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1. INTRODUCTION AND FRAMEWORK 

The role of sampling weights in statistical 
analysis of survey data is the subject of controversy 
amongst theorists and confusion amongst practition- 
ers. For descriptive inference about means and 
totals, probability or r-weighted estimates, where 
cases are weighted by the inverse of the probability 
of selection and response, are widely accepted. For 
more complex modeling exercises, there is a wide 
spectrum of opinions on the role of weights, from 
modelers who view weights as largely irrelevant to 
survey statisticians who incorporate weights, along 
with other features of the sample design, routinely 
into every analysis (Klein and Morgan 1951, Konijn 
1962, Brewer and Mellor 1973, Kish and Frankel 
1974, Sarndal 1978, 1980, Holt, Smith and Winter 
1980, DuMouchel and Duncan 1983, Hansen, Madow 
and Tepping 1983, Little 1983ab, Rubin 1983a, 
Pfefferman and Holmes 1985, Chambers 1986, Ghosh 
and Lahiri 1987) . 

My own view is that a) focusing on finite 
population quantities is a useful discipline, even for 
analytic inferences; b) inference for finite population 
quantities should in principle be based on suitable 
models; c) models need to be sensitive to misspecifi- 
cation errors rendered important by the sample 
design; in the context of disproportionate stratified 
sampling, models need to reflect stratum differences, 
even if these differences are not detectable from 
diagnostic tests applied to the sample at hand; d) 
simple models that reflect stratum differences often 
lead to r-weighted inferences similar to those der- 
ived from randomization theory, thus providing a 
model-based justification of at least some design-- 
based methods; e) the modeling approach provides 
principled modifications of r-weighted inference that 
improve precision in small or moderate samples. 

This viewpoint is developed here in the context 
of st'ratified samples, where the population is grou- 
ped into J strata defined by values of a variable Z, 
and units are sampled with probability ri in strat- 
um. j,. where r-j .varies. across the strata. To avoid 
additional comphcatmns such as clustering of the 
sample, I assume that a simple random sample of 
units of fixed size is selected in each stratum, so 
that rj = nj/Ni where N j i s  the number of popula- 
tion units in stratum j a n d  nj is the number that 
are sampled. I focus on situations where the ~j 
vary across the strata j; important examples include 
disproportionate stratified sampling with sampling 
probabilities rj, and poststratification for surveys 
with nonresponse, where respondents are weighted up 
to known post-strata totals. In the latter case n i is 
the number of respondents in post-stratum j and Ni 
represents a known total from census data. 

Suppose K variables X1,...,X K are measured in 

the survey, and let X denote the N × K matrix of 
values of these variables in the population. I consi- 
der inference about a finite population quantity Q = 
Q(X) based on the sample. For example, Q could 

be the mean of a particular variable, a regression 
coefficient in a multiple regression, or a factor score 
in some complex factor-analytic model. 

For analytic rather than descriptive inference, 
the parameters 0 of a superpopulation model, which 
I shall call the target model, may be of interest. In 
such cases I choose to regard the target quantity as 
not 0 itself, but rather the population quantity 

Q(Y) = ~pop(Y) that would be obtained by fitting 
the target model to the entire population, using 
some specified fitting procedure such as least 
squares• Statisticians who build models for the data 
tend to focus on 0, whereas survey statisticians who 
base inference on the sampling distribution treating 

Y fixed tend to focus on ~pop (Brewer and Mellor 
1973; Hansen, Madow and Tepping 1983; DuMouchel 
and Duncan 1983). Although a modeler by philos- 

A 

ophy, I like the survey sampler's focus on 0pop since 
A 

it has one important conceptual advantage: 0pop is a 
real entity that exists irrespective of the validity of 
the model. The parameter 0 is a fictitious entity 
that exists only within the context of the target 
model, and given model misspecification it is not 
clear what 0 represents. Models are simplified 
descriptions that ignore fine structure, particularly in 

large populations. Focusing on ~pop keeps the 
target well-defined in the presence of model mis- 
specification. 

Following the Bayesian formulation of finite 
population inference (Ericson 1969), I base inference 
about Q(X) given the sampled data Xobs on its 
posterior predictive distribution p(QIXobs) under a 
working model for X, characterized by a prior distri- 
bution p(X) for the population values. The working 
models I consider have the general form: 

J 
p(X) = n p(x(J)); 

j= l  

NJ p(xjil)~j,~j)p()~j,~j)d)~jd~j, (1) p(x(J)) = f i = l  

where X (j) is the (Nj×K) matrix of population 
values in stratum j; xji is the (I×K) vector of 
population values for unit i in stratum j; Aj is a set 
of location parameters indexing the distribution of 
xji, ~o. is a set of dispersion or shape parameters, 
and ()ij,~oj) has prior distribution p(,~),~oj). 

A crucial feature of this model ~s the fact that 
distinct parameters ()~i,toi) are specified for each 
stratum j. Borrowing ANOVA terminology, I call 
the location parameters {Aj} stratum effects, and 
define fixed stratum-effects models as models with 
noninformative priors on )~j: 

p()~l,...,Ak) :( const. (2) 

Alternatively I consider random stratum effects 
models where the prior for h i has the form: 

J 
• fj p()~ I)~,~) d)~ d(f, (3) P()~I'" "')~K ) = II 1 j 
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where A and 5 are respectively location and s c a l e -  
/shape parameters, which are assigned uniform 
priors. The first application to surveys of random 
effects models of this type was in the seminal paper 
of Scott and Smith (1968), in the context of multi- 
stage cluster sampling. 

Notes. 
1. In large samples, inferences are insensitive to the 
form of the prior, and this Bayesian formulation is 
practically indistinguishable from non-Bayesian 
superpopulation models that avoid priors for Aj and 
~pj and treat these parameters as fixed; for argu- 
ments in favor of the Bayesian formulation see for 
example Little and Rubin (1983). 

2. The simple random sampling design within 
strata motivates a model that treats the vectors x,,.. 
(i=l,...,Nj) as exchangeable within strata. By I~e 
Finetti's theorem, this justifies an iid model for xji 
conditional on stratum parameters. (Ericson 1969; 
Rubin 1987, Section 2.5). 

3. The inclusion of distinct parameters Ai, ~pj for 
each stratum j is important to overcome distortions 
in the sample introduced by the differential selection 
probabilities (Little 1983a; Rubin 1983a). More 
specifically, Little (1983b) and Pfefferman and 
Holmes (1985) have argued that models need to be 
constructed that yield design-consistent estimators, 
where design consistency means that as the sample 

sizes increase the estimates of ~pop converge to ~pop 
even when the model is misspecified. Working 
models that distinguish stratum parameters are more 
likely to be design consistent than models that do 
not, as can be seen from the examples in Little 
(1983b) and in this article. 

4. The target quantity exists quite independently of 
the working model. In particular, the working model 
needs to reflect differences between strata, but the 
target quantity may not do this if the strata are 

A 

not analytically meaningful. For example, 0pop 
might be the slope of the regression of X2 on X1 in 
the whole population, pooled across strata since the 
conceptual model does not treat Z as an exogenous 
variable. 

5. In small or moderate sized samples, the form of 
the prior for Aj and ~j becomes more important. 
Priors should in principle be tailored to each specific 
problem; we consider the class (3) of random 
stratum--effects models since they provide useful 
compromises between estimates from models that 
recognize stratum effects and estimates from models 
that ignore them. They lead to James-Stein type 
estimators of location parameters (for example Efron 
and Morris 1973), and were previously considered for 
estimating survey means in Little (1983b), Ghosh 
and Meeden (1986) and Ghosh and Lahiri (1987). 
The latter article proves asymptotic optimality 
properties for empirical Bayes estimators of stratum 
means, and shows reductions in risk over stratum 
means by theory and simulation. 

2. MODELS FOR MEANS AND TOTALS. 

Two kinds of weights arise in the analysis of 
disproportionate stratified samples: probability 
weights determined by the probabilities of selection, 
and variance weights determined by within-stratum 
variation of the outcome variable. We first consider 
the role of these weights for the basic problem of 

inference about the population mean X of a scalar 

variable X. Then X = EjPjXj, where Pj = Nj/N 

and Xj are respectively the population proportion 
and mean of X in stratum j. Weighting sampled 
units by the inverse of the selection probability rj 
in stratum j yields the r-weighted (or stratified) 
mean: 

- 1 F~jPjxj, (4) x = s ( r'i cix j/ j) = 

where ~ denotes the set of sampled units in 
stratum j (Horvitz and Thompson 1952). Weighting 
sampled units by the inverse of the sample variance 
si2 in stratum j yields the variance-weighted mean: 

- 2 

sj. (5) 
Xv= ] j / j  

The r-weighted estimator aims at controlling bias, 
the variance-weighted estimator aims at controlling 

variance. Thus ~ is unbiased for X, but it can r 
have excessive variance if the variance of X is high 
in strata with low selection probabilities, as when an 
extreme value of X has low probability of selection; 

~v is the weighted average of the stratum means 
with lowest variance (ignoring errors in estimating 
the variances), but it can be seriously biased if the 
variance-weights differ markedly from the design 
weights. 

Since ;r-weighting relates to the sample design 
and variance-weighting relates to the distribution of 

X in the population, it is natural to view x r as a 

design-based estimator and ~v as a model-based 
estimator. However I prefer to view both of these 
estimators as arising from models for the population. 
An abstract philosophical argument between °'design- 
based" and "model-based" inference is thereby 
replaced by a concrete pragmatic argument concern- 
ing the appropriate choice of model. 

Fixed Stratum-Effects Model. 

Since normal specifications are a natural start- 
ing point, consider the fixed stratum-effects model 

x~i[A~,~ ~ 2 
J J en J ~indG(Aj,~j), (6) 
p(~j, :j) ~ const., (7) 

where xii is the value of X for unit i in stratum j, 
G(a,b) denotes the normal distribution with mean a, 
variance b. Standard Bayesian calculations (e.g. 

Ericson 1969) yields the posterior distribution of Xj 
a s  
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XjlXobs ~ind t(xj, (1-fj)s~/nj, nj-1), (8) 

where t(a,b,d) denotes the t distribution with mean 

a, scale b and degrees of freedom d, ~i,si 2 denotes 
the sample mean and variance of X in stratum j, 
and fi denotes the sampling fraction nj/N i. Note 
the presence of finite population corrections (fpc's) 
1-fi in (8), which do not appear in the posterior 
varaance o f  h i. 

The posterior distribution of X is a weighted 
combination of t distributions, which given large 
samples can be approximated by the asymptotic 
normal distribution: 

~)Xobs ~ G(xr , EjP~(1-fj)s~/nj). (9) 

Note that the posterior mean from this model is the 
~r-weighted estimator (4). Moreover posterior prob- 
ability intervals based on (9) are identical to the 
randomization-based confidence intervals from classi- 
cal stratified sampling theory (Ericson 1969). 

Null Stratum-Effects Model. 

Now suppose model (6) is modified by assuming 
)~i=A for all j (null stratum effects). The asymptotic 

posterior distribution of X is then easily shown to 
be normal with mean and variance: 

E(XlXob s) = V  (X[Xob s) = 
EjPj(1-fj)s~/N + (1-f)2{Ejnj/s~} -1 (10) 

where f = n/N is the overall sampling fraction and 

Xu is the unweighted sample mean. Thus if f is 
small the posterior mean is the variance-weighted 

estimator (5). It is a better estimator than ~r  when 

the stratum means are equal, but it is in general 
design inconsistent, and for dispropoortionate 
stratified sampling is not robust to departures from 
the assumption of equality in the stratum means. 
Since efficient sample designs are homogeneous 
within strata and heterogeneous between strata, this 

assumption is usually unrealistic, so inference for X 
based on (10) is not in general recommended. 

Random Stratum-Effects Mode! 

Now consider the random stratum-effects model 
(6) with prior 

()~j IA'62) ~iid C()~, 62); 

p()~, gn ~o~, gn 62) o¢ const., (11) 

where the stratum means are assumed to be an iid 
sample from an underlying distribution. The poster- 

ior distribution of X~ is then asymptotically normal 
with mean and variance 

E(XlXobs) = % + Zj Pj(1-fj){wjx-j + (1-wj)Xw}, 

+ {EjPj(1-fj) (i-wj) } 2~2/Ejwj, 

(12) 

where wj = nj~2/{nj~2+ sj2}, X-w = F~jwjxj/ Y~jwj, 

and ~ is a consistent estimate of the between- 
stratum variance 62 , computed for example by 
solving the fixed point equation: 

2 = 2 

for ~ (Carter and Rolph 1974). Note that when n i 

is large so that  ~2>>Sj2/ni, wj ~- 1 and (12) appro- 
ximates the standard answer (9); this property 
implies design consistency of the posterior mean. 
On the other hand if the between-stratum variance 

~2 << s.0t n. then Wj-~ nj~2/Sj 2 and (12)approx-  
imates (~_,. J The posterior mean is a Stein-type 

shrinkage estimate that behaves like X r when sample 

sizes are large and bias is the main issue, and 

moves towards ~v when the sample size is small and 
variance is more of a concern. The following 
refinements of (12) may be important in 
applications: 

1. The assumption of exchangeability of the 
stratum means in (9) is crucial, as can be seen from 
simulations in Section 3. It can be refined to model 
systematic variation. For example, the prior mean 

might be modeled as a linear combination of 
stratum covariates. 

2. The distribution as(12 ) effectively treats the 
variances ~j2 and 62 if they were known. In 
small samples the posterior variance should be 
increased to allow for uncertainty in estimating 
these variances. See for example Rubin (1981). 

3. The model includes a separate variance ~oi2 for 
each stratum, which is poorly estimated lJ3; the 
sample variances in strata with small sample sizes. 
Thus some smoothing of the within-stratum 
variances may be useful. Checks of homoskedast- 
icity might support treating these variances as equal, 
as in Little (1983b) and Ghosh and Lahiri (1987); 
theleS.ample variances {8j 2} are replaced by a single 
po (1 va iance. A more elaborate approach is to 
specify a .prior that models the ~oj 2 as iid from a 
common distribution, yielding estimates of ~oi 2 that 
smooth the sample variances {sj~} towards a'pooled 
value. 

4. Although the normal is a standard baseline 
model, other distributions also yield design-consistent 

estimates of X. For example if xji is binary, the 
Beta-Binomial model is more natural, or if xji is a 
count, one might assume the Gamma-Poisson model. 
These models have more plausible variance struct- 
ures for proportions and counts, and also yield 
design-consistent estimates of X. 
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5. A tempting modification to achieve robustness in 
the presence of outliers is to replace the normal by 
longer-tailed distributions such as the t (for example 
West 1984; Lange, Little and Taylor 1989). Inter- 
estingly, estimates under such models are not design 
consistent, since they rely on an assumption of 
symmetry, often violated since many surveys meas- 
ure skewed variables. Transformation to symmetry 
is not necessarily a solution when interest is in the 
mean on the original scale (Rubin 1983b). 

3. SIMULATION STUDY. 
3.1 Description of Study 

A simulation study was performed to illustrate 
the properties of the methods of Section 2. 

Populations Studied 

Sixteen populations of N = 3600 values of a 
variable X were constructed in 10 strata. 
Population sizes {N:} in the strata were as follows" 

Strat j" 1 2 3 4 5 6 7 8 9 10 
Nj'1000 750 500 400 300 200 150 120 100 80 

The 16 populations were points in a 24 factorial 
design, consisting of combinations of the following 4 
factors: 

CORR = Correlation between stratum (j) and 
stratum mean (~i) (Low, High) 

BVAR = Variation'ifi Stratum Means (Low, 
mgh) 

DIST = Distribution of X-Values (Normal, 
Chisquare) 

CONTAM = Contamination by Outliers (0%, 
10%) 

Specifically, values of X in stratum j were sampled 
from a distribution with mean 

100+ k 5i, ,j= 
, J  

where the elements of 6 = ((~1,...,610) were essentially 
linear transforms of uniform draws. Two choices of 

were used: 

~L = (-2,-7,17,-12,21,-4,-20,2,11,-4)(CORR=Low) 

~H = (-5,-3,-13,5,6,2,21,8,28,33)(CORR-High). 

In both cases ENiSi/Z~j = 0, so the expected value 
of the overall population mean is 100. The 
between-stratum variance was controlled by k, set 
at either 1 (BVAR=low) or 4 (BVAR=High). 

Let zji denote a standard normal deviate. For 
the uncontaminated normal populations, the value of 
X for unit i in stratum j was computed as 

xji = #j + 84zji. 

For the contaminated normal populations: 

xji = #j + 60.94zji, 

where zji=z-i with probability 0.9, ~ zji with 
probability 0J.1; the scale factor 60.94 is chosen so 
that xji has the same marginal standard deviation 

(84) as for the uncontaminated populations. For 
the chi-square populations" 

xji = 0.2#j(zji+2)2 , 

yielding scaled noncentral chi-squared deviates with 
mean #i, coefficient of variation 0.85 in each 
stratum, and average within-stratum standard 

deviation 82.44 when CORR-Low, 85.3 when 
CORR=High, close to that in the normal popula- 
tions (84). Since the variance depends on the mean, 
these populations exhibit both skewness and hetero- 
skedasticity. For the contaminated chi-square 
populations" 

x j i -  0.1375#j(zji+2.444) 2, 
. 

where  z i i  is defined above and the constants are 
chosen to match the mean and variance of xji in 
the absence of contamination. The 16 populations 
were generated from the same random number seeds 
to reduce the variance of comparisons of methods 
between populations. Figure 1 shows samples of size 
30 from the 5 odd-numbered strata for 4 of the 8 
populations with CORR=High; plots for samples 
with CORR=Low are similar but lack the system- 
atic increase in the means across the strata. Note 
that the chi-square samples are skewed and do not 
have constant variance across strata. 

Sampling Scheme. 
A stratified sample of nj=10 values was chosen 
without replacement from each stratum, yielding a 
total sample size of n=100. This scheme implies 
probabilities of selection that increase across the 
strata from ri = 1/100 to ri = 1/8. This proced- 
ure was repeated 1000 times for each population 
(with the same random number seed for each popul- 
ation), and estimates of the population mean comp- 
uted for each sample. To assess the effect of incr- 
easing sample size, this procedure was repeated with 
samples of 30 in each strata (and a different random 
number seed), yielding a total sample size of n=300. 

Choice of Estimators and Standard Errors. 
Tables 1-3 summarizes the results of applying the 
following procedures: 
PWT: Normal inference based on the stratified mean 
and associated standard error given in Eq. (9). 
VWT: Normal inference based on the variance- 

weighted estimator xv and associated standard error 
given in Eq. (10). 
UWT: Normal inference based on the unweighted 

mean Xu and associated variance (1-f)s2/(Zjnj) where 
s 2 is the overall sample variance ignoring strata. 
EBV: Normal inference based on the distribution 
(12) under the random effects model (6,11). 
EBU" Normal inference under the random effects 
model (6,11), assuming constant within-stratum 
variance ~j2. The estimator under this model 
shrinks towards the unweighted mean rather than 
the variance-weighted mean. 

For each population and sample size, Table 1 

displays average bias of each estimator of X: over 
the 1000 samples, Table 2 shows average root mean 
squared error (RMSE), and Table 3 shows the 
number of samples for which the 95% interval lest 

± 1.96 (se)] does not include X -  nominally we 
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expect 50 such cases. RMSE for methods other 
than P WT are expressed as a percentage of values 
for PWT, which can be viewed as the standard 
method. 

3.2 Results 

A) pWT. 
As expected, P WT had good repeated sampling 
properties, with low bias and noncoverage close to 
or a bit above the nominal value (the large sample 
approximation was less satisfactory for 99% inter- 
vals, where noncoverage rates ranged from 1.6% to 
4%). However, PWT did not always have the 
lowest RMSE, reflecting lack of control of variance. 

B) UWT 
The parameter CORR played a key role in the 

performance of UWT. When CORR=Low the 
stratum means were weakly correlated with the 
sampling rates, and the unweighted average of the 
stratum means (100.25 when BVAR=Low, 101.0 
whe n BVAR=High) was close to the weighted mean 
(100). Thus biases from assuming no stratum 
effects in UWT tended to cancel out. Thus the bias 
of UWT was small (Table 1A,B), and UWT had 
consistently lower RMSE than PWT, with reductions 
ranging from 18-28% (Table 2A,B). Noncoverage 
rates of UWT were close to nominal levels (Table 
3A,B). 

When CORR=High the unweighted average of 
the stratum means (108 when BVAR=Low, 132 
when BVAR=High) was larger than the weighted 
average (100). Thus UWT was seriously biased 
when BVAR=Low, and disastrously biased when 
BVAR=High (Table 1C,D), when 95% confidence 
intervals missed the true population value most of 
the time (Table 3C,D). 

VWT 
In the normal populations VWT had slightly 

higher RMSE than UWT, presumably because in 
these populations the within-stratum variance was 
constant, so a pooled estimate of variance was 
optimal. In the chi-squared populations, the 
within-stratum variance increased systematically with 
the mean, smaller means got a higher variance 
weight, so VWT yielded a smaller estimate than 
UWT. Thus when CORR=Low and UWT was 
nearly unbiased, VWT had a negative bias, which 
was particularly severe for cases where BVAR=High. 
On the other hand when CORR=High, VWT tended 
to do better than UWT, since variance-weighting 

reduced the positive bias of ~u (Table 1). The 
erratic behavior of UWT and VWT emphasizes their 
sensitivity to the structure of the population. 

EBU 
EBU had RMSE values between those for PWT 

and UWT, reflecting the fact that it was a compro- 
mise between these estimators. When CORR=Low 
EBU was shrinking towards a good value, and the 
exchangeability assumption of the stratum means 
was justified. EBU then achieved good reductions 
in RMSE over PWT when the between variance was 
low and modest reductions when the between 
variance was high. Noncoverage rates were also 
close to nominal levels. When CORR=High, EBU 
was shrinking towards a biased value, and was 
generally inferior to PWT. However it performed 

much better than UWT in this unfavorable situa- 
tion, and actually had slightly lower RMSE than 
PWT when n=100 and BVAR=Low. 

EBV 
In the normal populations EBV had similar 

RMSE values to EBU (Table 2). Its noncoverage 
rates were generally a bit higher, perhaps reflecting 
failure to allow for estimating the variances (Table 
3). In the chi-squared populations it had higher 
RMSE than EBU when CORR=Low (and EBV was 
shrinking towards an inferior estimate) , and lower 
RMSE than EBU when CORR=High (.and EBV was 
shrinkin~ towards a superior estimate). The dis- 
asters oi VWT were largely mitigated: The RMSE 
of EBV ranged from 20% below PWT to 25% above 
PWT, whereas the RMSE of VWT ranged from 23% 
below PWT to 810% above PWT (Table 2). How- 
ever noncoverage rates of this method (and EBU) 
deteriorated when the assumptions of the model 
were violated (Table 3). 

4 .  INFERENCE ABOUT A SLOPE. 

We now consider the role of weights when 
interest concerns the linear regression of one survey 
variable (say X2) on another (say Xl). The choice 
of target quantity is a key issue. Let x~ji and X2ji  

denote values of X1 and X2 for unit i in stratum j, 
and write X3ji--Xlji 2, X4ji--XljiX2ji. Also define the 
slope function 

B(al,a2,a3,a4) = (a 4 - ala2)/(a 3 - a~). 
The population least squares slope of X2 on X1 in 
stratum j is then 

Bj = B(Xlj,X2j,X3j,X4j ) 

- -  Nj 
where Xkj = E i =1 Xkji/Nj ' the population mean of 

Xk in stratum j. The least squares regression slope 
in the entire population is 

B u = B(X1,X2,X3,X4) 

where Xk = ~]jPjX~kj is the overall population mean 
of Xk. Two target quantities (or superpopulation 
analogs) are considered in the literature, Bu and Ba 
= EjPjBj. These quantities are not in general equal 

unless XI=Xlj and Xz=Xzj for all j, that is, the 
mean and variance of Xl are the same in all the 
strata. Survey samplers tend to consider Bu and 
modelers Ba (cf. DuMouchel and Duncan 1983), but 
in my view the choice is a substantive issue: 
whether the effect of X2 on X1 is adjusted or not 
adjusted for the stratifying variable Z. Bu measures 
the unadjusted effect of X2 on X1, and Ba measures 
the effect of X2 on X1 adjusted for Z, the overall 
slope in a hypothetical population with the same 
values of {Pj} and {Bj} as in the actual population, 
but where the distribution of X~ is the same in all 
the strata. Note that Ba is not a slope in the 
actual population; if the effects of X~ and Z are 
additive it equals the common within-stratum slope; 
if X1 and Z interact (that is the slopes vary across 
the strata), then the definition of adjusted effect is 
sensitive to the weights {Pi}, other choices such as 

{P j= I / J}  being equally plausible. 
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Classical randomization-based inference, weight- 
ing sampled units by the inverse of their selection 
probabilities, yields the estimators 

~)u = B(Xllr'X21r'X3~r X4~r ) '  (13) 

for Bu, and 

l~ a = ZjPjbj, bj = B(~lj,~2j,x3j,x4j ) (14) 

for Ba. Here ~ki denotes the sample mean of {Xkji} 

in stratum j, and x k~r = ZjPjXkj. A standard 

Taylor series approximation (for example Procedure 
3 in Holt, Smith and Winter 1980) yields: 

Var(b u) ~]jP~(1-fj 2 = )Sdj/nj, (15) 

Sd j2 - ~ ) 2 / n j '  where = Ei(dii-~i the sample variance of 
the d-values in stratum j, and 

{Xlji-~l~r} {x2ji-X21r - bTr(Xlji-Xl~r ) } 
i - -  --  - 2  d-i x3~ r Xllr 

A 

The sampling variance of b a is simply 

Var ( [ ) a ) -  ~jP~(1-fj)s~)j, (16) 
where Sbj 2 is the usual least squares estimate of 
Var(bi). I now provid e a model-based justification 
for inferences based on (13-16). 

Bivariate Normal Model with Fixed Stratum Effects. 

Suppose xlji and x2~i have distinct bivariate 
normal distributions in each stratum: 

(Xlji'x2ji) ~ind G(Aj, (I)j); 

p(A 1,...,A J) = const, 
(17) 

SO )~j - -  ( )~l j , )~2j)  and (I). are the mean and covar- 
iance matrix of X1 and ~2 in stratum j. Note that 
this working model implies distinct linear regressions 
of X2 on X1 within strata, whereas the target model 
that yields Bu as the target quantity implies a 
linear regression of X2 on X1 in the whole popula- 
tion. 

Lemma. The posterior mean and variance of Bu 
under model (17) are approximated by (13) and 
(15), respectively. The posterior mean and variance 
of Ba are approximated by (14) and (16), respect- 
ively. 

Proof. Standard results on Bayesian regression with 
flat priors applied within stratum j yield E(Bjldata ) 
= bi and Var(Bj[data) = (1-fj)sbi 2. Hence the 
posterior mean and variance of Ba are given by (14) 
and (16). Also, it is easily shown that under (17), 
E(Xjkldata) = Xjk for all j,k, and hence E(Xkldata ) 

= Xk~ r. Hence the first term of a Taylor series 

expansion yields E{Buldata} ~ B(E{X Idata}) = 

B(X~r) = ~)u" The same expansion yields 
4 

Var{Buldata} _~ Va r [k~ i~k  ~__~(kxr) 1 0 B -  data] = 

Vax{ZjPjS]data } = ~jP~ Var(5]data) ,  

where ])j is the population mean of dji (defined 
below Eq. 15) in stratum j. The approximation 
(15) for Var(Buldata) follows by substituting 

~ (i-fj)s(~j/nj. (18) Var(~j [ data) 

Note that (18) is itself an approximation since the 
exact posterior variance of Di takes into account the 
special forms of skewness and kurtosis for the 
normal distribution; however (18) seems useful given 
that the Taylor series method is approximate, and 
the normality assumption of the model might not be 
trustworthy. 

The lemma extends in an obvious way to mult-  
iple regression. Thus the use of probability weights 
in multiple regression can be justified from a model- 
ing perspective, with this choice of target quantity 
and model. Chambers (1983) provided a non- 
Bayesian, superpopulation-model based justification 
for regression with sample weights. The Bayesian 
approach given here seems to me more 
straightforward and direct. 

Regression Models with Null Stratum Effects. 

Model (17) iml~lies distinct regressions lines of 
X2 on X~ in each strata. Assuming a common slope 
and residual variance across the strata yields the 
additive model [XI+Z]: 

xji ~ind G(Aj, ~p~); 

Yjilxji ~ind G(aj+~xji' 2 ) ,  (19) 
p(Aj, ~j, /~, th ~j, ~n 7) = const. 

Assuming further a constant intercept across the 
strata yields the model [X1]" 

xji ~ind G(Aj, ~ ) ;  

Yjilxji ~ind G(a+~x;;, 2 ) ,  (20) 
p(Aj, o~, /~, in ~pj, /n 1,)J'= const. 

Inferences based on (19) or (20) for disproportionate 
stratified samples are not recommended, since they 
do not yield design-consistent estimators of Bu or 
Ba, and are sensitive to model misspecification. In 
particular it is easily seen that the posterior mean 
of B under (20) is the (unweighted) least squares 
estimate 

~)ls = B(x--), (21) 
where x = (Xl,X2,X3,X4), and Xk is the unweighted 

A 

sample mean of {Xkji}, k=1,4. Although bls is 

67 



more precise than ~)u if the model is true, it is not 
design-consistent for Bu and can be badly biased 
when the regression lines vary across strata. In 

particular t)ls performs poorly in the simulations of 
Pfefferman and Holmes (1985), for the case of a 
continuous stratifying variable. 

Regression Models with Random Slopes and 
Intercepts. 

A better alternative to (17) retains distinct regress- 
ion lines across the strata, but replaces the flat 
prior in (17) by an informative prior for the slopes 
and intercepts: 

(aj,/~jla, ~, Aj,~j,Tj)~iid e{(a,~), A}; 

(22) 
2 in ~2)~ const p(a, /~, tn A, Aj, gn ~pj, 

Estimates for this model shrink between the post- 
erior means for the fixed effects model (17) and 
estimates for the null stratum effects model (20). 
In particular the resulting estimate of Bu is a 

^ A 

compromise between bls and bu. Alternatively, 
letting An and A12 tend to infinity but keeping A22 
finite, estimates shrink towards the posterior mean 
for model (19) with common slope but distinct 
intercepts. 

5. CONCLUSION 

This article emphasizes that in the setting of 
disproportionate stratified sampling, models need to 
be sensitive to differences between strata, by allow- 
ing distinct parameters across strata. Fixed effects 
models with this property for means and slopes yield 
~r-weighted inferences similar to those arising in 
design-based theory. Such results bring design- 
based and model-based survey inferences closer 
together. I suspect that formal links between 
design-based and model-based inferences can also be 
found for the case of cluster sampling, leading me to 
echo a remark by Frankel and Kish (1974) in the 
discussion of their article on methods for design- 
based variance calculations: 

'~We are not at odds with the Bayesian viewpoint... 
while a unified set of Bayesian foundations is far 
from complete, (we) conjecture that (1) the variance 
estimation techniques discussed in Section 5 will 
prove useful in the evaluation of posterior variance, 
and (2) under a Bayesian framework for inference 
(diffuse priors), the effects of clustering and stratifi- 
cation will be much the same as those we have 
observed" 

Frankel and Kish's paper appears to me more con- 
cerned with practical inferences than in subtleties of 
statistical philosophy, and I think modelers as well 
as samplers need to take seriously their strictures on 
the need to take account of features of the sample 
design. 

Despite the practical utility of much design- 
based inference ~ la Frankel and Kish, I remain 
convinced that the model-based approach is prefer- 
able. For me design-based methods are basically 
crude and asymptotic, good for large surveys where 
practical expediency requires simple estimation proc- 
edures. Design-based methods fail to exploit specific 
features of the populations being sampled, have 
difficulties in the area of ancillary statistics, and 
appear to me to have no adequate machinery for 
handling small samples. Indeed I feel (contrary to 
Kish and Frankel) that Bayesian foundations are 
much more complete and unified than design-based 
foundations for survey inference. What is currently 
lacking in the Bayesian approach is guidance about 
the choice of models for applications that are robust 
to features of the data created by the sample 
design. 

The random effects models discussed in this 
article indicate one avenue of refinement for achiev- 
ing better inferences from small stratified samples. 

However these gains are not achieved without some 
modeling effort; the simulations suggest that atten- 
tion to the assumptions of the models, such as 
exchangeability of the stratum effects, may be need- 
ed to realize these gains, particularly if probability 
intervals for target quantities are required. 
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Table 1. Average Bias of Five Methods for Estimating the Mean 

Between Vat = Low Between Vax - High 
Normal Chi-squaxed Normal Chi-squared 

0%Con 10%Con0%Con 10%Con0%Con 10%Con0%Con 10%Con 

A) CORR=Low. n=100 

PWT 0.05 
UWT -0.84 
VWT -0.47 

-0.09 0.15 0.04 0.05 
-1.10 -1.58 -1.15 -0.21 

0.45 -11.94 -11.12 1.06 
EBU -0.61 -0.82 -1.19 -0.88 -0.03 
EBV -0.35 0.26 -8.22 -7.91 0.18 

B_~ CORR=Low n=300. 

PWT -0.02 -0.04 -0.12 -0.04 -0.02 
UWT -0.34 -1.13 -0.68 -1.18 0.28 
VWT -0.58 0.04 -7.26 -7.03 -0.48 
EBU -0.18 -0.66 -0.47 -0.76 0.01 
EBV -0.27 -0.16 -3.67 -3.84 -0.07 

C) CORR=High n=100 

PWT 0.05 -0.09 0.16 0.06 0.05 
UWT 7.15 6.89 6.26 6.80 31.75 
VWT 7.90 8.83 -5.69 -5.32 34.57 
EBU 5.12 4.79 4.76 5.02 5.29 
EBV 5.14 5.48 -3.00 -3.18 5.60 

D) CORR=High n=300 

PWT -0.02 -0.04 -0.11 -0.03 -0.02 
UWT 7.65 6.86 7.22 6.64 32.25 
VWT 8.06 7.96 1.07 0.53 34.09 
EBU 4.08 3.64 4.54 4.10 1.99 
EBV 4.29 3.84 1.03 0.42 2.12 

-0.09 0.08 -0.06 
-0.48 -1.22 -1.01 

3.36 -55.92 -51.95 
-0.17 -0.35 -0.30 

0.42 -10.15 -9.08 

-0.04 -0.15 -0.04 
-0.51 0.21 -0.32 

2.59 -58.71 -54.83 
-0.08 -0.12 -0.08 

0.05 -3.84 -3.51 

-0.09 0.10 0.03 
31.49 30.13 30.82 
36.91 -17.89 -17.86 

5.16 9.53 9.27 
5.08 -1.77 -2.18 

--0.04 -0.08 -0.02 
31.46 31.85 30.99 
34.26 -10.57 -11.29 

1.90 4.30 3.87 
2.01 -0.11 -0.09 

Table 2. Average RMSE of Five Methods for Estimating the Mean; 
RMSE for Methods Other than PWT Ex-pressed as Percentage of 
RMSE for PWT.. 

Between Vat = Low Between Vat = High 
Normal Chi-squaxed Normal Chi-squaxed 

0%Con 10%Con0%Con 10%Con0%Con 10%Con0%Con 10%Con 

A) CORR=Low, n=100 

PWT 10.99 10.45 11.13 10.32 10.99 10.45 11 .31  10.42 
UWT 73 77 73 75 72 77 78 82 
VWT 82 79 137 137 103 125 499 510 
EBU 77 80 78 79 91 91 92 93 
EBV 82 78 108 110 92 93 126 125 

B) CORR=Low, n=300 

PWT 6.07 5.98 6.24 6.23 6.07 5.98 6.48 6.29 
UWT 72 74 74 72 72 72 80 77 
VWT 77 78 142 137 97 141 910 883 
EBU 82 81 82 80 97 97 96 96 
EBV 83 80 101 98 97 97 111 108 

C) CORR=High, n=100 

PWT 10.99 10.45 10.80 10.08 10.99 10.45 9.79 9.26 
UWT 97 101 97 106 298 311 326 352 
VWT 112 117 113 110 337 380 232 240 
EBU 93 95 93 99 110 111 142 148 
EBV 98 97 91 91 113 109 101 101 

D) CORR=High, n=300 

PWT 6.07 5.98 6.02 6.07 6.07 5.98 5.46 5.51 
UWT 145 135 144 133 536 531 594 572 
VWT 153 153 92 83 570 587 241 246 
EBU 113 108 117 111 105 105 129 126 
EBV 116 108 91 84 106 106 101 101 

Table 3. Noncoverage Rate of 95(~ Confidence Intervals from Five 
Methods, Out of 1000 Samples; Target = 50 

Between Var - Low Between V a r =  High 
Normal Chi-squared Normal Chi-squared 

O%Con lO%ConO%Con lO%ConO%Con lO%ConO%Con 10%Con 

A) CORR=Low, n=100 

PWT 55 
UWT 51 
VWT 106 
EBU 50 
EBV 81 

59 67 61 55 59 72 73 
49 73 69 47 48 78 67 

120 445 461 203 312 1000 1000 
44 68 66 44 33 45 41 
78 254 286 57 58 264 245 

B) CORR=Low, n=300 

PWT 50 55 58 60 50 55 57 54 
UWT 41 33 53 58 38 35 51 52 
VWT 62 80 412 439 135 322 1000 1000 
EBU 42 29 44 50 46 50 35 44 
EBV 50 46 135 133 47 58 124 117 

C) CORR=High, n=100 

PWT 55 59 69 
UWT 153 128 92 
VWT 256 331 251 
EBU 112 84 66 
EBV 145 172 127 

D) CORR=High, n=300 

PWT 50 55 58 
UWT 364 314 238 
VWT 430 477 92 
EBU 153 130 116 
EBV 166 143 65 

57 
100 
244 

63 
123 

55 
973 
939 

97 
105 

59 
953 
958 

70 
87 

68 
809 
614 

40 
96 

60 
854 
647 

34 
101 

60 
227 

93 
102 
67 

50 
I000 
I000 

78 
84 

55 
1000 
1000 

67 
69 

59 
1000 
590 

17 
63 

62 
1000 
666 

21 
66 

Description of Methods: 

P W T =  Probability-weighted (stratified mean) 
VWT= Weighted by sample variance in each stratum 
UWT= Unweighted (as 2, but with constant variance across strata) 
EBV= Empirical Bayes, shrinking between PWT and VWT 
EBU= Empirical Bayes, shrinking between PWT and UWT 
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F i g u r e  1. H i s t o g r a m s  f o r  Samples  o f  S i z e  30 f rom 5 S t r a t a .  

A) Normal ,  07' C o n t a m i n a t i o n ,  Low Between V a r i a n c e  

STRATU3I 
1 3 5 7 9 

MIDPOINTS 
350 * 
325 * 
300 * 
275 * * 
250 * * *** *** 
225 * * ** 
200 * ** ** **** 
175 * * ****** **** ** 
150 *** ***** *** *** M 
125 ** ** M*** M* *** 
I00 *** * *** **** ****** 

75 M****** M***** ** * ** 
50 *****  ***** ** ****** ** 
25 ** **** *** ** *** 

0 * * * 

-25  * ** * * 
- 5 0  * * * * 
-75  * 

MEAN 85 .61  8 6 . 0 2  117.51 122 .26  138 .63  
STD.DEV. 7 5 . 8 7  72 .29  8 4 . 2 9  78 .72  9 1 . 6 8  

C) C h i s q u a r e ,  07' C o n t a m i n a t i o n ,  High Between V a r i a n c e  

STRATUM 
1 3 5 7 9 

MIDPOINTS 
800 
750 
700 
650 
600 
550 
500 
450 
400 
350 
300 
250 
200 
150 
100 

5O 
0 

** * ** 

* * * * * *  31" 
* * * * * * *  M** 

** * M*** *** **** 
***** ***** ****** *** ******* 

M * * * * * * * * * * * * * *  M * * * * * * * * * * * *  * * * * * *  * * * * * * * * *  * * * *  
****** *********** **** ** ** 

MEAN 6 9 . 6 6  
STD.DEV. 58 .42  

4 4 . 8 3  137.39 180 .65  240 .56  
3 5 . 3 7  118 .63  150 .25  210 .81  

B) Normal, 107, Contamination, High Between Variance 

STRATUM 
1 3 5 7 

MIDPOINTS 
390 
360 
330 
300 
270 
240 
210 * *** 
180 ** ****** 
150 ** *** ***** 
120 *** * M**** 

90 **** ***** **** 
60 M********* *** *** 
30 **** M******** *** 

0 ** ***** 

- 3 0  * *  * 
-60  * 
- 9 0  

-120  
-150  
-180  
-210  

****** 

M**** 

****** 

MEAN 7 4 . 7 7  3 6 . 9 4  132.35 185.25 
STD.DEV. 5 9 . 8 6  73 .01  61 .15  71 .25  

D) C h i s q u a r e ,  107, C o n t a m i n a t i o n ,  Low Between V a r i a n c e  

STRATUM 
1 3 5 7 

MIDPOINTS 
400 
375 
350 
325 
300 
275 
250 
225 
200 
175 
150 
125 
100 

75 
5O 
25 

0 

M** 
* * * * * * *  

220 .24  
76 .69  

* * * *  * *  

* *  *~  * *  * *  

* * ****** *** M 
* * *  * * * *  * * * *  3[*** * 

** *** M** ** ** 
M***** M* **** *** ********  
********  * * * * * * * * * * *  **** ***** ** 
*** *** *** ***** **** 
* * *  * * *  * *  * * 

77 .55  111.28 117.55 139.15 
54 .82  82 .18  90 .60  110.10 

MEAN 82 .72  
STD. DEV. 60 .21  
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