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INTRODUCTION 

This paper discusses the design of surveys 
which use a measurement design accuracy standard 
to assess the quality of data on events that 
occurred at some time in the past to sample 
persons. I t  is a sequel to an earlier paper by 
these same authors (Horvitz, et .al . ,  1987) which 
argued the need to establish measurement design 
standards in order to assess the level of net 
systematic error, or bias, introduced by the 
conventional measurement designs used in human 
population surveys. 

The earlier paper proposed that, in each and 
every sample survey, the net bias in the 
conventional measurement design being used be 
routinely estimated relative to the chosen 
accuracy standard. A "standard unbiased 
estimate" of the net bias generated by a 
particular conventional measurement design 
requires additional collection of the survey 
data with a comparable probability sample of the 
population of interest using the "standard 
measurement design". The difference between the 
estimate (e.g. proportion experiencing a 
specific event during the past year) obtained 
with the conventional measurement design and the 
estimate obtained when the standard measurement 
design is used is a design-based estimate of the 
net bias in the conventional measurement design 
relative to the chosen standard. 

Finally, the earlier paper proposed that 
"survey statistics be routinely adjusted for 
measurement biases based on the chosen 
standards, just as they are now routinely 
adjusted to reduce coverage and nonresponse 
biases". No methods for such adjustments were 
given, however. The proposal to adjust for 
measurement biases based on chosen standards is 
expanded upon in the current paper. 
Specifically, an estimator, which combines the 
data collected using the "standard" measurement 
design with the data collected using the 
"conventional" measurement design, is proposed. 

The optimum survey design parameters, namely 
those that minimize total data collection costs 
while achieving a specified mean square error 
for the composite estimator, are determined. 
The optimum total sample size and the proportion 
of the total sample to be allocated to the 
standard measurement design have been computed 
for a range of survey conditions specified, 
f i r s t ,  by the bias ratio for the conventional 
measurement design, second, by the ratio of the 
variable unit costs of collecting the data for 
the standard design relative to the conventional 
measurement design and, third, by the ratio of 
the unit variance for the standard design 
relative to the conventional design. 

MEASUREMENT DESIGNS 

A survey measurement design is represented by 
the specific set of factor levels which define 
the measurement process and which impinge upon 

the outcome of that process. For example, the 
mode of interview is a measurement factor which 
can occur in a given measurement design at one 
of three levels, namely, personal, telephone or 
mail. Factors and their levels which might 
appear in the measurement design for a survey 
gathering data on past events include: 

FACTOR LEVELS 

Mode of Interview Personal, telephone, mail 
Respondent Rule Self, proxy 
Administration Self, by interviewer 
Interview Method Paper and pencil, computer 

assisted 
Length of Recall One month, two months, 

three months, etc. 
Type of Reca l l  Bounded, unbounded 

The choice of measurement design for a 
specific survey is usually dictated by cost and 
accuracy considerations with cost often 
dominating, particularly in the absence of data 
on the systematic error levels associated with 
alternative measurement designs. I t  is this 
lack of data on the net bias in conventional 
measurement designs that has prompted the 
proposal in the earlier paper that the survey 
research community adopt and use a single set of 
measurement design standards to estimate the 
measurement bias in survey estimates relative to 
the chosen standard design. 

MEASUREMENT STANDARDS 

An accuracy standard for measurements in 
surveys can be defined as that level for a given 
measurement factor which can be expected to 
yield the least biased data at the current state 
of the art. For example, i t  is generally 
accepted that sample persons provide more 
accurate data about events occurring to 
themselves in the past than do proxy 
respondents. Thus, a standard unbiased estimate 
of the measurement bias generated by proxy 
respondents in a given survey is possible 
provided a design- consistent probability sample 
of cases is selected for self-response 
measurement. The term "standard unbiased" 
refers to the accuracy of a measurement factor 
level relative to the chosen standard, which, in 
absolute terms, could s t i l l  be biased. 

Given a set of measurement standards, one for 
each of the measurement design factors, the bias 
for each of the other factor levels can be 
determined. By combining the set of measurement 
standards, a "standard measurement design" (SMD) 
is defined. For example, a concensus standard 
measurement design might be: 

Personal Intervi ew 
Computer Assisted 
Self-Respondent 
One Month Bounded Recall 
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Similarly, the actual or "conventional 
measurement design" (CMD) used in a given survey 
can be defined as a combination of measurement 
factor levels. I t  might be, for example, a 
telephone survey, using paper and pencil, with 
proxy- as well as self-respondents, together 
with unbounded six-month recall. Although 
information on the components of the net 
measurement bias is important for establishing 
standards, i t  is not essential that the bias 
associated with each of the measurement design 
factor levels used in a specific survey be 
estimated in each and every survey. Rather, the 
net bias generated by a conventional measurement 
design can be estimated by also collecting the 
survey data for an independent design-consistent 
probability sample selected from the population 
of interest and using the SMD instead of the 
CMD. 

ADJUSTED ESTIMATES 

I t  has become increasingly routine to adjust 
survey estimates to reduce coverage and 
nonresponse biases. Although rarely exp l ic i t ly  
stated, adjustments of sample weights for unit 
nonresponse, imputations for item nonresponse, 
and post s t rat i f icat ion adjustments are all 
dependent on acceptance of accuracy standards. 
Similarly, whenever survey data are collected 
using a standard measurement design in 
conjunction with a conventional measurement 
design, not only can the net measurement biases 
be estimated, but the conventional measurement 
design estimates can be adjusted to reduce, i f  
not eliminate, their measurement biases. I t  is 
proposed to use a composite estimator for this 
purpose. The estimator and i ts properties, for 
simple random samples, are discussed br ief ly  
below and in greater detail in the appendix. 

Assume that independent simple random samples 
of size n c and n s are selected, respectively, 

for the conventional and standard measurement 
designs. Assume further that the true mean of 
in terest ,  #+r, is estimated by the sample mean, 
Ys, for  the SMD sample and that the CMD sample 

mean, Yc, estimates #-r .  Thus, Yc is a 

biased estimate of the true mean, with bias 
equal to -2r.  The variance of a single sample 

observation is assumed to be #2 and #2 for 

2 the respective measurement designs. Since #c 

is l i ke l y  to contain additional variance 
associated with the systematic error component 

of each CMD observation, #2 w i l l  usually be 

2 greater than #s" 

The proposed estimator is 

#i : ( l-) ' )(y s + yc)/2 + )'Ys (I) 

This is a biased estimator with bias equal to 
-(1-)')~, which, in absolute value, is less than 
or equal to half the bias in Yc" The value of 

)̀  which minimizes the mean square error of # is 

)'OPT (g2+n-1 -1 1 +Kn-1 = c - Kn s)/(62+n-c s) 

where 

2 2 nc 62 = n c (2T) /a c 

is the square of the bias rat io  for  Yc ( i .e .  

ra t io  of the bias in Yc to the standard error 

of Yc) and 

2 2 
K = as/# c 

is the ratio of the unit variances. The minimum 
A 

mean square error for # is then 

MSE(#) = #2(nc62 + 1)/n[(nc 62 + I)~ + K(1-~)] (2) 

where 

= ns/(ns+nc ) = ns/n. 

OPTIMUM COMBINED CONVENTIONAL AND STANDARD 
MEASUREMENT DESIGNS 

In order to determine the best allocation of 
resources between the CMD and the SMD, the total 
survey cost 

C = C O + ncC c + nsCs, 

where C c and C s are the respective variable costs 

per sample unit for the conventional and standard 
measurement designs, was minimized subject to the 
requirement that the resulting 

^ 2 
MSE(#) = #s/m 

The optimum sample sizes are 

(nc) OPT = (~-~-~ - I)/62 = m(~-R-K - I)/p2 

and 

(ns)oPT : m - ~ (~-RK - 1)/62 

: m El - ~ (~-R-K- l ) Ip  2] 

where R = Cs/C c is the variable cost rat io  for  

an SMD observation re lat ive to a CMD observation 

and #2 = m 62 is the square of the Yc bias 
rat io  for  samples of size m. 

I t  follows that 

(n/m)op T 

and 

= I + (~-~- I)(~'~- K)/~'R-K ~2 
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~OPT = 1 - (~-RK- 1)/E# 2 + (4-RK- 1)(1 -~-KT-R)] 

The optimum designs for various combinations 
of the bias ratio f ,  the cost ratio R, and the 
variance ratio K are shown in Tables 1 and 2. 
Table 1 shows the optimum proportion of the 
total sample, that is ~=ns/n, to be measured 

using the SMD. Table 2 shows the total sample 
size inflation, n/m, for the optimum design. As 
expected, with the cost ratio R fixed, a greater 
proportion of the total sample is allocated to 
the SMD as the bias ratio f for Yc increases. 

Also as expected, with fixed bias ratio, a 
smaller proportion of the total sample is 
allocated to the SMD as the cost of collecting 
data with the SMD increases relative to the CMD 
data collection cost. With R and p both fixed, 
a greater proportion of the total sample is 

2 
allocated to the SMD as the unit variance #c 

increases relative to #2 that is, as K 

decreases. 
What is surprising in Table 1 is that a 

majority of the total sample is allocated to the 
SMD in about twice as many cells as for the CMD. 
This is clearly contrary to usual practice where 
there is often some reluctance to use a more 
costly, yet more accurate measurement design. 
In this context, Table 1 suggests that even when 
the measurement bias is rather small relative to 
the parameter being estimated, a sizeable 
proportion of the total sample should be 
invested in the SMD. For example, i f  there is 
only a two percent measurement bias with a CMD 
for a variable with a 100 percent coefficient of 
variation, then the bias ratio for various 
values of m is. 

m Bias Ratio 
m 

400 0.4 
900 0.6 

1600 0.8 
2500 1.0 
3600 1.2 
6400 1.6 

This simple example, together with Table I, 
suggests that rather small measurement biases 
can quickly dominate the MSE of estimates 
derived from a conventional measurement design 
and that, unless the cost ratio for the standard 
measurement design is prohibitively high, a 
significant proportion of the total sample 
should be allocated to the SMD. 

When 7<1, the optimum design provides an 
A 

estimate of # with the same mean squared error, 

but at less cost than a sample of size m devoted 
entirely to the SMD. In this situation, n>m and 
(1-~) is the proportion of the total sample 
assigned to the CMD. Table 2 reflects the 
additional sample, relative to m, which is 
assigned to the CMD. In general, the 
incremental sample increases as the cost ratio R 
increases, decreases as the bias ratio f 

increases, and decreases as the variance ratio K 
decreases. 

LaVange and Folsom (1985) have computed 
victimization rates for personal crimes with 
contact adjusted to a standard measurement 
design model for the 1978 National Crime Survey 
(NCS). The SMD selected consisted of bounded, 
personal, self-response interviews at the second 
time in panel, and a recency distribution which 
weighted the effect of 1-3 month recall 1.75 
times that of a 4-6 month recall to account for 
the jo int  effect of internal telescoping of 
events and memory loss biases. Accepting these 
adjusted victimization rates as standards, the 
estimated bias ratios for the 1978 NCS actual 
measurement design are shown in Table 3. The 
1978 NCS measurement design included both 
telephone and personal interviews, proxy- as 
well as self-respondents, unbounded as well as 
bounded interviews, six months recall of 
victimization events, and interviews with the 
same respondents every six months up to a total 
of seven interviews. 

Since the optimum design achieves the desired 
mean square error at least cost, i t  is of 
interest to determine the savings realized by 
the optimum design relative to using the SMD 
exclusively with sample size m. 
The percent cost savings for optimum designs 
defined by the same combinations of bias, 
variance and cost ratios as in Table 1 are shown 
in Table 4. As expected, the greatest relative 
savings occur when more of the total sample can 
be allocated to the CMD and when the cost ratio 
is high. There is l i t t l e  opportunity to save 
money with a CMD when its bias ratio is high. 

EFFECT OF COMPLEX SURVEY DESIGNS 

The optimum designs given in Tables 1 and 2 
assume simple random sampling. However, these 
results should remain essentially the same for 
more complex survey designs involving 
strat i f ied, multistage, cluster samples. The 
applicabil ity of Tables 1 and 2 to more complex 
designs is most l ikely when both the CMD and SMD 
samples are independently generated using the 
same sampling frame and the same complex sample 
design since the design effects wil l  then be the 
same, provided, of course, that the variance 
ratio K for the two measurement designs remains 
constant. 

CONCLUSIONS 

This paper continues to emphasize the need to 
recognize and assess the level of systematic 
error or net bias associated with the 
measurement process in human population surveys 
collecting data on events that occurred sometime 
in the past to sample persons. I t  looks at 
survey designs which would use measurement 
design standards to both determine and adjust 
for the net bias in conventional measurement 
design estimates. 

The primary problem addressed is that of 
determining the least costly allocation of 
avai I able resources between an i nexpensi ve, but 
biased conventional measurement design and a 
more expensive, but less biased standard 
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measurement design in order to realize a 
combined estimate which satisfies a mean square 
error constraint. The set of optimum designs in 
Tables 1 and 2 reinforces the need for survey 
measurement design standards to provide a basis 
for determining the net bias in conventional 
measurement designs, at least relative to the 
chosen standard. In fact, the optimum designs 
tend to allocate more than half of the total 
sample to the standard design except for 
situations in which the bias ratio for the 
conventional design estimate is less than 0.5 or 
the cost of collecting data with the standard 
measurement is at least 50 percent greater than 
with the conventional design and their is l i t t l e  
added variance due to the systematic errors in 
the conventional design. 

As stated in our earlier paper on the use of 
standards, "The survey research community can 
benefit through the adoption of a single set of 
accuracy standards for controllable measurement 
design factors". This paper clearly 
demonstrates that i t  makes sense to know the 
bias, cost and variance ratios of estimates 
based on conventional survey measurement designs 
relative to estimates based on measurement 
designs defined by a set of adopted standards. 
Given a single set of standards and use of the 
measurement designs defined by these standards 
in conjunction with conventional measurement 
designs, valuable information on the cr i t ical  
bias, cost and variance ratios wil l  be realized. 
This information wil l  not only enable better 
allocation of resources between the conventional 
and standard designs, but the adjusted estimates 
should have greater accuracy, at least relative 
to the chosen standards. 
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APPENDIX 

Our composite est imator has the form 
A 

# : ( I - ) ' ) (O '5) (Ys + Yc) + )'Ys 

: (0.5) [(l+),)ys + (l-).)y c] 

We assume that Ys is standard unbiased with 

expectation (#+r) and that Yc has expectation 

(#-r). The associated bias in # is 

Bias (#) = -  (I-),)~ 

Assuming that  Ys and Yc are independent, the 
A 

variance of p is 

Var(#) = (0.25) [ ( I+) , )2(a 2 + ns) + 

( i_).)2(# 2 - nc) ] 

Noting that  #2 includes the variance of 

ind iv idual  measurement biases and the covariance 
of these biases with the associated true values, 

we define (2 = a2 and assume that K = (a 2 - 

#~) is most commonly less than 1. Noting 

fu r the r  that  

Bias2(p) = (I-),)  2 r 2 

= (0.25) a2[ (2r )  2 + 2 ]  ( i_),)2, 

we define 6 = [ (2r )  - a ] .  The parameter 6 can 
be viewed as the a scaled absolute bias in Yc 
re la t i ve  to the standard. 

In terms of the notat ion defined above, we 
have 

^ - 1  MSE(#) = (O.25)a2[(l+),)2Kns + 

(I-),)  2 (62+nc I ) ]  

The value of ),, say Xo, that  minimizes MSE(#) is 

)'o = ( 6 2 -  Kns I + nc I) + 

(62 + Kns I + nc I) (A. I )  

The form of MSE based on )'o becomes 

MSE o = (IG72+ns)(62 + nc I) + 

-I n~l) (62 + Kn s + (A.2) 

To specify optimum values for the sample sizes 
n s and nc, we minimize the simple linear survey 

cost funct ion 

C(ns,nc) - C o + n s C s + n c C c 

subject to the mean-squared-error const ra in t  

MSE o(n s, n c) = (Ka 2 + m). 

Note that  th is  MSE const ra in t  requires that  we 
achieve the MSE associated with the design 
(ns=m, and nc=O). 

We begin the solut ion by recast ing the MSE 
const ra in t  in the form 

nc(m62-K) - n s - ncns 62 + m = O. 

The associated lagrangian is therefore 

F(n c, n s) : (C o + n s C s + n c C c) 

- 62 + m] - 7[nc(m62-K) ns-ncn s 
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Setting the derivatives to zero, the following 
three solution equations are obtained 

C s = - 7(nc 62 + I) (A.3) 

C c = - 7(ns 62 - m62 + K) (A.4) 

and 

0 = nc(m62-K) - n s -ncns 62 + m (A.5) 

Dividing Eq. (A.3) by Eq. (A.4) yields the 
result 

(C s ÷ Cc) = (nc 62 + 1) + (ns 62 - m62 + K) 

Def in ing the cost r a t i o  R -  (C s ÷ C c) ~ I ,  we 

solve the equat ion above fo r  n s y i e l d i n g  

n s = [ (nc62+I)  + R(m62 - K)l ÷ R62 (a.6) 

Subs t i t u t i ng  Eq. (A.6) in to  the MSE cons t ra i n t  
Eq. (A.5) one obta ins a f t e r  some s i m p l i f i c a t i o n  

(nc 62 + I )2  : RK. 

This quadra t ic  equat ion y i e l ds  the fo l l ow ing  n c 
so lu t ion  

= (~'R-K- I )  + 62 (A.7)  (nc)opt  

Our solution for n s is obtained by 

substituting the n c result from Eq. (A.7) into 

Eq. (A.6). This substitution leads to 

= (~-R-£ + R62m - RK) ÷ R62 (ns)opt 

= m_ K~-~-R:R (,I-~- I) ÷ 62 

: m - ~ n (A.8)  c 

Combining Eq.'s (A.7) and (A.8) we obtain the 
optimum allocation fraction ~ = [n s +(ns+nc)] 

for the standard subsample as a function of the 
bias ratio parameter 

: ~ ( 2 r ) ÷  #c" 

Note that # is [Bias (yc)+ SE(Yc)] when n c = m. 

In terms of this bias-ratio for the conventional 
mean Yc when nc=m, we have 

= 1 - {(,I-~-~_ I) + [#2 + (,I-~_ I)(I-K~-KTR )]}  
ropt 

(A.9) 

The optimum design's percent saving in variable 
survey costs relative to the design with ns=m 
and nc=O is 

~opt = (lO0)[mCs- (nsCs + ncCc)] ÷ (mCs) 

= (100)[(,I-~-~- 1) 2 - R# 2] (A. 10) 

Recall that the design (ns:m, nc:O) was used to 

establish our MSE constraint. 
Finally, i t  is interesting to note how much 

the optimum sample size n=(n s + nc) is inflated 

relative to the design (ns=m,nc=O). This 

inflation factor has the form: 

= I + [(~-RK- I)(4-RK- K) + ~ ~2] (n+m) opt 
(A.11) 
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Table 1. Sample Al locations for  Survey Standards Subsampling (~F = ns/n) Table 2. Sample Size In f la t ion  Factor (n/m) for  Survey Standards Subsampling 

Bias Ratio Cost Ratio 
6 K 1.0 1.1 1.2 1.5 2.0 3,0 4.0 

0.3 

0.4 

0.5 

0.6 

0.7 

0.B 

0,9 

1.0 

1.5 

1.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.0 1.000 0.471 0.029 0.000 0.000 0.000 0.000 

0.8 1.000 1.000 i.O00 0.175 0.000 0.000 0.000 

0.6 1 .000 1 .000  1 . 0 0 0  1 . 0 0 0  0 .283  0 .000  0.000 

1.2 0 ,367 0 .029  0 . 0 0 0  0 . 0 0 0  0 .000  0 .000  0.000 
1.0 1.000 0 .699  0 . 4 3 3  0 . 0 0 0  0 .000  0 .000  0.000 
0,B 1.000 1 .000  1 .000  0 . 4 8 6  0 ,000  0 .000  0.000 
0.6 1.000 1 .000  1 . 0 0 0  1 .000  0 .530  0 .021 0.000 

1.2 0 ,604 0 .388  0 . 2 0 0  0 . 0 0 0  0 .000  0 .000  0.000 
1.0 1.000 0 .807  0 , 6 3 1  0 .22B  0 .000  0 .000  0.000 
0.8 t . 0 0 0  t.000 1 .000  0 .654  0 .237  0 .000  0.000 
0.6 1.000 1.000 1.000 1.000 0.674 0.222 0.064 

1.2 0.728 0.579 0.444 0.137 0.000 0.000 0.000 

1.0 1.000 0.865 0.741 0.440 0.139 0.000 0.000 

0.8 1 .000 1 .000 1 .000  0 . 7 5 3  0 .421  0 .122  0.009 
0.6 1 .000  1 .000  1 . 0 0 0  1 . 0 0 0  0 . 7 6 3  0 . 3 7 8  0.211 

1.2 0 .802  0 . 6 9 2  0 . 5 9 2  0 . 3 5 1  0 . 1 0 5  0 . 0 0 0  0.000 
1.0 1 .000 0 .901  0 . 8 0 8  0 . 5 7 7  0 . 3 2 2  0 . 0 8 4  0.000 
0.8 1 .000  1 .000  1 . 0 0 0  0 . 8 1 5  0 . 5 4 9  0 . 2 7 3  0.148 
0.6 1.000 1 .000 1 . 0 0 0  1 .000  0 .821 0 .497  0.336 

1.2 0.849 0.765 0.688 0.495 0.281 0.075 0.000 

1.0 1.000 0.924 0.853 0.670 0.456 0.229 0.123 

0.8 1.000 1.000 1.000 0.857 0.641 0.394 0.267 

0.6 1.000 1 .000  1 .000  1 . 0 0 0  0 .860  0 .588  0.438 

1.2 0 .881 0 ,815  0 . 7 5 3  0 . 5 9 6  0 .412  0 .213  0.117 
1.0 1.000 0 .940  0 . 8 8 3  0 . 7 3 6  0 .555  0 .346  0.237 
0.8 1 .000 t.000 1 .000  0 . 8 8 6  0 .708  0 .489  0.367 
0.6 1.000 1.000 1.000 1.000 0.888 0.658 0.521 

1.2 0 .904 0 .850  0 . 8 0 0  0 . 6 7 0  0 .511  0 .325  0.226 
1.0 1.000 0 .951 0 . 9 0 5  0 . 7 8 4  0 .631  0 .441  0.333 
0.8 t.O00 1.000 1.000 0.907 0.759 0.566 0.451 

0.6 1.000 1.000 1.000 1.000 0 .909  0.713 0.589 

1.2 0 .957 0 .934  0 . 9 1 1  0 . 8 5 1  0 .769  0 .652  0.573 
1.0 1.000 0 .978  0 . 9 5 8  0 . 9 0 2  0 .825  0 .714  0.636 
0.8 1.000 1.000 1.000 0.958 0.887 0.782 0.706 

0,6 1 .000 1 .000 I . O 0 0  1 .000  0 .958  0 .860  0.788 

Bias Ratio Cost Ratio 

B K t.O I . I  1.2 1.5 2.0 3.0 4.0 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.5 

1.2 0 .901 0 .901  0 .901  0 .901  0 .901  0 .901 0.901 
1.0 1 .000 1 .025  1 .092  1 .099  1 .099 1.099 1.099 
0.8 1.000 1.000 1.000 1.286 1.408 1.408 1.408 

0.6 1 .000 1 .000  1 .000  1 .000  1 .480  1.961 1.961 

1.2 0 .943 0 .959  0 . 9 6 2  0 .962  0 .962  0 ,962 0.962 
1.0 1 .000 1 .014 1 .052  1 .190  1 .190  1 .190 1.190 
0.8 1 ,000 1 .000  1 .000  1 ,161 1 .563  1.563 1.563 
0.6 1 .000 1 ,000 1 .000  1 .000  1 ,270 2 .180 2.273 

1.2 0 .964 0 .974  1 .000  1 .053 1 ,053 1.053 1.053 
1.0 1 ,000 1 .009  1 .033  1 .165  1 .333  1.333 1.333 
0.8 1.000 1.000 1.000 1.103 1.389 1.818 1.818 

0.6 1 .000 1 .000  1 ,000  1 .000  1 .173 1 .755  2.346 

1.2 0.975 0.982 1.000 I.I00 1.190 1.190 1.190 

1.0 1.000 1.006 1.023 1.115 1.337 1.563 1.563 

0.8 1.000 1.000 1.000 1.072 1.270 1.738 2.211 

0.6 1.000 1.000 1.000 1.000 1.120 1.525 1.935 

1.2 0 .981 0 .986  1 .000  1 .074  1 .253 1.408 1,408 
1.0 1 .000 1 ,005  1 ,017  1 .084 1 .248 1.631 1.961 
0.8 1.000 1.000 1.000 1.053 1.199 1.542 1.890 

0.6 1 .000 1 .000  1 .000  1 .000  1 .088 1.385 1.687 

1.2 0.986 0.990 1.000 1.056 1.193 1.515 1.786 

1.0 1.000 1.004 1.013 1.064 1.190 1.483 1.781 

0.8 1.000 1.000 1.000 1.040 1.152 1.415 1.681 

0.6 1.000 1.000 1.000 1.000 1.067 1.295 1.526 

1.2 0 .989 0 .992  1 .000  1 .045  1 .153 1.407 1.665 
1.0 1 .000 1 .003  1 .010  1 .051 1 ,150  1,382 1.617 
0,8 1 .000 1 .000 1 .000  1 .032  1 .120 1.328 1.538 
0.6 1 .000 1 .000  1 . 0 0 0  1 .000  1 .053  1 .233 1,415 

1.2 0 .991 0 .993  1 .000  1 .036  1.124 1.330 1.539 
1.0 1 .000 1 .002  1 .008  1.041 1.121 1.309 1.500 
0.8 1 .000 1 ,000 1 .000  1 .026  1 .097 1.266 1.436 
0.6 1 .000 1 .000  1 . 0 0 0  1 .000  1 ,043  1.189 1.336 

1.2 0 .996 0 .997  1 .000  1 .016  1 .055 1.147 1.239 
1.0 1 .000 1.O01 1 .004  1 .018  1 .054 1 .138 1.222 
0.B 1 .000 1 .000 1 . 0 0 0  1 .011 1 .043 1.118 1,194 
0.6 1 ,000 1 .000  1 .000  1 .000  1 .019 1.084 1,150 



Table 3. Estimated Bias Ratios for Victimization Rates 
1978 National Crime Survey 

Measurement Factor Levels 
Conv enti onal Standard 

Personal Crimes Personal Crimes 
with Contact without Contact 

Proxy respondent 

Telephone Interview 

Sel f-response -2.25 - 1.61 

Personal Interview 0.33 0.22 

Recency 
6 months 1 month 
6 months 2 months 
6 months 3 months 

Time-in-Panel 
7th interview 
6th interview 
5th interview 
4th interview 
3rd interview 

Unbounded Interview 

-9.98 -13.28 
-5.81 -8.94 
-2.01 -5.01 

2nd interview -1.90 -1.77 
2nd i ntervi ew - I. 52 - I. 20 
2nd interview -1.22 -0.61 
2nd interview -1.02 -0.26 
2nd interview -0.88 -0.05 

CMD vs SMD* 

1978 
Ist Quarter 
2nd Quarter 
3rd Quarter 
4th Quarter 

Sex 
Male 
Fema I e 

Race/Ethnicity 
Hispanic 
Black, nonHi spanic 
White, nonHispanic 

Age 
16-19 years 
20-24 years 
25-34 years 
35-49 years 

Family Income 
$10,000-14,999 
$15,000-24,999 
$25,000+ 

Bounded Interview 5.64 9.54 

-4.58 1.95 
-2.91 0.16 
-5.31 -0.21 
-5.71 -0.92 

-3.31 1.25 
-4.85 3.02 

1.48 1.83 
2.72 2.49 

-7.62 1.54 

0.34 1.06 
4.17 9.69 
2.40 9.53 

-8.15 2.34 

-1.97 3.30 
-3.90 4.78 
-3.24 8.72 

* As defined in the text. 
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Table 4. Cost Savings Ratio for Survey Standards Subsampling 

Bias Ratio/ Cost Ratio 
Uarlance Ratio (k) 1.0 1.1 1.2 1.5 2.0 3.0 4.0 

0.3 1.2 0 .099  0 .000  0 .000  0 .000  0 ,000  0 . 0 0 0  0.000 
1.0 0 .000  2 .406  8 .435  0 .000  0 .000  0 . 0 0 0  0.000 
0.8 0.000 0.000 0.000 6.748 0.000 0.000 0.000 

0.6 0 .000  0 .000  0 .000  0 .000  5 .061  0 . 0 0 0  0.000 

0.4 1.2 5.694 12.599 0 .000  0 .000  0 .000  0 . 0 0 0  0.000 
1.0 0.000 1.354 4.745 0.000 0.000 0.000 0.000 

0.8 0 .000  0 .000  0 .000  3 .796  0 .000  0 . 0 0 0  0,000 
0.6 0 .000  0 .000  0 .000  0 .000  2.847 24.316 0.000 

0.5 1.2 3 .644  8 .064 13.333 0 .000  0 .000  0 . 0 0 0  0.000 
1.0 0.000 0 .866  3 .037 13.469 0 .000  0 .000  0.000 
0.8 0 .000  0 .000  0 .000  2 .429 14.036 0 . 0 0 0  0.000 
0.6 0.000 0.000 0.000 0.000 1.822 15.562 30.161 

O,b 1.2 2.530 5.600 9 .259  21.615 0.000 0.000 0.000 

1.0 0.000 0.602 2.109 9.354 23.830 0.000 0.000 

0.8 0.000 0.000 0.000 1.687 9.747 27.927 43.215 

0,6 0.000 0,000 0.000 0.000 1.265 10.807 20.945 

0.7 1.2 1 .859  4 .114  6.803 15.880 30.777 0 , 0 0 0  0.000 
1.0 0.000 0.442 1.549 6.872 17.507 36.456 0.000 

0.8 0.000 0,000 0.000 1.239 7.161 20.518 31.750 

0.6 0 .000  0 .000  0 .000  0 .000  0 .930  7 .940  15.388 

0.8 1.2 1 .423  3 .150  5.208 12.158 23.564 41.941 0.000 
1.0 0 .000  0 .338  I.I86 5.261 i3.404 27.911 39.062 
0.8 0 .000  0 .000  0 .000  0 .949  5.483 15.709 24.308 
0.6 0 .000  0 .000  0 .000  0 .000  0 .712  6 .079 11.782 

0,9 1.2 1 .125  2 .489  4 .115  9 .606 18.618 33.139 43.772 
1.0 0 .000  0 .267  0 .937  4 .157 10.591 22.053 30.864 
0.8 0 .000  0 .000  0 ,000  0 .750  4 .332 12.412 19.207 
0.6 0 .000  0 .000  0 .000  0 .000  0 .562  4 .803  9.309 

1.0 1.2 0 .911  2 .016  3 .333  7.781 15.081 26.842 35.455 
1.0 0 .000  0 .217  0 .759  3 .367  8.579 17.863 25.000 
0.8 0 .000  0 .000  0 ,000  0 .607  3 .509 10.054 15.557 
0.6 0 .000  0 .000  0 .000  0 .000  0 .455  3 .891  7.540 

1.5 !.2 0 .405  0 .896  1 .481 3 ,458  6 .703 11.930 15.758 
t.O 0 ,000  0 .096  0 .537  1 .497  3 .813  7 .939 11.111 
0.8 0 .000  0 .000  0 .000  0 .270  1 .560  4 .468  6.914 
0.6 0 .000  0 .000  0 .000  0 .000  0 .202  1 .729  3.351 
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