
COMPILER-INTERPRETER FOR SURVEY DATA ANALYSIS LANGUAGE

Babubhai V. Shah, Research Triangle Institute
P. O. Box 12194, Research Triangle Park, NC 27709

KEY WORDS: survey data analysis, sta£istical
software, compiler, interpreter

ABSTRACT
A large number of statistical software

packages are available. There is still a
considerable time gap between the discovery of
new statistical theory and creation of a
procedure in a software package. RTI has
developed SUrvey DAta ANalysis (SUDAAN) language
that permits a statistician to translate
statistical formulae to a computer program.
SUDAAN language has a functional syntax with
algebraic operators known to all statisticians.
The arguments of the functions are algebraic
abstraction of data structures for most
statistical analyses. The abstract objects
include input and output data sets and other
intermediate calculations. The user needs to
input only functional definitions of the needed
results. This paper describes the current
status of SUDAAN implementation. Once the
complete system has been implemented, the
procedures will be written in SUDAAN language.

I. INTRODUCTION
In recent years, there has been a tremendous

growth in statistical software. However, the
development of a new program that incorporates
recent advances in statistical theory requires
several man months. If the number of potential
users is not large, development of such software
is not commercially viable. Currently, a few
programs for computing sampling error of a mean
(the simplest of statistics) for data collected
in a multistage sample survey are available.

Scientists at the Research Triangle Institute
(RTI) have been developing and maintaining
software for survey data analysis for the past
18 years. An application language that will
permit rapid development of statistical software
(primarily aimed at analyzing multistage nested
survey data) was proposed by Shah (1978 and
1979). Over the years, RTI has continued its
research effort to investigate ways in which the
proposed concepts may become practically useful.

Since 1987, RTI has been under a Public Health
Service (PHS) contract to develop a
comprehensive software package for analyzing
survey data. Rather than modify the "old"
software, we decided to redesign the software,
based on our past experiences. In this process,
the SUDAAN language concepts are becoming a
practical reality. The new procedures are being
written in a SUDAAN prototype language and are
discussed by LaVange et al. (1988).

The SUDAAN language is taking shape as an
independent application language that will
permit rapid development of new software. This
paper presents the language in its current test
Version. Comments and criticisms will greatly
influence the future versions of the language.

In Sections 2 and 3, we present data
abstraction and functions that are basic to

SUDAAN language. The syntax and semantics for
the language are presented in Sections 4 and 5.
An example of a procedure written in SUDAAN
language is presented in Section 6. The
remaining sections highlight implementation,
advantages, and limitations.

2. DATA ABSTRACTION
The expressive power of very hlgh-level

languages is a result of special functions
(operators) and data objects (operands). Most
statistical languages have functions
(procedures) that accept as argument a data set
that is a sequence of identically structured
vectors. APL by Iverson (1962) supports
functions (like inner product, outer product,
and reduce) whose arguments are multidimensional
arrays, as well as other primitive functions.
Backus (1978) proposed a formal system of
functional programming language. The concept of
data structure used in SUDAAN is a
generalization of the data structure in APL and
most statistical languages such as SAS.

The basic data structures, which are described
as sequences of multidimensional arrays each
having hierarchically nested identifiers, may be
thought of as trees whose root segments are
multidimensional arrays. These special data
structures are trees whose terminal nodes are
all multidimensional arrays that have the same
description and dimension. Secondly, each of
the data structures is nested up to the same
depth or has an identical number of nesting
identifiers. To avoid confusion with the
general term data structure, a data structure
for SUDAAN is referred to as a Balanced Array
Tree (BAT).

Hierarchical ordering within each hierarchy
may be chronological as in year, month, and day;
or alphabetical as in states, counties, and
enumeration districts; or arbitrary as needed by
the user. The basic data structure provides
unified representation for all entities
(scalars, vectors, arrays, matrices, and
sequences of these and other most commonly used
data sets) in statistical analysis. The concept
of a data structure may be regarded as a
generalization of a similar concept in APL
(Iverson 1962). The basic entity of APL, for
instance, is a sequence of "one"
multidimensional array with "zero" identifiers,
and treated as a special case of BATs.

As an example of BAT, consider data consisting
of a student's test scores. The sample
selection was done in four stages: states,
school districts, schools, and students. The
survey data file can be looked upon as a
sequence of vectors of test scores. Each vector
(corresponding to a student) is uniquely
identified by the four hierarchical identifiers
(names or code numbers) of the state, school
district, school, and student, respectively.
Now consider within each school the variance-
covariance matrix of test scores between the

103

students. Data consisting of all "within school
between students variance-covariance matrices"
are sequences of matrices with only three
hierarchical identifiers: state, school
district, and school, for each matrix. The
pooled variance-covariance matrix (across all
schools) can be regarded as a sequence of only
one matrix with zero (no) identifiers. All
three conceptual files are "hierarchically
consistent" BATs because they have the same

hierarchical frame.
Complex data can be handled efficiently by

defining multiple BATs. For example, a
transportation survey of households may contain
information about: (a) households, (b) persons
in each household, (c) trips made by each person
as a driver, and (d) cars owned by each
household. The entire set of data can be
conveniently divided into four files, each
constituting one data structure:
(a) households, (b) persons, (c) trips, and
(d) cars. These data structure definitions
require any language implementation to deal with
several BATs that may be hierarchically
consistent. The SUDAAN language also includes
objects that are scalars and vectors as in most
languages.

3. FUNCTIONS
A program written in SUDAAN language permits a

user to define a set of output data sets from a

given set of input data sets. The program is a
sequence of functional specifications leading
from input to output. The definitions of the
functions and objects are general enough to
include almost all input, intermediate
computations, and output encountered in survey
data analysis. More functions may be added as
needed.

A basic function is an operator that defines a
new BAT from one or more BATs. For example,
C = A + B defines a new BAT, C, such that it has
the same structure as A and B and every element

of C is a sum of the corresponding elements of
B. The function is not valid if A and B do not
have identical structure. The design of SUDAAN
can permit definition of new functions and,
hence, it is not necessary to define a complete
class of all possible functions at the outset.

Initial definitions need to include only a
limited number of basic functions needed in

performing most of the computations in

statistics. A list of a few basic functions is

presented in Appendices A and B. Many more
functions can be defined using the general

concepts of Backus (1978) where arguments of the
functions may be other functions.

There are three different types of functions
defined for this system: (a) scalar functions,
(b) input/output functions, and (c) functions on

BATs.
Most scalar functions can be used in the same

fashion as the operators. For example,
Z = F(a,b) defines an array Z whose elements are
formed by applying function F to the

corresponding elements of arrays a and b.
Then there are functions that define new BATs

as a function of other BATs. The most useful

one for statistical computation is "sigma." The

key argument for sigma is the number of nest
values retained in the output. For example, if

X represents a BAT that has three nest levels,
region, state, and county, the data consists of
population totals by age, sex, and race for each
of the counties. Then

Y = sigma(X,2);

defines a new BAT that has two nest levels,
region and state, and its elements are obtained
by summing all the corresponding elements of all
counties in each state, thus resulting in
population totals by age, sex, and race for each
state. Similarly,

Y = sigma(X,0) ;

represents one table for the nation.

4. SYNTAX
A program written in SUDAAN language consists

of statements. Each statement has the form:

a = f(x,y,z);

where "a" is a new identifier, "f" is a function
known to SUDAAN, and x, y, z are the arguments
to which function "f" is applied. The argument

x, y, or z may be an expression. For example:

a = f(p*q+r, y, z);

or one may define

B = M'n-k;

These are most commonly used algebraic
expressions, except for the ending ";"
semicolon, which is used by SUDAAN language to
recognize the end of a statement.

The right-hand side and "=" signs are absent
when an output function is used. For example:

Printl(A);

Outfile("Bfile", B, "Means", SASfile);

Iverson (1962) has proposed syntax that has no
precedence and interprets statements from right
to left. Backus (1978) has proposed functional
syntax that is similar to LISP. SUDAAN is an

application language for statisticians. The
syntax for SUDAAN is the functional syntax used
by most statisticians to write down mathematical
formulae. A complete formal syntax using
diagrams is presented in Appendix C.

5. SEMANTICS
All functions have syntax of the form name

(argl, arg2,...), where "name" is the name of
the function and argl, arg2,.., are expressions
to be taken as arguments of the function. For
example, SIGMA(x) defines the sum over all

members of a BAT named "x".
While arguments must be given in a fixed

order, SUDAAN language permits a great deal of
flexibility to the user. Typically, functions
will have a few basic arguments (supplying the
data on which the function operates). Such
arguments must always be supplied by the user.
There may also be several optional arguments,

which usually give special features or options
to control the function in more detail and may
be omitted. The function will assume some
prescribed defaulz values for the omitted

arguments. For example, SIGMA (x) is equivalent

to SIGMA (x,0,"+"). To obtain the maximum of x,

one must say SIGMA (x,0,"max").

104

The list function denotes sequences or

collectives, i.e.:

vlist = list (age, sex, race)
alpha = list (2, 3, list (4, 3, 2, 5), 7, 3).

The operators +, -, *, [, and ** when used
between two arguments will be interpreted as a
term-by-term operation. For example, the

equation

C = a+b;

is equivalent to

Cij = alj + blj for all i, j.

The logical operators will be denoted by the

following symbols

<, >, <=, >=, ==, l=,

for less than, greater than, less than or equal
to, greater than or equal to, equal to or not
equal to. The Boolean operations "not, and, "

and "or" are denoted by "I", "&", and "I"

respectlvely.
The operator precedence order from highest to

the lowest is as follows:

I. ** : exponentlatlon
2. ! - : not, and unary minus
3. * / : multiplication, and division
4. + - : plus, and minus
5. <> <= >= != == : all relational operations
6. I & : Boolean or, and "and" operations.

The functions are defined with arguments that
are either a BAT, scalar, or a scalar function
and usually define a new BAT. If one of the
arguments is a llst, then the function is
applied for each value in the vector for that
argument while keeping other arguments
unchanged. The result is a vector of BATs. The
number of BATs is equal to the size of the

vector. For example:

y = SIGMA (X, LIST (0, I, 2))

is equivalent to

yl = SIGMA (X, 0)
y2 = SIGMA (X, i)
y3 = SIGMA (X, 2)
y = llst (yl, y2, y3).

If two or more arguments are vectors (or trees),
they must conform wlth each other and the result
is similar to term-by-term operation. For

example:

y = SIGMA (llst(xl, x2, x3), list (0, I, 2))

is equivalent to

y = llst (SIGMA (xl, 0), SIGMA (x2, I), SIGMA

(x3, 2)).

Furthermore, the user will be able to define
higher level functions using functions already
defined. Macro definitions will enhance the
facility available to the user. These will be

explained in sections on user interface.
A function or operation on two bats is defined

for two BATs, with different nest values, by
(logically) replicating the members of the BAT
with smaller numbers of nest values as needed.
As an example consider two BATs. "A" has three
nest values: region, state, and county. "B"

has two nest values: region and state. Each
member of the BATs represent two-dimenslonal
table of total population by sex and race. The
equation

C = A*I00/B;

defines for each county the proportion of the
state's population by age and sex group. This
definition implies replication of a two-
dimensional table for a state in BAT "B" for
each county in BAT "C" belonging to the same
state.

SUDAAN semantic interpreter makes such
extensions, when needed. It also converts
Booleans to integers, integers to reals and
conversely as needed.

6. PROCEDURE FOR RATIO ESTIMATES
This example illustrates a program that

requires several hundred lines in most
conventional languages such as FORTRAN or PASCAL
yet requires only 24 lines in SUDAAN.
Furthermore, the program is easy to understand
and maintain. The words denoted by capital
letters are key words or internally defined
objects and the words in lower-case letters are
names defined by the user.

i. nestvec = LIST ("STRATUM", "PSU");
2. data = INFILE ("myfile", nestvec);
3. X = SELECT (data, LIST ("xl", "x2", "x3",

"x4", "x5")) ;
4. Y = SELECT (data, LIST ("yl", "y2", "y3",

"y4", "y5"));
5. valid = xI=MISSVAL & yI=MISSVAL;
6. subgroup = EFFECTS (LIST ("race", "sex",

"age"), LIST (3, 2, 5));
7. tabl = LIST (1, 2);
8. tab2 = LIST (1, 3);
9. tab3 = LIST (2, 3);

10. tablist = LIST (tabl, tab2, tab3);
ll. tab = CROSSP (subgroup, tablist);
12. nsum = SIGMA (CROSMUL (valid, tab));
13. wsum = SIGMA (CROSMUL (valid*w, tab));
14. xsum = SIGMA (CROSMUL (valid*w'x, tab));
15. ysum = SIGMA (CROSMUL (valld*w*y, tab));
16. ratio = ysum/xsum;
17. zhij = (y-ratio*x)*w/xsum;
18. npsu = SIGMA (C0NSTANT(I,2),I);
19. zhl = SIGMA (zhij, 2);
20. zh = SIGMA (zhi, I);
21. var = SIGMA ((npsu*zhi-zh*zh)/(npsu-l));
22. se = sqrt(var);
23. names = list ("sample size", "Popn.

Est.", "Ratio", "Std. Err.");
24. printl (list(nsum, wsum, ratio, se),

names);

Statements i through 4 define data, numerator,
and denominator variables. Line 5 is a test for
valid data; it is a vector of five (0,1)s for
each record. Statement 6 defines three dummy
vectors for race, sex, and age, respectively.
Statements 7 through i0 create a llst of three
tables. The function CROSSP defines three table
cells for each record in data. Lines 12 through
15 produce sums for each of these table cells
for each of 5 variables. Note that the result
of the function CROSMUL is the argument of
SIGMA. Statement 16 is the ratio estimate; 17

105

represents Taylorized deviation. Statements 18
through 22 are direct translation of formulae

for computing sampling variance for data from
stratified random samples where PSUs are sampled
with replacement. The last two statements

request the printout of the results.

7. EXECUTION STRATEGY
Because there are no control specifications in

SUDAAN, there are many other alternative ways of
executing the program. A simple way is to
execute each function independently by reading
in arguments and storing results on a disk or a
tape. This approach is very inefficient but it

makes it feasible to execute the program on a
machine with limited memory size, although it
may require a huge amount of disk and tape
storage. Alternately, all data and computations
may be kept in memory but most machines may not

have a huge memory.
The practical approach is to read one data

record at a time and do all the data processing
pertinent to that record. Under this approach,
it may be necessary to read data twice in some
cases. In rare cases, one may need to read data

three or more times.
The implemented strategy is based on the

following rules.
i. If the arguments of a function are two (or

more) BATs with a different number of
nesting levels, then the BAT with a smaller
number of nesting levels must be saved and
read for execution of this function, unless
the BAT to be saved is an input structure
or is dependent on input structures whose

number of nesting levels is the same.
2. The phases will be constructed collecting

output that require common inputs after

substitution described in Rule I.
3. If some other BATs (which are not saved)

are required in more than one phase, the

set of function calls to generate them will
be repeated in both phases.

4. The allocation of in-core memory for data
will be limited to that needed to store, at

most, one member of a BAT.
5. Some BATS are needed only temporarily to

generate other BATS. Such intermediate

results may not require any core.
The analysis of data flow is carried out to

implement the strategy.

8. DATA FLOW ANALYSIS
The syntax analyzer will convert user input to

an internal table of functional specifications

with results and arguments.
The data flow analysis involves various steps.
I. Identify each data structure to determine

if it is a constant (or self defining), an
input to be read from file, or an output

data structure.
2. Performing a backward scan from output to

input structure will reveal if there are
any redundant structures being defined. If
so, the function specifications for
generating these may be deleted from the

llst.
3. If there are any specifications of the same

function with an identical set of
arguments, then the results of the later

function may be equated to those of the
former and the corresponding function call

eliminated.
4. Identify alternate ways to develop blocks

of functions or phases for execution of the

tasks.
5. Determine blocks of functions that can be

performed simultaneously and those that
require separate phases.

6. Identify data to be passed from one phase
or block to another phase or block and add
instructions to write and read these data.

9. MISSING VALUES
In SUDAAN users can explicitly check for

missing values by using comparison operations.
For example: x I = MISSVAL. The constant
MISSVAL is always defined by SUDAAN. Its
internal value is not relevant.

If arguments are invalid, all scalar functions
or operations result in missing values. The
division by zero results in a missing value.
The square root of a negative number is a
missing value.

All scalar functions or operations result in
missing if one of the arguments is missing. For
example, x+y, x'y, or x/y is missing if either
x, or y has a missing value.

The scalar functions or operations are treated
as missing values when used as an argument of
generalized sigma. The generalized sigma is
defined by induction. The generalized sigma for

Xl, x2, ... x n with respect to the function max
is defined as follows: Let Yi be the result

after processing Xl, x2, ..., x i then

Yi = max(Yi-l, xi);
Y0 = MISSVAL;

If one of the arguments to max is missing, then
the function returns the other argument. Thus,

the result is missing only if all arguments are

missing. In general, the cumulative result is
maximum X value among the xi's that have a valid
value.

The standard sigma is defined with the
operation "+", or sum, and results in total over
valid values of x.

In summary, the missing values are

consistently treated and follow the following

rules:
I. Explicit constant MISSVAL is defined and is

used for comparing or assigning missing

values explicitly.
2. Invalid arguments or missing value

arguments result in missing values.

3. In sigma operations, if one of the
arguments is missing, the result is the
value of the other argument.

With these simple rules, it is easy to check
what each SUDAAN program does with missing
values.

i0. ADVANTAGES
The SUDAAN source code will be provided as

part of the documentation. By referring to the
SUDAAN program for a statistical procedure,
analysts will be able to determine exactly what
underlying mathematical formulas are employed.

When statistical research indicates new or

improved formulas for a given analysis, the

106

formulas can be readily translated into the
SUDAAN language to yield a working computer
program.

In writing a SUDAAN program, users define only
the computational objects through function
calls. Users need not specify how the
calculations will be carried out. Increased
reliability is achieved through checks built
into the system to ensure that the definitions
are meaningful and that the objects required as
output can be generated. The system is free to
select the optimal computational algorithm given
the dataset and available computing resources.
The system also provides tremendous feasibility
with respect to input and output. All
input/output objects are defined as BATs. Any
intermediate BAT can be saved or displayed at
any time in the program.

One advantage of SUDAAN is its modular
independence. Because the system functions
(including binary scalar functions) are only
interpretations of the user's definitions of
data structures, their implementation is
independent of the supervisor; more functions
can be added without rewriting any other
components of the system. SUDAAN functions, as
well as the supervisor, are totally independent
of all binary functions. Thus, the system has
total freedom for expansion in terms of its
vocabulary and users. All improvements to the
supervisor will be available to all SUDAAN
programs without any rewriting.

The ability to handle several data sets
simultaneously will eliminate the need for
complex data base management systems. This may
be a considerable advantage when dealing with
large volumes of data.

The requirements for conformity among
arguments for each function or operation are
checked and errors are reported. Such error
checking is not possible in conventional
programming languages.

II. LIMITATIONS
The SUDAAN programmer is confined to the

available vocabulary of functions. Computations
that require new functions of BATs may have to
wait until such functions are implemented in
SUDAAN. Over time, as more and more functions
are implemented, this limitation will not be
critical. The modular design of the system
permits new functions to be added to the system
without recompiling the entire system. Only the
new function and its interface need to be
compiled. It also is possible to test the new
function independently before incorporating it
into the system, thereby greatly facilitating
the addition of functions to the system library
on an as-needed basis.

Computations that cannot be represented as
BATs will not be feasible in SUDAAN. The user
must define all computations as functions of
input BATs or data objects. The SUDAAN system,
therefore, is not for general programming use
but should prove reasonably adequate for
statistical analysis and, in particular, survey
data analysis.

REFERENCES
BACKUS, J. (1978), "Can Programming be

Liberated from the Von Neumann Style? A
Functional Style and Its Algebra of Programs,"
Communications of the ACM, 21:8, 613-641.

BARR, ANTHONY J.; GOODKNIGHT, JAMES H.; SALL,
JOHN P.; AND HELWIG, JANE T. (1976), A User's
Guide to SAS 76, North Carolina State
University, Raleigh, North Carolina.

IVERSON, K. E. (1962), A Programming Language,
Wiley and Sons Publishing Company.

LAVANGE, LISA M. AND SHAH, BABUBHAI V. (1988),
"A Comprehensive Software Package for Survey
Data Analysis," Fourth Annual Research
Conference Proceedings, Bureau of the Census,
327.

SHAH, B. V. (1978), "SUDAAN: Survey Data
Analysis Software," Proceedings of the
Statistical Computing Section, American
Statistical Association, 146-151.

APPENDIX A
Selected Operators and Scalar Functions

Syntax Results

exp(x) xth power of natural number "e"
in(x) Natural logorithm of x
-x Negative of x

Xl+X 2 Sum
Xl<=X 2 I, if x I is less than x2; 0 otherwise
Xl**X 2 x I to the power x2; if x>=0;

missing value, if Xl<0.

Note: if either x, Xl, or x 2 has missing value,
then the result of any function has
missing value.

APPENDIX B
Selected BAT Functions in SUDAAN

The function infile (filename, nestvar,
filetyp) defines a BAT that is read form input
"filename. "

The function effects (data, varlist, levelist)
define a list of BATS corresponding to varlist.
EAch BAT is conversion of a categorical variable
to a dummy (0,I) vector, according to the number
of levels.

The function matmul (A,B) defines generalized
matrix multiplication valid when A and B may
have more than two dimensions. This is similar
to the inner product in APL. The number of
levels for the last dimension of every
multidimensional array of A must be equal to the
number of levels for the first dimension of the
corresponding member of B.

The function pseudoinverse (A) defines the
pseudoinverse of every matrix defined by the
last two dimensions of every array in A.

The function Sigma (A, nestnum) defines the
cumulative sum over arrays with the same values
for the first nestnum nesting variables. The
resulting BAT has nestnum nest variables. The
input must have at least nestnum nest variables.

The function print (BATlist, namelist,
declist, stylename) requests printing of all

107

BATs in the BATlist with reference names in
"namelist," with the precision as in declist and
format specified by style name.

APPENDIX C
SUDAAN STntax

In SUDAAN syntax diagrams, a digit represents

any one of the decimal characters 0 through 9.

A letter can be any lower-case alphabet a

through <, upper-case A to Z, or underscore _ .
The function identifier includes any SUDAAN

function that has been implemented.
The syntax diagrams which follow define valid

syntax for SUDAAN language.

Syntax Diagrams

Variable

~ Letter)

Letter

Digit

Unsigned Integer

Unsigned Number

v I Unsigned Integer Digit I Unsigned Integer I

J

Constant

I Unsigned Numberl

~ CCharaci'er) "~

Factor
=I Unsigned Constant]

I Variable] I

--~ Function Identifier ~ Exp~~n ~ ~ - - ~

108

Term

t
Factor v

Simple Expression

Term =..

Relation
.~1 Simple Expression I

Expression

._lL Relati°n i

Statement

Program

" 'Var, ab,e = rlss,i, TO
Func,,on , ent,,,er p ess'

~1 S'a'ement I J~. v

109

