
N O N P A R A M E T R I C  D E N S I T Y  E S T I M A T I O N  
F O R  I M M U N O L O G I C  M E A S U R E M E N T S  

T. Yang and N. Dubin 

New York University Medical Center 
341 E. 25th St., 2nd Floor, NYC 10010 

KEY WORDS: Local bandwidth, global 
bandwidth, immunologic measurement, HIV 
infection 

1. I n t r o d u c t i o n  

Suppose that X1, ..., Xn are indepen- 
dent, identically distributed, real-valued 
random variables with an unknown prob- 
ability density f(x). We consider the esti- 
mation of the unknown density function 
f(x). The method of density estimation 
has generated several considerable litera- 
tures over the past few years. The kernel 
method, adopted here, has proved to be 
one of the most popular approaches and is 
well reviewed by Fryer (1977). Briefly, an 
estimator fn(x) of the true density func- 
tion f(x) is constructed by placing a ker- 
nel function K(x) over each observation 
on the data set, {X1, ..., X,}. 

In our studies, we use a kernel esti- 
mator defined by 

1 ~ K  x - X i  
fn(x,h) = n- -h  i = 1  ' , ( 1 )  

where K is called kernel function and h is 
called bandwidth or smoothing parameter. 
The kernel K(z) has value I of integration, 

i.e. JK(x)dx = 1. 

An estimator of density function is 
called global bandwidth (GB) estimator if 
the bandwidth h is constant. Moreover, 
when h is depended upon the sample X1, 
• .., Xn, the estimator is named automatic 
global bandwidth (AGB) estimator. Var- 
ious properties of this kind of estimator 
have been studied since 1956. Rosenblatt 
(1956) and Parzen (1962)introduced the 
definition of the kernel estimator. De- 
vroye and Wagner (1980) and Deheuvels 
and Hominal (1980) proved the uniformly 
strong convergence of the estimator. 

An alternate estimator of the density 
function is called the local bandwidth (LB) 

estimator, for which the bandwidth h is a 
function of location x. Krieger & Pickands 
(1981) and Abramson (1982) studied the 
weak convergence of the LB estimator. Yang 
(1988) proved the uniformly strong con- 
vergency and other properties of the esti- 
mator. 

The estimator fn(x, h) contains two 
unknown conponents, the kernel function 
K and the bandwidth h. In order to use 
fn(x, h) to approach the unknown density 
fix), we need a method to choose K and 
h. Several kernels are presented in the pa- 
pers by Rosenblatt (1971) and Gasser et 
al. (1985). After determining the kernel, 
the selection of the bandwidth h is crucial 
to the performance of this estimator. If 
h is too small the estimator gives a curve 
that is too jumpy, being overly dependent 
on the particular realization of the data 
at hand. It is showing features that are 
not shared by the density f. If h is too 
large, the estimator creates a bias that 
can, by oversmoothing, eliminate intrin- 

sic features of f. 

One must set up a criterion to choose 
the optimal bandwidth, that is, to select h 
to minimize the integrated squared error 
of fn, 

f [f~(x,h)- f(x)]2 dx. 

Unfortunately, this depends on the un- 
known density f, while any practical method 
of choosing a bandwidth should depend on 
the sample. One may write 

f [fn(x,h)- f(x)]2dx = f fn2(x,h) dx 

-2 f fn(x,h)f(x)dx + f f2(x)dx. 

Since the last summand is independent of 
h, the goal of minimizing this loss is equiv- 
alent to that of minimizing 

/fn2(X, h)dx - 2 f in(x, h)f(x)dx. 

Notice that the second term depends 

73 



on the unknown function f. Therefore, 
this minimization cannot be realized in 
practice without knowledge of f(x). How- 
ever, one may write 

/ fn(x,  h ) f ( x )dx  = Ex[ fn (x ,  h)]. 

This motivates estimating the second term 
by 

n 

n - l E f h , j ( X j ) ,  
j---1 

where f h s ( X j )  denotes the kernel density 
estimator with the j th observation deleted 
from the sample, e.g. 

f h , j ( x ) -  ( n -  1)h h " 

Now the goal of minimizing the integrated 
squared error of fn changes to that of min- 
imizing the cross-validation function of fn, 

C y ( h )  =/f2(x,h)d  
n 

- 2 n - I E A , j ( X j ) .  ( 2 )  

j - -1  

This was first suggested by Hall (1983) 
and Bowman (1984). Several papers (Hall 
(1983), Stone (1984), Burman (1985), and 
Marron (1985)) have shown that  if h c v  
is a suitably chosen bandwidth based on 
minimizing (2), then under some mild con- 
ditions, h e y  is asymptotically optimal, in 
the sense that 

A ( h c y  , f ) / A ( h f ,  f )  ---+ 1 

o r  

* I, h c v  

in some mode of convergence, where h I is 
the minimizer of integrated squared error, 

f )  = f [fn(x, h) - f(x)] 2 dx. A(h, 

According the above result, we can 
select an optimal bandwidth based on min- 
imizing the cross-validation instead of on 
minimizing the integrated squared error of 
fn. In practice, we may apply numerical 
methods to determine the optimal band- 
width, a minimizer of the cross-validation 
function of fn. 

2. M a i n  T h e o r e m  

Before discussing the realization of the ker- 
nel estimator, we consider its convergence. 
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The two undetermined components of the 
kernel estimator in (1) are the kernel func- 
tion K and the bandwidth h. In order to 
obtain an estimator of f, we must set some 
suitable conditions over the kernel K. In 
other words, we construct the kernel K to 
satisfy those conditions. Suppose that  the 
kernel K is symmetric, bounded, and has 
bounded variation. K is a function with 
order k, that is, 

K ( x ) x J d x =  O, i f  l <_j <_ k - l ;  
C, i f j = k ,  

where 6' is a non-zero number, and K 2 (x) 
is integrable. If the density f (z)  has up 
to (k + 1)th derivatives and [f(k)(x)]2 is 
bounded, and integrable, it has been shown 
(Yang (1988)) that 

T h e o r e m  1 Assume that T is a func- 
tion of x and X1, ..., Xn with values in 
[a,b], where 0 < a < b < (x~. If  we take 
the bandwidth h as a proportion of T, h = 
7n -1/(2k+1), then we have 

O(nl/(2k+l)(loglogvt/ rt) 1/2) a.s. 

According to the result of Theorem 
1, we know the LB estimator is uniformly 
strong convergent. Therefore, in practice 
we may apply the LB estimator instead of 
the GB estimator. 

Obviously, the computation of the LB 
estimator is more complicated than that  
of the GB estimator. However, there are 
advantages to using the LB estimator. First, 

we want to choose an optimal bandwidth 
h to minimize the mean squared error of 
fn(x) .  In other words, one selects an es- 
t imator  approaching the unknown density 
in the sense of mean squared error as soon 
as possible. It has been proven (Yang 
(1988)) that the LB estimator is closer to 
f ix)  than is the GB estimator in certain 
cases. Second, one hopes to obtain an 
estimator (curve) with adaptive smooth- 
ness. In general, one would not want an 
estimator to be grossly under-smooth, even 
with minimum mean squared error. It is 
difficult to decide what amount of smooth- 
hess is suitable. One wants to achieve a 
balance between the error value and the 
smoothness. Applying the LB estimator, 
it is often possible to obtain a better  bal- 
ance. An example is presented in next 
section. 



3. Application: Immunologic Mea- 
surements from Intravenous Drug Users 

For our application, we used data collected 
from a cohort of intravenous drug users 
from drug detoxification programs and methadone 
maintenance treatment programs in New 
York City. This cohort has been described 
in detail by Des Jarlais et al.(1987). The 
subset of this cohort to be analyzed here 
consists of 392 subjects with at least one 
assessment of immunologic variables and 
known antibody status for Human Immun- 
odeficiency Virus (HIV). One hundred ninety- 
one patients (48.7°~) were consistently HIV- 
negative, 185 patients (47.2%) were con- 
sistently HIV-positive, and 16 patients (4.1%) 
converted from being HIV-negative to HIV- 
positive during the course of follow-up. 
Subjects were enrolled during 1984-85 and 
scheduled for yearly visits thereafter, al- 

though the actual follow-up intervals were 
somewhat longer, the mean time between 
the first and second visit being 15.8 months. 
Immunologic variables for which data were 
collected included T-helper (T4) cells, T- 
suppressor (T8) cells, T4 /T8  ratio and to- 
tal lymphocytes. For this particular illus- 
tration we consider T4 cells only. 

Counts of T4 cells are known to vary 
enormously among individuals who are im- 
munologically normal, as well as within 
such individuals over time. On the aver- 
age, however, we expect the distribution 
of T4 counts among HIV-negative sub- 
jects to be relatively stable over time peri- 
ods as long as several years. (Over decades 
one may observe an age-related decline.) 
Among HIV-positives we expect there to 
be a downward shift in the T4 count over 
time, as these target cells are depleted 
by the virus. Among HIV-converters it 
would be of interest to know whether, prior 
to HIV infection, the distribution of T4 
counts were similar to that for consistent 
HIV-negatives. Subsequent to infection, 
the analogous comparison of HIV-converters 
to consistent HIV-positives is less direct, 
because the latter group had been infected 
for varying (and unknown) lengths of time. 
For a thorough discussion of such preva- 
lent cohorts, see Brookmeyer and Gail (1987). 

Consider first the sample distribution 
of T4 counts at first visit for the data sub- 
set of 191 HIV-negatives, abbreviated as 

T4NN1 (Table 1). A simple first step is to 
use parametric estimation. For example, 
we can choose a Gaussian model given by 

f ( x ; # , a )  = 
1 

a x / , .~  e x P - 2 a-------------y--- 

--cx~ < x < oo. 

Using the sample data, one substitutes 
the sample mean t~ = 1128.379 and stan- 
dard deviation # = 411.9319 in the above. 
However, the Shapiro-Wilk (1965) test in- 
dicates significant lack of fit (p < 0.01) for 
the normal distribution. 
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Table 1. Frequency distribution of T4 counts 
at the first visit, among subjects 

who were consistently HIV negative 

To obtain fn for this sample, we use a ker- 
nel function given by 

K ( x )  : [3/4(1 - x2), i f  JxJ_<l; 
L O, e l s e w h e r e .  

This is a second-order kernel function. Also 
needed is the bandwidth h. To study the 
effect on the estimators of different choices 
of bandwidths, we use the cross-validation 
function to select several possible band- 
widths. Figure I shows the cross-validation 
curve as a function of the bandwidth. The 
horizontal axis denotes the bandwidth h 
and the vertical axis denotes the cross- 
validation value. Note that the minimum 
occurs at approximately h= 230 and h= 
350. The estimation of density fn with h= 
230 and h = 350 is presented in Figure 
2 (a) and (b), respectively. It would be 
difficult to decide between these two den- 
sity curves; nonetheless, both seem to ex- 
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hibit the essential features of the under- 
lying distribution. In contrast, Figure 2 
(c) shows that for h= 110 the estimator 
gives a density curve which seems under- 
smoothed. 

- 4 , ~ - 4  - 

TI~OE 4 - .  - 
o io  1 ~  leo  ~ soo ~ ~ ~ 84o 

Bandwidth 
r a i n  CV a t  h - 2 3 0  a n d  350 

I 

- 0 . ~ - 4  

Figure 1. bandwidth v.s. cross-validation value, 
min CV at h= 230 and 350 

Now consider the local bandwidth es- 
timator. The bandwidth function may be 
defined by 

C1 
h(z; C~, C:) = N(C:)' (3) 

w h e r e  C1 = k R ( Z l ,  ..., Xn)  is ca l l ed  

scale parameter, k> O, and C2 is called fre- 
quency parameter. R(X1, ..., Xn) is range 
of sample X1, ..., Xn, that is, 

R ( X 1 ,  ..., Xn)  -- m a x { X ' s )  - m in{X ' s ) .  

N(C2) is frequency of sample X ] ,  ..., X n  

on [ x -  6'2, x + C2], that is, 

N(C2) = max{l ,  ¢~ of X's on Ix - (72, x + C2]}. 

Substituting equation (3) into the cross- 
validation function (2), we can compute 
CV values for different choices of C1 and 
6'2. A two-dimensional cross-validation sur- 
face is shown in Figure 3. A minimum 
occurs at approximately C1 = R(X], ..., 
X,)  = 1921.18 and (72 = 30. Figure 4 
shows the resultant local bandwidth den- 
sity estimator. Notice that this local band- 
width estimator exhibits overall charac- 
teristics similar to the global estimators 
with h= 230 and h= 350 (Figure 2 (a) 
and (b)). 

An objective criterion to decide among 
these density estimators may be made on 

the basis of minimizing the cross-validation 
function (2). For the local bandwidth es- 
t imator the CV = - 1 . 4 2 7 7 E - 3 ,  which is 
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smaller than the -0.7097E-3 minimum CV 
value for the global bandwidth estimator. 
In general, the local bandwidth estima- 
tor was superior for all the data subsets 
considered in our application, as may be 
determined from Table 2. 

Table 2. Comparison of the CV value 
for the GB and LB estimators 

for the various data subsets 

Data Subsets GB LB Ratio 

T4NN1 -0.7097E-3 -1.4277E-3 50:100 

T4NN2 -0.9081E-3 -1.6516E-3 51:100 

T4PP1 -0.9086E-3 -1.8170E-3 50:100 

T4PP2 -1.0457E-3 -2.0487E-3 55:100 

In Table 2, the acronym T4NN 1 refers 
to data from the first visit for consistently 
HIV-negative patients, T4NN2 refers to 
data from HIV-negatives at their second 
visit, T4PP1 refers to data from consis- 
tently HIV-positive patients at their first 
visit, and T4PP2 refers to data from HIV- 
positives at their second visit. The ratio 
is the absolute CV value of the GB esti- 
mator divided by the absolute CV value 
of the LB estimator. A ratio less than one 
indicates that the LB estimator is superior 
in terms of the minimum CV criterion. 

In spite of the superiority of the LB 
estimator with respect to the minimum 
CV criterion, occasionally one obtains an 
LB estimator which is undersmoothed, as 
was the case for data subset T4NN2. In 
addition, for HIV converters, the data were 
too sparse to successfully apply the LB 

estimator. For these reasons and also to 
consistently use one type of density esti- 
mator in the graphical comparisons which 
follow, we chose to illustrate our substan- 
tive findings with the GB estimator. 

Consider the comparison of distribu- 
tions of T4 counts for HIV-negatives at 
their first (T4NN1) and second (T4NN2) 
visits (Figure 5). The distributions are 
remarkably similar, in spite of the rela- 
tively low first-visit-to-second-visit corre- 
lation for individual subjects (Pearson cor- 
relation coefficient = 0.11 ). Notice, 
however, that the distribution at second 
visit is moderately shifted to the left. In 
Figure 6 we compare first-visit T4 counts 
for HIV-positives (T4PP1) to HIV-negatives 
(T4NN1). As expected, one sees a dra- 
matically leftward-shifted distribution for 
the HIV-positives, reflecting substantially 
decreased T4 counts in this subset. Among 
HIV-positives, one also sees a leftward shift 
over time when comparing their first (T4PP1) 
to their second visit (T4PP2) T4 counts 
(Figure 7). Although there were relatively 
few (n = 16) HIV-converters available to 
study, they represent a valuable opportu- 
nity to assess T4 counts before and after 
HIV infection in the same group of sub- 
jects. Remarkably, in spite of the small 
sample size, among HIV-converters the dis- 
tribution of T4 counts at the visit prior 
to infection with HIV (T4NP1) was very 
similar to that for HIV-negatives at first 
visit (T4NN1)(Figure 8), although shifted 
somewhat to the left. Also remarkably, 
among HIV-converters the distribution of 
T4 counts subsequent to infection (T4NP2) 
had already dramatically shifted to the 

left (Figure 9) and was comparable to that  
for HIV-positives at first visit (T4PP1) 
(Figure 10). 
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Figure 5. Comparison of GB estimators 
for T4NN1 and T4NN2 
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