The simplest approaches are based upon correcting the 
Pearson chi-squared statistic by some form of average 
design effect. The adjusted chi-squared statistic is simply 
calculated using the following formula: 

Xa2 = X2 / ~ , (2.3.2) 

where 1~ is the "average" design effect. Fellegi (1980) 
suggested that the average cell design effect might be used as 
an adjustment factor. One suggested average design effect is 
calculated using the following: 

- n ~ ~  Vii 
b = ~ Pij(l_Pij) . (2.3.3) i--1 j=a 

Rao and Scott (1979) proposed calculating the adjustment 
based upon the average eigenvalue of the following matrix: 

D =Phi V, 

where P0 is the variance covariance matrix of the cell 
proportions under the null hypothesis of independence and 
simple random sampling and V is the variance covariance of 
the cell proportions taking into account the sample design 
(not under the null hypothesis). The matrix D has been 
called the generalized design effect matrix. The formula for 
the Rao and Scott average design effect reduces to the 
following relatively simple expression: 

r c  
- n ~ ~ ~i.il" 
b = r-Uf_ 1 (2.3.4) 

i=l j=l Pij 
Note that the calculation of these adjustment factors only 
involves the use of the cell proportions and variances. This 
means that they can often be used with access to published 
crosstabulations of proportions and their associated 
variances. 

Rao and Scott (1981, 1984) have also developed 
methods which are based upon the asymptotic behavior of 
Pearson's chi-squared statistic. Under the null hypothesis of 
independence the chi-squared statistic can be written as a 
weighted function of (r-1)(c-1) asymptotically independent 
~ random variables, W i, 

(r-1)(c-1) 
X2 = Z 8iWi" 

i=l 

where "=" means asymptotically 'distributed as' and the 8i's 
are the eigenvalues of 

(Vo(h))-I V(h) 

where 
hij = Pij - Pi.P.j ; 

h = (hll ..... hrc ) ; 

V(h) is the variance-covariance matrix for h; and 

V0(h) is the variance-covariance matrix for h under 
the null hypothesis of independence and 
multinomial sampling. 

It can be seen that X 2 has asymptotic mean and variance, 
(r-1)(c-1) 

E(x2) = Z ~t = (r- 1)(c- 1)8 
t=l  

(r-1)(c-1) 
V(X 2) = 2 ~ 8 2,  

t= l  

respectively. Rao and Scott show that the expectation and 
variance can be written in terms of the variance of the hij's: 

(r-1)(c-1)8= ~ ~ v(hij) and 
i=l j=l Pi.P.j 

(r-1)(c-1, ~ ~  ~ ~ 
Z ~ 2 = [cov(hij'hi'j ')]2 

t=l i=l j=l i'=l j'=l Pi. (1-p.j)pi'.(1-p.j') 

One approach suggested by Rao and Scott is to 
standardize X 2 tO have asymptotic mean equal to (r-1)(c-1), 
which is what would be expected if X ~ actually 
asymptotically follows a )~2-distribution with (r-1)(c- 1) 
degrees of freedom. This adjusted chi-squared variate takes 
on the form of (2.3.2), where 

b =  
n 

(r- 1)(c-l) [ j~__c 1 vij 
• P i.P.j 

- ~  vi" - ~ ~ " ] .  (2.3.5) 
i=l Pi. j=l P.j 

This expression is based upon a linear approximation to the 
hij in terms of the Pij's. Note that this approximation only 
requires estimates of the variance of the cell proportions and 
row proportions. 

Rao and Scott have also proposed a more complicated 
approximation that standardizes for both the asymptotic 
expectation and variance following the approach of 
Satterthwaite (1946). In this approach, Pearson's chi- 
squared statistic is standardized to have asymptotic 
expectation v and variance 2v, where 

[Z~t] 2 
v - . (2.3.6) 

This is done by modifying Pearson's chi-squared statistic to 
the following: 

X 2 X 2~8t  a = ' (2.3.7) 

which is then treated as a chi-squared variate with v degrees 
of freedom. As with the chi-squared statistic that has been 
standardized to have the correct expectation, the correction 
factor can be based upon either v(hij, hi,j.), which can be 
calculated using replication, or upon the variance-covariance 
matrix of a linear approximation to the hij's using the Pij's. 
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Because these approximate chi-square tests have not 
been used extensively in the past, a consensus has not 
developed as to which approximation tends to be best. The 
Fellegi and first Rao and Scott statistics are the simplest to 
calculate, but are thought to be excessively conservative. 
The second Rao and Scott statistic attempts to compensate 
for the suspected conservatism shown by the simpler 
statistics, but it is not clear at the present time if this is 
generally achieved in practice. In general, the Satterthwaite 
adjusted statistic which does require more computational 
effort is likely to be the best approximation. Westat's limited 
experience has been that the simpler statistics are not too 
different from each other, but that the more complex 
statistics, as a group, can be either higher or lower. It is 
recommended that preliminary tests always be carried out 
using all four approximations. If one or more of the 
alternatives to the Satterthwaite adjusted statistic is 
comparable, then it may not be necessary to calculate the 
more complicated statistic for each table analyzed. 

2.4 Westat's Preference for Replication 

The above discussion implies that the linearization 
approach is best suited to situations where both the the 
sample design and estimators are used repeatedly. The steps 
required are to linearize a specific estimator and determine its 
variance under a specific sample design. While it is always 
possible to develop a linearization for a new estimator and to 
use the formula appropriate for estimating the variance of the 
linear components  given the sample design (or an 
approximation to it), this will not always be practical for a 
one time survey. In practice, the user of computer software 
attempts to find a preprogrammed estimator which 
approximates the estimator of interest and also assumes a 
sample design for which the variance of the linear statistics 
will not be too dissimilar. This generally means assuming 
that a with-replacement sample design has been used and that 
weights adjusted for nonresponse and poststratification are 
in fact not subject to sampling variation. For example, when 
estimating the variance of a ratio estimator, it is assumed that 
the variance of 

A ^ y 

X 

n 

Z bi ai ri w i Yi 
i = l  

n 

Z bi ai ri w i x i 
i = l  

can be approximated by using the variance estimator 
appropriate for 

A W i  Y i  
^ Y i=l 
R ~ ^ m ~  , 

x 
W i  X i 

i = l  

where w* = b i a i r i w i is taken as being a function only of 
the i-th unit itself, rather than the sample as a whole. As 
discussed above, the adequacy of the approximation 
result ing from the use of this assumption may be 
ques t ionable ,  espec ia l ly  if the nonresponse  and 
poststratification adjustments have had a substantial impact 
on the level of sampling variance. 

Conversely, replication procedures are well-suited to 
situations where a variety of complex estimators are needed, 
including secondary analyses of survey data which were not 
specifically envisioned and planned for at the time of initial 
analysis of the survey data. Replication procedures can be 
adapted to incorporate more readily into the variance 

estimates the effects of nonresponse and poststratification 
adjustment. Additionally, replication procedures are easily 
adaptable to a wide range of sample designs without the need 
for reprogramming. The combination of these factors lies 
behind Westat's preference for the use of replicated variance 
estimation procedures in the analysis of survey data. 

The typical circumstances under which Westat conducts 
a survey include essentially a one-time survey design, rather 
than say a monthly or quarterly series in which the same 
quantities are estimated each time. Following the completion 
of data collection, Westat derives a data file with survey 
weights  adjusted for nonresponse  and frequent ly 
poststratified to agree with "known" totals. A report of the 
major survey findings is produced, including estimates of 
population summary characteristics, frequently in the form 
of means and proportions for the total population and for 
subgroups. For these major findings estimates of sampling 
error are provided. Finally, a data file is assembled, which 
includes survey weights and an appropriate set of replicate 
weights, with instructions for the estimation of sampling 
errors for estimates derived using the survey weights. 
Frequently the data file is released in the form of a public use 
data file, with accompanying documentation. 

By using replicate weights and Westat's own replication 
based variance estimation software, the various aspects of 
variance estimation involving the survey data can be handled 
via a single approach. The use of replication can account for 
nonresponse and poststratification adjustment in a standard 
way, and the replicate weights derived can then be used for 
Westat's own analyses of the data, as well as providing a 
very simply implemented means of variance estimation for 
secondary users. With replicated procedures specialized 
variance estimation software is not required, and appropriate 
variance estimates can be readily derived, albeit somewhat 
laboriously, using standard statistical packages and/or one- 
time programs. When numerous sampling error estimates 
are required, it becomes much more convenient to employ 
prewritten software suitable for a wide range of applications, 
and it is this need that the WESVAR program is intended to 
fill (along with the WESREG and WESLOG programs 
designed for specific modelling applications). 

2.5 Procedures for Creating Replicates 

The use of replication via a set of replicate weights is 
described in Dippo, Fay and Morganstein (1986). The 
general procedure is to form, implicitly, a succession of 
replicate data sets, using a version of BRR or jackknife, each 
comprised of a subsample of the full data set. Each replicate 
in turn is weighted appropriately to represent the same 
population as represented by the full set of data. This 
weighting procedure includes the nonresponse adjustment 
and poststratification, as implemented with the full sample. 
It is this latter component which permits this procedure to 
reflect appropriately the effect on variance of these aspects of 
estimation. The weight associated with one repetition of this 
procedure constitutes a single set of replicate weights, which 
are attached on the data file to their respective units. Those 
dropped from the data set for a given replicate receive a zero 
weight for that replicate. 

There are some practical difficulties associated with the 
task of forming replicate weights, and these fall into two 
main classes. The first involves the method of forming the 
replicate data sets in such a way that the sample design 
actually used is reflected appropriately in variance 
estimation, at least approximately, while at the same time 
keeping the number of replicates formed to a manageable 
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level. The second involves the methods of reflecting 
appropriately the procedures for nonresponse and 
poststratification adjustment. 

The formation of replicate groups involves two distinct 
processes. The first of these is to set up replicates and their 
complementary drop-out sets in such a way that the features 
of the sample design are appropriately reflected, leading to 
little bias. This must be achieved by approximating the 
sample design as a stratified, (possibly) multi-stage design, 
in which at least two PSU's are selected from within each 
stratum using with-replacement sampling -- tha.t is, 
selections within strata are independent. Often this involves 
the approximation of a two PSU per stratum design. For 
example, when a one PSU per stratum design is used, a 
standard approach is to pair strata and treat the data as having 
been drawn as two PSU's per stratum with replacement. 
This collapsing of strata in general leads to a small positive 
bias in variance estimation, provided that strata similar with 
respect to survey characteristics are paired, and that this 
pairing is performed on the basis of frame stratum 
information, not sample data. Pairing on the basis of sample 
characteristics (or frame characteristics) of the selected 
PSU's likely results in a substantial negative bias in variance 
estimation. 

Depending upon the sample design actually employed, 
procedures other than pairing of PSU's are available. For 
example, if systematic selection is used, replicates can be 
formed by dropping every r-th selected PSU from the data, 
where the selected PSU's are sorted in their original order of 
sample selection. The technique of pairing is frequently 
employed with multistage designs, and gives rise to the 
greatest need for methods to reduce the extent of replication. 
Thus, we concentrate on this approach in the remainder of 
this section. 

If 2r PSU's are selected, resulting in r pairs, then a total 
of r replicates can be formed by dropping one member of 
each pair from the data in turn. In many instances and 
particularly when some PSU's are included with certainty, 
resulting in the second-stage units becoming the true PSU's 
within each of these certainties, the resulting number of 
replicates r may be several hundred in magnitude. In such a 
case the derivation of the full set of replicate weights and 
their use in variance estimation becomes burdensome. An 
approach is needed which reduces the amount of replication 
without introducing further bias into the variance estimates. 

The approach of "partial balancing" or combining of 
pseudostrata handles this situation. Applied correctly this 
approach reduces the number of replicates without 
introducing bias. Inevitably there will be some loss in the 
precision of variance estimation (as reflected in the actual 
degrees of freedom of the variance estimator) but often this 
is of little consequence in comparison with the great 
reductions in the extent of replication required. The 
procedure consists of first randomly designating which 
member of each pair is to be the one dropped in replication, 
with probability one half and independently from pair to 
pair. Then two or more pairs are combined, in that a single 
replicate is formed by dropping simultaneously all of those 
PSU's belonging to the combined group designated to be 
dropped via the above random procedure. Thus, if the r 
pairs are partitioned into r'< r groups, only r' replicates 
result, and hence r' replicate weights are formed. Methods 
of achieving this combining without undue loss of degrees 
of freedom are discussed by Lee (1972, 1973), who refers 
specifically to BRR, and Rust (1986), who makes particular 
reference to jackknifing. 

2.6 Procedures for Defining Adjustment Cells 

The second area of practical consideration in using 
replication procedures is the procedure for defining 
nonresponse classes and poststrata. In developing survey 
weights it is good practice to ensure that the number of 
respondents falling within a given nonresponse class or 
poststratum is sufficiently large in expectation as to ensure 
that undue variability in the resulting adjustment factor does 
not result. When replicates are to be formed, it is important 
to ensure further that these small and unstable sample sizes 
do not occur in any substantial number of replicates, or else 
a bias will be introduced into the variance estimates. In 
particular, there is no unbiased procedure available for 
handling the case where a replicate estimate is undefined 
because a nonresponse cell or poststratum is empty. This 
problem is seldom of great concern when using the jackknife 
procedure, since most of the sample units are retained in any 
given replicate. With BRR, however, more careful attention 
is required since generally only about one-half of the units 
appear in a given replicate. 

As a result of these considerations, it may be that on 
occasion fewer and somewhat larger nonresponse classes 
and poststrata are utilized than would be the case if a 
linearization approach to variance estimation were useC 
Such differences in procedure will almost always have a 
negligible effect on the precision and bias of the overall 
estimator, since most of the gains from using nonresponse 
classes and poststratification can generally be obtained using 
only a few cells, each having a large sample size within each 
cell. Thus, the major concern is the practical one of actually 
developing classes of sufficient size, rather than concern 
about precision of the parameter estimator. 

3. WESVAR 

3.1 Historical Development of WESVAR 

The WESVAR procedure has been previously described 
by Mohadjer et al. (1986). This program was based upon 
an earlier version called NASSVAR (Binzer and 
Morganstein, 1983). The latest version of WESVAR uses 
the same basic approach as these earlier versions, but adds 
features to make the program both easier to use and provide 
additional analytic capabilities. The main change in the 
program is the inclusion of a TABLES statement. This 
statement allows the user to specify one variable or two 
variables together to create "cells" within which estimation 
takes place. For example, estimates may be desired for cells 
formed by the combination of respondent's age and sex. 
Previously, users had to create indicator variables to 
represent the cells of the table. Several analytic 
improvements have also been added in conjunction with the 
TABLE statement. Chi-squared tests of independence are 
now available based upon the distribution of the sample 
weights. Additionally, complex functions of cell estimators 
can now be formed using the FUNCTION statement. For 
example, log-odds ratios can be contrasted using the 
FUNCTION statement. Additionally, substantial 
computational efficiencies were incorporated via a GROUP 
option. The following sections describe the various analysis 
options available in WESVAR. 

3.2 Weighting 

The procedure WESVAR assumes the presence of the 
survey weights necessary for the estimation of sampling 
errors. This computer file must contain a SAS variable 
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containing the full sample weight, as well as one SAS 
variable for each of the replicate weights. The user of 
WESVAR lists, on a WEIGHT statement, the SAS variable 
containing the full sample weight, followed by the SAS 
variables containing the replicate weights. WESVAR makes 
very simple checks on the weights to insure that none of the 
weights are missing and that the full sample weight is 
positive and that the replicate weights are positive. It is the 
user's responsibility to insure that the weights specified are 
appropriate for the replication technique WESVAR is 
directed to use, and the actual design of the sample. 

3.3 Simple Statistics - Sampling Errors 

The parameters that will typically be of interest to users 
of WESVAR are totals, ratio means, proportions, general 
ratios or other functions of totals. Frequently, it also is of 
interest to analyze these variables for subgroups of the 
population. This type of analysis will frequently include the 
use of crosstabulations. WESVAR can be used to estimate 
such sample statistics and their sampling errors. 

WESVAR operates by calculating totals for the variables 
of interest. These variables are listed on the VAR statement. 
Additional variables can be created by manipulating these 
totals using the COMPUTE statement. If a variable used in a 
compute statement has not been listed on a VAR statement, 
the total for that variable is calculated, but statistics are not 
printed. 

If there are n records in the file and the variable of 
interest is represented by 'y', the population total is 
estimated by the following formula: 

Y =  wiYi , 
i=l 

where wi is the full sample weight and Yi is the observed 
value of y for the i-th unit in the sample (ignoring any 
stratification). WESVAR calculates this quantity for each 
variable listed on the VAR statement. A similar quantity is 
also estimated by WESVAR for each of the replicates using 
the replicate weights instead of the full sample weight. The 
replicate estimates are not printed by WESVAR, but are used 
for variance estimation and are available in one of the 
optional output data sets. A similar process is followed for 
each COMPUTE variable. If x is another variable in the data 
set, specifying 

COMPUTE R = Y/X; 

leads WESVAR to calculate 
n 

Z w i Y  i A 
R =  i = l  

~ w i x  i 
i=l 

The important thing to note is that the equation given 
calculates the weighted total for each variable used on the 
right-hand side of the COMPUTE statement, and then 
calculates the quantity of interest using these weighted sums. 

The variance of the estimates produced using the VAR 
and COMPUTE statements are calculated in an identical 
fashion. If the population pg(ameter of interest is 
represented by the symbg,1 0, then 0 is used to represent the 
full sample estimate and Ok is used to represent the estimate 
for the k-th replicate• The parameter 0 can be any of the 

parameters discussed in the previous section: total, ratio 
mean, proportion, general ratio, etc. 

The user can direct WESVAR to use one of three 
replication approaches for estimating variance: balanced 
repeated replication (BRR), jackknife #1 (JK1), and 
jackknife #2 (JK2). The two jackknife estimates are 
designed to handle different sampling situations. 

JK1 is usually applied when no stratification has been 
used to select the sample. It can also be adapted to handle 
the situation where only a few strata have been used. To 
form the replicates for use with JK1, sampled PSU's are 
grouped into G random subsets of equal or nearly equal size 
(G<#PSU's) with each subset resembling the full sample. 
Replicates are formed by deleting a single group. 

The basic sample design assumed for JK2 is the same as 
that used for BRR, two first-stage selections (PSU's) made 
with replacement in each of L strata• The primary difference 
between BRR and JK2 is in the formation of replicates once 
the PSU's have been grouped into pairs. In JK2, one PSU 
is deleted from a single stratum to form the replicate• This 
process is repeated in turn for each stratum. This means that 
if there are L strata, or pseudostrata, then L replicates will be 
created for use with JK2. 

The threAe replication techniques calculate the variance 
estimate for0 using a slightly different formula, for a given 
number of replicates G: 

A 1 ~ A A)2 
BRR: v(O) = ~- (O k - 0 , 

k=l 

G 
A G_I k~] A JKI" v(0) - G (0k _~)2 ,and 

G 

JK2: v(O) : Z ( 0 k - ~ ) 2  . 
k=l 

In some situations (Wolter, 1985; Judkins^ 198~)replicates 
2 are formed in such a way that each term (O k - 0) must be 

multiplied by an adjustment factor, F k, to produce unbiased 
estimates of variance. The FACTOR statement allows these 
factors to be specified, one factor for each replicate, and is 
described in Section 3.7. 

3.4 Subgroup Analyses -- TABLE Statement 

The estimation of variance for variables in WESVAR is 
controlled primarily through three statements: COMPUTE, 
TABLE and FUNCTION. As mentioned previously, the 
COMPUTE statement is used to manipulate estimated totals 
calculated for variables in the data set using simple arithmetic 
operations• The COMPUTE statement is based upon the 
manipulation of weighted totals calculated for the entire 
sample• The TABLE statement allows these totals to be 
estimated and manipulated for subgroups formed by one or 
two categorical variables. 

TABLE requests/options; 

As an example of a subgroup analysis, consider 
estimating the ratio mean of the average number of years of 
schooling for two different regions of the country. The 
following statements can be used to estimate these quantities: 

COMPUTE MEAN = Y/C; 
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TABLE REGION:, 

where C is a variable which is equal to "1" for all records 
and REGION is a SAS variable equal to either "1" or "2". 
WESVAR calculates the following for the new SAS variable 
MEAN: 

n 1 n2 

E j~l w j y j  w i Y i  A 
_A i=1 and Y2 = = , 
Y1 = nl n 2 

E Wi E Wj 
i=l j=l 

where nl is the number of sample elements in the first 
region, nz is the number in the^ second and where the mean 
for region 1 is represented by Y1 and the mean for region 2 
is represented by Y2. Two-way tables can be formed by 
simply using the following syntax: TABLE variable 
l 'variable 2;. 

A number of options are available for use with the 
TABLE statement. These options are primarily designed to 
control the display of statistics calculated for the cells formed 
by the variables making up the table request. For example, 
the options can be used to determine if the statistics should 
be printed in the form of a table or simply listed one cell at a 
time. Other options determine if the results should be 
percentaged by rows, columns or overall. Additionally, chi- 
square statistics are available for testing independence. 

3.5 Complex  Compar i sons  of Table  Values  - 
FUNCTION Statement 

Since it is often of interest to make comparison among 
subgroup estimates, a FUNCTION statement has also been 
included in WESVAR to allow comparisons among 
subgroups to be made using functions of the crosstabulation 
cells. 

Continuing with the previous example, the estimate of 
the difference between the two regions, D = [Y1 - Y 2], can 
be written as 

^ ~ ^ 

D = Y 1 - Y 2 .  

The following sequence of statements will calculate this 
estimator 

COMPUTE MEAN = Y/C; 
TABLE REGION; 
FUNCTION REGION [ 1 ]-[2] FOR MEAN;. 

The FUNCTION statement can also be used to calculate 
functions of two-way table cells. For example, if A takes on 
3 values (1,3,4) and B takes on 2 values (0,1), the log-odds 
ratio of A=I to A=3 (B=I signifies that the event of interest 
has occurred), the following FUNCTION statement would 
be used: 

FUNCTION 'LOG-ODDS A1/A3' A*B 

LOG(([1,1]*[3,0])  / ([3,1]*[1,0])) FOR WEIGHT_;. 

The function of table cells may include any of the five 
standard arithmetic operators: multiplication (*), division (/), 
addition (+), subtraction (-) and exponentiation (**). The 
"-" can be used as a prefix operator to indicate a negative 
number. Additionally, the following functions are available: 
EXP (raises e, the base of natural logarithms, to the 
specified power), SQRT (square root), LOG (natural 

logarithm), LOG2 (logarithm to the base 2) and LOG10 
(logarithm to the base 10). Normal SAS rules of precedence 
govern the order of evaluation; parentheses may be used to 
change this order if desired. 

3.6 Inference  - Conf idence  Intervals  and Chi- 
square Tests of Independence 

As mentioned previously, one of the primary purposes 
of the estimation of variance is to make inferences about 
population quantities. WESVAR approaches this through 
either the use of confidence intervals or through the use of 
chi-square tests of independence. Two-sided confidence 
intervals can be created for any basic statistic estimated by 
WESVAR using the VAR, COMPUTE and FUNCTION 
statements. It is possible to specify the level of the 
confidence interval in the PROC statement. For the level 
specified, WESVAR finds the critical value appropriate for 
that level of the confidence using the standard normal 
distribution. Confidence intervals take on the following 
form: 

^ 

0 4- Zoq2 V(0) . 

Simple tests of significance between two groups can be 
created by using the FUNCTION statement to compute the 
appropriate difference. If the interval does not contain 0, the 
two groups can be concluded to be significantly different. 
More complex tests can be created by considering other 
weighted combinations of cell estimates. At a later date, 
WESVAR will be able to utilize the t-distribution with user- 
specified degrees of freedom. 

WESVAR can also be used to generate chi-square tests 
of independence for two variables. These test statistics are 
available as option in the TABLE statement. Option 
CHISQ1 will produce the three simpler average design effect 
corrected chi-squared statistics, described in Section 2.3 and 
specified by expression (2.3.1) through (2.3.5). The choice 
of the CHISQ2 option results in the Satterthwaite adjusted 
chi-squared statistic given by (2.3.7), being calculated. 

3.7 Genera l  Rep l i ca ted  Var iance  Es t imat ion  
Formulae -- FACTOR Statement 

The previously discussed estimators of variance can be 
called "traditional" replicate estimators. In some 
applications, the use of the variance estimation formulae 
presented earlier may not be appropriate for the particular 
replicates being used. WESVAR contains a FACTOR 
statement to allow other replicate estimators to be calculated. 
The FACTOR statement allows the squared deviation 
produced from each replicate to be multiplied by a specified 
value. The list of values in the FACTOR statement contain 
these factors, with the i-th factor used to adjust the i-th 
replicate. The values are listed after the word FACTOR with 
a space separating each value. Currently, there must be as 
many factors as there are replicates if the FACTOR statement 
is used. The resulting variance estimate is used for all 
computations, including the chi-square statistics. If the i-th 
factor is reRresented by F i and the^corr~,sponding parameter 
estimate is 0 i, the replicate term,^(0 i 7~ 0) 2, is multiplied by 
the adjustment factor, to give Fi(0 i - 0) 2. As an example of 
the syntax, consider the situation with four replicates and an 
adjustment of .667 for each replicate. The following 
FACTOR statement would be used: 

FACTOR .667 .667 .667 .667; . 
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One application of the FACTOR statement is the 
implementation of Fay's modified BRR approach to variance 
estimation (Dippo, Fay and Morganstein, 1984; Judkins, 
1987). In this approach, the usual BRR replicate weights 
within a stratum, i.e. either 0 or 2, are replaced by weights 
of k and 2-k for 0<_k<l. The Fi's are set to 1/(l-k) 2 for all 
replicates. 

The FACTOR statement can also be used in conjunction 
with a jackknife estimator when more than two PSU's are 
selected in one or more strata. For example, if in each 
stratum three PSUs have been sampled, a jackknife estimator 
of variance can be based upon replicates formed by dropping 
each PSU in turn. This leads to forming 3*L replicate 
estimates. Setting F i to 2/3 with WESVAR option JK2 will 
produce unbiased estimates of variance for linear statistics. 
Wolter (1985) discusses the general situation of weighting 
jackknife replicate estimators. 

3.8 Availability 

The WESVAR procedure is a Westat-written SAS 
procedure that can be accessed from SAS after installing a 
load module on the computer where SAS is running. 
Currently, WESVAR is operating on DEC/VAX and IBM 
mainframe computers. WESVAR can be installed on other 
computers where SAS supports user-written procedures. 
Since SAS does not support user-written procedures for 
IBM compatible PCs, no short term plans exist for making 
WESVAR available for these computers. A manual for the 
current 13 version is available upon request. Arrangements 
for program installation can be made by contacting 
David Morganstein at Westat. 
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