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ABSTRACT 

A data set having missing observations often is 
completed by using imputed values, and secondary 
data analysts typically treat the completed data set as 
if it has only observed values. The objective of our 
research is to investigate the effect on the properties 
of standard statistical techniques of proceeding in this 
way. We assume that the missing data cannot be 
regarded as missing at random, and that the 
secondary data analyst's objective is the standard 
confidence interval for the population mean. We 
consider both standard and new imputation methods, 
some of which assume knowledge of the missing data 
process. 

1. INTRODUCTION 

In a sample survey or census, item nonresponse 
occurs when some but not all of the required 
information is obtained from a sampled unit. Then 
the survey organization may either do nothing about 
the missing values or try to compensate for the item 
nonresponse by imputation for all (or some) of the 
missing values. Here, imputation means assigning 
one or more values for each missing response. In 
large complex sample surveys, imputation is 
commonly used, and is, a priori, an appealing general 
purpose strategy. (For an excellent introduction to 
the practical aspects of imputation, see Sande 1982.) 
In their excellent review paper, Kalton and Kasprzyk 
(1982) describe the desirable features of imputation: 
"First... it aims to reduce biases in survey estimates 
from missing data... Second, by assigning values at the 
microlevel and thus allowing analyses to be conducted 
as if the data set were complete, imputation makes 
analyses easier to conduct and results easier to 
present. Complex algorithms to estimate population 
parameters in the presence of missing data (e.g., the 
EM algorithm of Dempster, Laird and Rubin 1977) 
are not required. Third, the results obtained from 
different analyses are bound to be consistent, a 
feature which need not apply with an incomplete data 
set." The alternative to imputation, that is, having an 
incomplete data set, leaves to the secondary data 
analyst the task of compensating for the missing data. 
This will be a formidable problem if the likelihood 
that a datum is missing is related to the values of the 
variables under study. In such circumstances standard 
routines in computer packages generally will fail to 
make appropriate adjustments for the missing data. 
Conversely, the survey organization is familiar with 
the survey process (including characteristics of the 
sampled units who are item nonrespondents) and 
some of the reasons why the data are missing. It can 

provide estimates of the missing values (i.e., 
imputations) that are consistent with a postulated 
model for the missing data process, leading in many 
cases to acceptable estimates of the missing values. 

On the other hand, Kalton and Kasprzyk point out 
that imputation "does not necessarily lead to estimates 
that are less biased than those obtained from the 
incomplete data set; indeed, the biases could be much 
greater, depending on the imputation procedure and 
the form of estimate. There is also the risk that 
analysts may treat the completed data set as if all the 
data were actual responses, thereby overstating the 
precision of the survey estimates." 

It is our experience that the overwhelming majority 
of secondary data analysts proceed as if the 
completed data set contains only observed responses, 
and it is our belief that they will continue to do so. 
The objective of our research is to try to discern the 
effect on the properties of standard statistical 
techniques of proceeding in this way. That is, we 
view imputation methodology from the perspective of 
the secondary data analyst who does not take 
cognizance of the presence of imputed values in the 
data set. We mimic their behavior by evaluating 
properties of statistics obtained from standard, 
"canned" computer programs using a data set having 
both observed and imputed values. 

While imputation has been used for a long time, 
systematic research on properties of imputation 
methods is recent. Early published papers whose 
objectives were to determine analytical properties of 
estimators containing both observed and imputed data 
include Bailar and Bailar (1978), Bailar, Bailey and 
Corby (1978), Ernst (1978, 1980) and Platek, Singh 
and Tremblay (1978). Other, more recent, references 
of interest are Madow, Nisselson and Olkin (1983), 
Madow, Olkin and Rubin (1983), Madow and Olkin 
(1983) and Little (1986). 

All of the research cited above investigates 
properties of univariate descriptive statistics such as 
means and totals and assumes that the missing data 
are missing at random (MAR). Santos (1981a,b) 
extends this work by studying bivariate statistics such 
as the sample covariance, correlation and regression 
coefficients in the MAR case. However, only the 
biases of these statistics are considered. Also Herzog 
and Rubin (1983) study the effects of using two 
simple imputation methods on the usual confidence 
interval for a population mean. Given the paucity of 
results concerning the effects of alternative 
imputation methods on the properties of analytical 
statistics, we initiated research to study properties of 
statistics derived from a typical analysis of a simple 
linear regression model. Jinn and Sedransk (1987, 
1989) considered the common imputation methods, 
and emphasized properties of the usual confidence 
interval for the slope. Now, the imputation method 
chosen by the survey organization must be 
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appropriate for a wide variety of statistical 
applications (e.g., multiple regression, CART), and 

value of the parameters in the model being 
analyzed by the secondary data analyst. 
Unfortunately, Jinn and Sedransk (1987, 1989) found 
that when the missing data are MAR no one of the 
imputation methods is sufficiently reliable that it can 
be recommended for general use. While the general 
tenor of this finding might have been anticipated, the 
extent and apparent generality of the deficiencies 
were not. Given this conclusion, we have turned to 
the case where imputation has the greatest promise of 
successful application; i.e., when the missing data 
cannot be regarded as MAR. 

In this paper we study the effects on secondary 
data analysis of using data sets containing imputed 
values when the missing data cannot be regarded as 
missing at random. Given the paucity of literature, 
we start with a simple case; i.e., the usual confidence 
interval for a population mean. However, our 
specification of the missing data process is general. 
As in Chiu and Sedransk (1986), we consider a finite 
population of N elements, and assume that the 
random variable of interest, Y, can take on the values 
Y~,I < Y~2~ < " ' "  < Yco~, which are specified before 
sampling. Clearly, this specification is also 
appropriate when Y is a categorized continuous 
variable and Y0~ is a measure of central tendency for 
the i-th category. Let P~ denote the unknown 
proportion of elements in the population with Y = 
Y0r Also, 0~ denotes the proportion of elements in the 
population with Y = Y0) who would, if sampled, be 
nonrespondents; 1-0, denotes the corresponding 
proportion of respondents. Table 1 summarizes the 
notation; e.g., P~(14 0 is the proportion of elements 
with Y - Y0~ and who would respond if sampled. 

Table 1. Notation for the Nonresponse Process 

Category 1 i D 

Value of Y Y~I) Y(,) Y~o) 

Respondents P,(14,) P , (1 -o , )  PD(1-OD) 

Nonrespondents P,0, Pd, Po0o 

Assuming, for simplicity, a random sample of size 
n selected with replacement, r respondents are 

D 
observed, with r, having Y = Y01(i=}7 lr, = r). 

Among the n-r nonrespondents, denote by t, the 
unknown number of elements having Y = Y0) 
(~t~ - n-r). Corresponding to each imputation 
method there are estimates, {t," i -- 1 , - - . ,D} ,  of 
{t~: i = 1 , . . . , D } .  Then the imputed values for the n- 
r nonrespondents are t, repetitions o f  Y0~ and the 
completed data set consists of (r,+ t~) repetitions of 

D 
Y01 with sample mean n-'i= ~ 7 °/(r~ + ~)" When Y is 

a categorized continuous variable, it may be 

preferable to add random residuals to the Y0~. One 
may regard this specification as applying to a single 
post-stratum or "adjustment cell." 

This report is organized as follows. Our analytical 
procedure is presented in Section 2. The imputation 
methods are described in Section 3, and compared in 
Section 4. Section 5 has some concluding remarks. 

2. ANALYTICAL PROCEDURE 

Given the completed data set as (r~ + t.~) repetitions 
of Y0~ (i = 1 , . . - ,D ) ,  it is assumed that the secondary 
data analyst's confidence interval for the population 
mean, u, is 

yo _+ z,,=;,o/Y-~ (2.1) 

where n is the overall sample size, z~j2 is the 
100{1 - (c~/2)} percentage point of the N(0,1) 
distribution, 

D 

nyc = i =~1 Y°'(r~ + ~') 

and 

(2.2) 

D 
^ - -  2 (n-1)~2~ = .F~ (r~ + t,)(Yo,-y~). (2.3) 

1=1 

The most desirable way to ascertain the properties 
of (2.1) would be to determine whether 

z: = d--n(Y~-g)/~: (2.4) 

is well-approximated by a normal distribution with 
mean 0 and variance 1. Since it is difficult to 
consider (2.4) directly we proceed in stages: (a) If 
the bias of yc is large then the approximation will not 
be satisfactory; (b) For the interval in (2.1) to be an 
approximately 100(1<0% confidence interval for ~, 
^ 2  • - -  ' G/n should esnmate Var(yo); i.e., 

Q2 = E{2,~/n Var(yD} (2.5) 

should not differ much from 1. We also consider the 
bias of ^2 ac and the variance of Yc. Note that the 
probability distribution in Table 1 is used to derive 
these expected values. 

3. IMPUTATION METHODS 

As an alternative to the confidence interval in 
(2.1), one might delete the imputed values and use as 
the interval for ** 

Yr + Z~,2~/'I-T (3.1) 

where 

D D 
ryr = F. Y0,r~ and (r-1)~r~ = Z r,(Y0,-Yr) 2- 

i = l  i = l  
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A simple, standard imputation method is random 
imputation. Given a sample of size n with m = n-r 
missing values, a random sample of size m is taken 
with replacement from the r observed values. The 
selected respondents are the "donors" and their values 
are randomly assigned to the nonrespondents. 

The remaining imputation methods are ones that 
assume complete or partial knowledge about the 
missing data process defined in Table 1. If under 
such circumstances one cannot develop an imputation 
procedure that, when used in (2.1), leads to a 
confidence interval with satisfactory properties, then 
the task of accommodating uncritical secondary data 
analysts seems to be insuperable for the following two 
reasons: (a) such a secondary analyst wi l l  use the 
confidence interval in (2.1) and (b) we shall be using 
in the imputations knowledge of the missing data 
process. Even the methods that assume complete 
knowledge about the missing data process will have a 
practical application when a careful methodological 
study of nonrespondents has been carried out for a 
population similar to the one of interest. (See 
Section 4 for an example.) In this paper, we have 
also considered the effects of misspecifying the {0,}. 

First, define 

¢~ = P~oi/EPjoj, (3.2) 
J 

the probability that Y = Y0~ given that the individual 
is a nonrespondent, and 

7r, = P~(1-O~)/ZP,(1-O,) ,  (3.3) 
J 

the probability that Y = Y0)given that the individual 
is a respondent. 

Then, assuming ¢~ is known, one may make the 
obvious assignment 

t, = (n-r)¢,, i = 1 , . . . , D  (3.4) 

D 
so that y~ = n - ' ~  Y01{r,+(n-r)qS,}. An alternative to 

i = l  
this mean imputation method is to select {t,} as a 
random sample of size (n-r) from the (point) 
multinomial distribution with probabilities {qs~: i = 
1 , .  • . , D } .  

Another possibility is to shift the observed 
distribution {(Y0~,L): i = 1,. • -,D} to approximate the 
distribution for the nonrespondents. First, select the 
{t~} as described for the random imputation method; 
i.e., select (n-r) observations from the point 
multinomial distribution with probabilities {(r,/r): 
i = 1 , . . . , D } .  Then, re-scale Y01 to Y~,I = Y0/¢~/~r, 
using (3.2)and (3.3). Finally, the (n-r) imputed 
values are t, repetitions of Y~i)so that 

D 
yc = n-~( ~__lYc,,r~ + F.Y{~,t,). One motivation for this 

i 
choice of Y{~ is that E(Y~] R) = E(Y0~] NR ) where 
R and NR denote "respondent" and "nonrespondent." 
An alternative is to use Y]'0 = Y0~¢Y/r, rather than 
Y~0" It is our experience that the difference in the 

distributions for (a) respondents and (b) 
nonrespondents typically cannot be modelled in a 
simple way, for example as a location-scale change. 

One may use double sampling to estimate the {¢~}. 
Assuming a subsample of b nonrespondents, let b~ 
denote the number in the sample with Y = Y0~" Then 
one may take 

t, = (n-r)bJb, (3.5) 

a method related to the one in (3.4). Alternatively, a 
modification using random imputation can t~eom the 
employed: Select {{~/ as a ranaom samDe 
point multinomial distribution with probabilities 
~{(b~/b): i = 1 , . - . , D }  and use as the imputed values 
t, repetitions of Y0~. We have also considered 
modified versions of the two double sampling 
methods just described. In each case 

D 
nYo = E Yo,(r,+b,+t,) • (3.6) 

i = l  

For the modified mean imputation method, t, = 
(n-r-b)bJb while for the random imputation method, 
{t,} is a random sample of size (n-r-b) from the point 
multinomial distribution with probabilities {(b~/b)" 
i = 1 , . . - ,D} .  Finally, one may modify the scale- 
change method to use Y{{~ = Y0~b,r/br, rather than 
Y~',I" 

In Table 2 we list and name the imputation methods 
that we have investigated. 

For each of the fifteen imputation methods listed in 
Table 2 we obtained analytical expressions for E(yc), 
Var(yc) and E(~r2c); they are given in Appendix 1. The 
only approximations that were used were first order 
approximations for E(r -~) and E(r/r,). Obtaining 
these expressions was often complex, involving several 
stages of expectations: (a) subsampling of the 
nonrespondents, (b) random selection of the {{i} 
given the {r~}, and (c) sampling the {r~} according to 
the specification in Table 1. 

Before proceeding to a formal comparison of the 
alternative imputation methods, we indicate that there 
may be gains from using a data set completed using a 
"good" imputation method rather than by using only 
the observed data. For the latter case it is clear that 
E(~)  = E(YlRespondent)  and E(~2~) = Var(Y]Res- 
pondent). (See (3.1).) Thus, using the notation in 
Table 1, 

D (P,(14,) 
bias(y~) = E Y0, -P, ) (3.7) 

which is independent of the sample size. When (3.7) 
is not negligible, the confidence interval in^(3.1) will 
not be satisfactory. Alternatively, assume ~,, .-",~o, 
unbiased estimators of {¢,' i = 1 , . . . , D } ,  and 
consider 

D?o,(r~ t,) 
yo = n - ~ ( i Z  = + ) 
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with t, = (n-r)~ where ~ may depend on {r~" i = 
1 , - . . ,D} .  Then it is easily shown that E(~o) = 
D 

Y(~P~ E(Y), as desired. Also consider ^2 = cr c a s  

i=1 
defined in (2.3). After some algebraic manipulation, 
and using a first order Taylor Series approximation, it 
can be shown that 

1 r 

E(~)  - Var(Y) - --fi(1--fi)Var(Y ] Respondent). 

Thus, for large n, E(~r~) "-- Var(Y) as one would like 
to have. 

4. EVALUATION 

To complement our analytical comparisons of the 
fifteen imputation methods presented in Section 3, we 
have also carried out a numerical investigation using 
several data sets from a methodological study at the 
U.S. Census Bureau following the completion of the 
1982 Census of Wholesale Trade. For each Standard 
Industrial Classification (SIC) and for each of several 
variables the values of Y for the nonrespondents were 
obtained from administrative records. Thus we have 
a frequency distribution of Y for each of the 
"respondent" and "nonrespondent" subpopulations and 
also know the overall response rate. These data are 
then used to obtain the P, and 0, in Table 1, and, 
finally, values for E(yc), Var(~) ,  E(~2~) and Q2 (see 
(2.2), (2.3), (2.5)). 

For our investigation we use two variables, 1982 
total sales and 1982 annual payroll, and four SIC's 
(5052, Wholesale distribution of coal and other 
minerals and ores; 5171, Petroleum bulk stations and 
terminals; 5172, Petroleum and petroleum products 
wholesalers - -  except bulk stations and terminals; 
5181, Wholesale distribution of beer and ale). 
Eliminating the open-ended classes, there are 
nineteen classes for sales and eleven classes for 
payroll. To illustrate, we present in Tables 3 and 4 
the values of the P~, 0~ and Y~,)for Sales 5052 and 
Payroll 5052: Here, Y(~ is the mid-point of Y in the 
i-th category. 

As a summary of the results from this numerical 
study we present in Table 5 (Sales 5052) and Table 6 
(Payroll 5052) the values of B = bias@-c)/{Var(yc)} ''2, 
P = {E(~,~) - G 2}/G 2 and Q2 for imputation methods N, 
R, MC, RC, SC, SC-RE, SD, DM and DR. Letting 
f = b/(n-r) denote the fraction of nonrespondents 
who are subsampled (methods SD, DM, DR), we 
consider (n,f) = (200, 0.5), (200, 0.1), (100, 0.5), 
(100, 0.3) and (40, 0.5). 

We have also studied the sensitivity of methods MC, 
RC and SC-RE to misspecification of the {~} by 
considering as alternatives MI, RI and SI-RE (Table 
2). The results of this investigation are reported later 
in this section. 

First, consider the use of only the observed values 
(method N) leading to the confidence interval in 
(3.1). It is clear from Tables 5 and 6 that the value 
of B = bias(~r)/{Var(yj} '/~ may be very large; among 
the eight cases (4 SIC's, 2 variables), the largest 

values of B are in Table 5 while the smallest are in 
Table 6. Since bias(yr) does not depend on n (see 
(A.1)), B decreases as n decreases. 

The standard random imputation method, R, is 
inferior to method N described above" First, the bias 
of Yc is exactly the same for the two methods (see 
(A.1), (A.4)). However, the value of Q~ is very much 
smaller for R than for N. First, using (A.5) and (A.6) 
and ignoring terms of 0(n-l), it is easily shown that for 
R, Q2 < l while for N, Q2 = 1. Also, for these 
examples (4 SIC's, 2 variables and all values of n) the 
value of Q2 for method R ranged from 0.44 to 0.67. 
The bias of 2̂ o c is slightly smaller for R, but the values 
of P are very similar for the two methods. Thus, as 
one might expect, using an imputation procedure 
motivated by the situation where missing data are 
MAR is inappropriate when this condition does not 
hold. 

The remaining methods assume complete or partial 
knowledge of the missing data process. Method MC 
is a mean imputation method with t, - (n-r)~ (see 
(3.4) and (3.2)). First, yc is an unbiased estimator of 
E(Y). Second, ignoring terms of 0(n-'), E(~)  = 
Var(Y) ^(see (A.9)). For these examples there is little 
bias in @ 

Third, ignoring terms of 0(n-l), Q2 > 1" Letting R 
and NR denote, respectively, the respondent and 
nonrespondent subpopulations, and using 

Var(Y) = Var(YIR)Pr(R)  + Var(Y]NR)Pr(NR) 

+ Pr(R)Pr(NR){E(Y] R) - E(Y]NR)} 2 
(4.1) 

and (A.8), 

Var(yc) = n-l{Var(Y) - Var(YINR)Pr(NR)}.  (4.2) 

Finally, using (4.1) and (4.2) and ignoring terms of 
0(n-'), 

Q~ = Var(Y){Var(Y) - Var(YINR)Pr(NR)}- ' .  

In these examples, 1.17 _ Q2_< 1.57 where we 
consider all SIC's, both variables and all values of n. 
Note that the value of Q2 varies little with n (Tables 
5, 6). 

Assuming that good estimates of the {~} are 
available, the random imputation version of MC, RC, 
is excellent. It can be shown that for RC, E@-c) -- 
E(Y), E(~)  = Var(Y) and Q2 = 1. Later, we give 
several examples to illustrate the effect of 
misspecification of the {0i} on RC and on the other 
methods that assume a knowledge of the nonresponse 
process. 

Using a subsample of b nonrespondents to estimate 
the ~ is a practical alternative. Assuming that all 
subsampled nonrespondents provide the required 
data, the four methods, DM, DM-B, DR and DR-B, 
share the attributes that the bias of Yc is zero and the 
bias of ~,~ is 0(n-'). (See (A.34), (A.36),^ (A.40) and 
(A.42).) In these examples the bias of c~20 is negligible. 
After considerable algebraic manipulation it can be 
shown that 
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I > Q ~  M 2 2 2 = Qo~_~ >_ Qo~_~ _ Qo~.  

Thus, mean imputation is preferred. Also, for each of 
the four methods Q2 decreases as f decreases, and 
when f is small, Q2 is small. Considering all SIC's, 
both variables and all values of n, if the subsampling 
fraction, f, is 0.5, .73 < Q~M < .87, while if f = 0.3, 
.54< Q~M-< .74 and i f f  = 0.1, .23_< Q~M < .43. 
(Note that for a given value of f, the value of Q~M 
varies little as n varies.) Thus, double sampling with 
mean imputation is an adequate method if the rate of 
subsampled nonrespondents is rather large. 

Finally, consider the scale-change methods (SC, SC- 
RE and SD). First, note that for SC-RE, .9¢ is an 
unbiased estimator of E(Y) and Q2 = 1 (see (A.22) 
and (A.23)). Method SC-RE is superior to SC: First, 
it requires less prior knowledge than SC (~r, must be 
specified for SC, but is estimated for SC-RE). 
Second, although E(.90) = E(Y) for each method, and 
there is little difference in I P ] between the methods, 
Q2 = 1 for SC-RE, but Q2 < 1 for SC (see Tables 5 
and 6). Method SD provides an alternative to SC- 
RE. First, E(.9¢) = E(Y). Also, as expected, the 
value of Q~D is satisfactory if f is large. For these 
examples, if f = 0.5, 0.69 < Q2 _ = - so < 0.94 while if f 
0.3, 0.61 __< Q~D -< 0.87 and if f = 0.1, 0.37 < Q~o < 
0.76. Unfortunately, the values of P are sometimes 
quite large, ranging up to 5.0 for an example with 
n = 200, f = 0.1. 

We have also studied the sensitivity of methods MC, 
RC and SC-RE to misspecification of the ~ by 
considering as alternatives methods MI, RI and SI-RE 
(see Table 2). The results for SI are not presented 
because its counterpart, SC, has been shown to be 
unsatisfactory. We consider a simpler case by using 
only five classes for Y rather than the nineteen 
classes in the numerical investigation reported above 
(see Table 3). We take as the "correct" specification 
the values of the Y(~), P, and 0~ given in the first three 
columns of Table 7 (Sales 5181). "Incorrect" 
specifications are constructed by assuming that the P, 
are correct but the 0~ are not, and by taking the 
overall probability of nonresponse (0.23) to be 
approximately the same for each (mis)specification in 
Table 7. These alternative (mis)specifications of the 
0~ range from mild (number 1) to major (number 4) 
departures from the correct specification of the 0~. 

The results for methods MC and MI are 
summarized in Table 8, those for RC and RI in Table 
9, and those for SC-RE and SI-RE in Table 10. We 
proceed as in Tables 5 and 6 by presenting the values 
of B, P and Q2 for n = 100, 40 and 20. Note that for 
this investigation estimators associated with methods 
MI, RI and SI-RE use an incorrect set of o,, but 
properties of these estimators (e.g., bias) are 
evaluated using the correct P, and o, (columns 2 and 3 
of Table 7). 

First, note that for SI-RE, Q~ = 1 (see (A.32) and 
(A.33)). Second, the values of Q~ for MI and RI are 
substantially larger than 1 (Tables 8, 9). While the 
values of B are similar for the three methods, the 
values of P tend to be larger for RI than for the other 
methods. Thus, we tentatively conclude that SI-RE is 
preferable to MI and MI to RI. 

The bias of Y-c is the same for each of the methods: 

Dy(~)(~_~)) (4.3) bias(Yc) = Ii~Pi0il( iF.= = . 

Since (4.3) does not depend on n, ]B[ = 
I {bias(yc)} {Var(yc)}-"2 ] increases as n increases 
(Tables 8, 9, 10). Moreover, (4.3) will be large 
whenever large values of ]~i-q~ ] are associated with 
large values of Y(,~. The first incorrect set of o, 
represents a mild departure from the c o r r e c t  set (see 
Table 7) and, as expected, the values of I B] for this 
case are relatively small. (See the columns labelled 
B, MI, B, RI, and B, SI-RE.) Conversely, the fourth 
set of incorrect o, represents a substantial departure 
from the correct set and, as expected, the values of 
[B] are large. Both the second and third sets of 

incorrect o, have the same pattern (o, decreasing with 
i) and similar values of o,, but differ in that for the 
fifth category, 0.16-0, is much larger for incorrect set 3 
than for set 2. Thus, as anticipated from (4.3), the 
values of [B] are much larger for set 3 than for set 
2. 

We conclude that moderate misspecification of the 
values of the 0~ will not lead to extreme values of B 
unless there are very large discrepancies between the 
correct and incorrect 0, corresponding to the 
categories having the largest values of Y(,). Smaller 
values of n reduce the value of [B]. 

We summarize the results of this section as follows" 
1. In many circumstances, using only the observed 

values, method N, is inappropriate because the 
bias of Yc is unacceptably large. 

2. The standard random imputation method, R, is 
even less satisfactory than N. This illustrates the 
point that using an imputation procedure 
motivated by the situation where missing data 
are missing at random is inappropriate when this 
condition does not hold. 

3. Using a subsample of the nonrespondents to 
estimate the {~b,} is an effective method if the 
fraction subsampled is large. Mean imputation, 
method DM, is the preferred method. 

4. Methods MC, RC and SC-RE are all potentially 
useful, but the latter appears to be preferable 
because Q2 2 sc-aE = Qs,-RE = 1. Moderate 
misspecification of the values of the {0~} should 
not lead to extreme values of B except when 
there are very large discrepancies between the 
correct and incorrect {0,} corresponding to the 
categories having the largest values of Y~,~. 

5. DISCUSSION 

In this paper, we have shown that, in a simple 
situation, there are potentially effective methods for 
imputation when the missing data cannot be regarded 
as missing at random. There are two reasons that we 
regard this to be important. First, the results of Jinn 
and Sedransk (1987, 1989) provide a strong indication 
that for secondary data analysis imputation is not 
worthwhile when the missing data are missing at 
random or, presumably, nearly so. Second, the 
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current work suggests the possible value of good 
imputation methods in the case of greatest 
importance for effective secondary data analysis. The 
provision of an appropriately completed data set 
provides an automated way to "correct" an observed 
data set that cannot be regarded as a probability 
sample from a well-defined population. 

Much additional research is needed to: (a) confirm 
these findings for more complicated statistical 
analyses, and (b) develop better imputation methods. 
Two areas of current research effort are extensions to 
(a) situations where there is true item nonresponse, 
and (b) linear regression analysis. 

APPENDIX I 

Algebraic Expressions for E(yc), Var@D and E(/r~) 
for Imputation Methods in Table 2 

We present in this appendix algebraic expressions 
- -  " 2  - -  " 2  for E(y:), Var(yc) and E(ac) where y o and a: are 

defined in (2.2) and (2.3). The imputation methods 
are described in Section 3 and outlined in Table 2. 
Note that the only approximations used are first order 
approximations for E(r -1) and E{(r,/r)-~}. 

First, if only the observed values of Y are used (see 
(3.~)), 

D 
E@,) = E 7r~Yo, = E(YIR) 

i=1 
(A.1) 

where R denotes "respondent," 

D D 
Var(y,) "- E ~q{Yo,-E(YIR)}2/n (1- E Pd,~ 

i=l  i=1 o 

D (- 

- Var(YlR)/n/1  - - Pi0i l ,  
L i= l  3 

(A.2) 

and 

E({~) = Var(YIR ). (A.3) 

For method R, 

D 
E@:) = Z ~r,Y(,} = E(YIR ), (A.4) 

i=1 

D D -1 
Var(y:) "-n- 'Var(Y]R){=~ Pd,+ (1-~P,0, I ) '  

i 1 i=l 
(A.5) 

and 

D 
E(a2o) "-- (n-1)-'Var(YlR) ( n - ~  P,o,-(1-F. P,o,) -1 }. 

i=l  
(A.6) 

For MC it can be shown that 

D 
E@~) = y RY{o = E(Y), (A.7) 

i=1 

[ ~PdlVar (YIR)  Var(y:) = n -1 [1-i = 1 J 

(A.8) 

II-~P,°~ (i__~ Y{',(&P'))], 
I i ~ l  C i = l  0 1 

+ Pd t D -1 D 2 

and 

E(/71) = (n-l) -1 In Var(Y)- [1-iD F~ Pdil Var(Y I R) 
=1 

D 
-II-i=1 ~ P,O, ](i=lI~ P,0,] (~Y{,}0r,-~,))2 ] .  (A.9) 

For MI it can be shown that 

D 
E@-c) = E(Y) + ( iPP i° i ] l  ~ Y { i ) ( ~ * - ~ i ) =  ' 1 (A.10) 

where the ~* are constants estimating the G 

D 
Var(yc) = n-lEIl- i~  P,0 tVar(Y]R) 

=1 

~1-~ P,o,] (i__I~p,0t D 2 
L i=1 Vi=l 

and 
(A.11) 

[ I~ I ~ Y~}ul 2 E(a~¢) = (n-l) -~ n u~ Y0, 
i=l  -j=l J 

D  0;D )2 
- [1-i 1= ~ P'°'] Ii P'= ci=(~ lY{°0r'-¢*)' 

l-iD F~ P,o,] Var(YIR)] 
=1 

(A.12) 

where 

D D ( -  

Ui 

j= l  j =1 L 

+ i1;__~ 1 ) [~p01D -1) 

For RC, 

E(yo) = E(Y), 

Var@0 = n-'Var(Y), 

and 

E(g~) = Var(Y). 

(A.13) 

(A.14) 

(A.15) 

For RI, 
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1 D E(yJ = E(Y) + [-t_'i=l P,o~ 1F,. 1Y°'(~T-¢')' (A.16) 

Var(yc) n-~ I Ii__~ 1 = PA l (i~?~,, ¢* - Ii~Y,,,~*l 2) 

D 
+ ( F, P,(1-o,))Var(Y ] R) 

i=1 

D D 
+ (i ~P'°' = ) ( i  F  ̀=1P'(1-°')) (iF" =1Y"'(~-¢?))2 j, 

and 
(A.17) 

D D 2 
E(~:) = (n-I) -1 [n(i=y.Y~,)P*- I F ' ?  ( ' ) P : l i = )  

D 2 
- Ii~ P'`' )(i~=? ~',cb* -Ii~=? (')q~* I ) 

D D 2 
- q = l  ( F. P,(1-0,))(i__~?2(,,~r,- Ii~Y(,,Tr, 1 =  ) 

D 
D l_o,)) (i ~ • - Ii--l~p'0' I (i F'P'(=I = ? °'Or'-c~')) 

where 

2 ] (A.18) 

D 
P* =~r'(Y'PJ(1-oj)) + ¢*Ij ~ t ~ - j = l  ' = yj° o 

For SC, 

E(g~) = E(Y), (1.19) 
D 2 

"-- I _ ~ P t  (Y. Yo,0ri-¢,) Var(yo) n-' I Ii-i~ P,O 1 D 
~-i=1 

D 
+ I1-F. P,O, 1 Var(Y]R) 

~- i=1 

+ -F. P,01 (iY.?21,,(~,)2(Tr,) -' (n-l)n-1 (i ~P'°' I (1 Di=l _2 -1 D= 

-Ii~?,,,¢t 2) 

D D D D 
+ ~I~l  ~,o,l( ~Y~ Y ~}1 i i= i=l j= 

and 
(A.20) 

D D 
E(~2o) "- Var(Y)- (n+ 1)(n-1)-' I --~P"'I I ~ Y ~ " @ i  i 

IDI ~'°' 1 D + 2(n-l) -1 __~ ~ F. Y01Yo?r~j 
i i= l j= l  

D D ~p,o,l-1 
+ (n(n-1)-I F'i=l P'°'-n-11M=IF" P,O, ) Ii-i=l -2 ) .  

(i__ ~ 2 -1 

h + - ~ P,0,] n-~n-1)-' (i~P,o,l I ~ ~ 11 (1 ~ -~ n F~ PL- 
= =1 i=l J 

I•Y,,4: i=l -' (1.21) 

For SC-RE, 
E(yJ = E(Y), (A.22) 

Var(~c) "--n -1 IVar(Y)- Ii~P,°,l (i__~72~,, ~b, 

D 
- E Y,,,(4,) 0r,) , (A.23) dJ i=1 

and 

E(~) "- Var(Y)- Ii~P,o,l= (i~Y~,,~, 

D 
- E Y2~,(¢,)2(Tr,) -' ). (A.24) 

i=1 

For SD, 

E(yo) = E(Y), 
D 

Var(yo) - n -~ IVar(Y) - F~ Y~(,,P,o, 
i=l 

(A.25) 

D 1 + if' ( ~ eL-n-%{Var(Y INR)} 
~-i=l _2 

D 
+ (nf)-' ( F. Y2(i,¢i(1-¢i)0r,) -1 ) 

i=l 

ii~P0; D ~ '1 + = i=E? C''(¢')a(Tr')- (1.26) 

where f = b(n-r)-', the fraction of nonrespondents to 
be subsampled, and 
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D 
E(~) - Var(Y) - E Y~,,Pd~ 

i=1 
D 

- In F~ P,O,-I~ {n(n-1)f}-lVar(Y]NR) 
t_i= 1 -; 

D 
+ n-1 ( £ ' 5  Y~(i'~i(1-~i)0ri)-' 

+ n F~ Z Y~,,(~,)~0r,) -1 • 
i i=1 

(A.27) 

For SI, 

E(~) = E(Y)+ ~ ~ Y,o{~ri~, (~r~' -~, , 
i i=1 (A.28) 

Var  c) n ' I I1  "- P~o,j-] Var(Y [ R) 
i=l 

D D -1 
p,0, ] (1-i =~?,0 t Var(Y* [ R) + (n-l)n -1 [i~__1 

D D ) 
+2 [ ~=P,0 t ( ~Yo,Y:,v,(1-Tr,)- .~.Yo,YTdr,Tri 

i i= 14:1 

( ~  lri(Y/i/-Y ~ o))21 + [l_i__~?,0~l [i~P,0 t D ~-i= 1 
where Y~o = Yo)~*', t~r,)*'-l, and 

D D 
E(~:) [1-iE1Pioi] i= 1 = 

D 
~ Pioi n(n-1)-1i = 1 + 

(A.29) 

-n -1 Ii~P,ot [ 1-D 
-1 D ) 

) ( ~] (Y'~i,) %r , 
i=l 

+ (n-' [i~P,o t Ii-i;1P,°,l -1 

-(n-l)-' Ii~P,ot ) Ii~Y ~,,Trt 2 

- ~]YoG. + Ii~ P,°,; i=~ Y :,,~r) 

D 
- 2(n-l)-' ( ~ 

i 1 Pioi I (i~ Y,i,Y: i,Tri(1-Tri) 

q 
- .E. Yo) Y~'dri~j ]'" 

14:J ...2 

(A.30) 

For SI-RE, 
D 

E@c) = E(Y)-[i ~P'°'= ] ( i  ~=l(q~'-q~*)Y°)' (A.31) 

D 
Var(yc) "-- n-' [[i ~P'0' l ( i  ~=lY2(°(~*)20r')-' 

D 2 ~ P,0il Var(Y [ R) 
-[i~=Y(,,~b* 1 ) +[1-i=1 

+ [1-i;?,o,1 Ii~P'°t (i~Y(,)(Tr,-~*))21 ' 
(A.32) 

and 
D D 

E(a:) "-- f l-~ P,o, 1 ~ Y2/°Tr~ 
~- i=1 i=l 

D D 
Ii_l P ] i= 

-(Ii-i__~Pio~l Ii~Y(i,Tr t 

+ Qi~P,o ' 1 ii~lY(,,~b. 1 )2. (A.33) 

For DM, 
E(yc) = E(Y), 

Var(yo) = n-' L- _J [ fl-I~lP~°'l'- i= Var(YIR) 

(A.34) 

+f-~ Ii~P,0t Var(Y ] NR) 

+ [1-i__~P,o,l Ii ~P'0] (i~l(Tr,-q~,)Y()21 ' (A.35) 

and 

E(~2c) = Var(Y)-(n-1)-l(1-f)f -' Ii~P,ot Var(Y[NR) . =  
( A . 3 6 )  
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For  DM-B,  

E@o) = E(Y) ,  (A.37) 

Var@c)  = n -1 IV a r (Y )  

and 

E(g~) - Va r ( Y )  

- { ( n - l ) f } - l ( l - f )  Ii~Pi0i= I V a r ( Y I N R ) .  (1 .39)  

For  DR,  

E@-c) = E(Y) ,  (1 .40)  

Var@~) = n -~ I Il-i I~=IP'0'I Var (Y ]R) 

+ ( I i ~ P i 0 i l =  ( l + f ~ ) -  (fn) -1 ) V a r ( Y  ] NR)  

and 

D y(}2  
( 1 - ~  P ' ° ' ;  Ii _-l~pi°t ( i  ~ (Tr'-~b') 1 '  (A.41) 

i=  =1 

E(g~o) = Va r (Y)  

D 
- {(n-1)f} -1 ( ~__ P,0, - n - ' ) V a r ( Y  [ NR).  

i 1 
(A.42) 

Finally, for DR-B,  

E(yc) = E(Y) ,  (A.43) 

Var@c) = n-' IV a r (Y )  

Tab le  2. Impu ta t i on  Me thods  

N u m b e r  of 
Imputa t ions  for 

M e t h o d  the i-th Category. 
a. Standard Methods 

Value  for N o n r e s p o n d e n t s  
of D e p e n d e n t  Var iab le  
Cor respond ing  to the i-th 
Category. 

N None. See (3.1)• Y(i) 
R Random sample of size (n-r) Y(i) 

from multinomial {1j/r}. 
b. Pr(Y = Y(i) ] Nonrespondent) Specified 

MC (n-r)~ Y(i) 
MI (n-r)qS~ Y(i) 
RC Random sample of size (n-r) Y(i) 

from multinomial {~ }. 
RI Random sample of size (n-r) Y(i) 

from multinomial {qS~ }. 
c. Scale-Change Methods 

SC Same as for R. Y(i) ~/rri 
SC-RE Same as for R. Y(i) ~ r/~ 
SD Same as for R. Y(i) b~r/bq 
SI Same as for R. Y(i) ~b~/Tr~ 
SI-RE Same as for R. Y(i) q~i ~r/1] 

d. Double Sampling Methods 
DM (n-r)bm/b Y(i) 
DM-B (n-r-b)bt/b Y(i) 
DR Random sample of size (n-r) fromY(i ) 

multinomial {b I/b}. 
DR-B Random sample of size (n-r-b) Y(i) 

from multinomial {bj/b}. 

Note: The total sample size is n, of which r are respondents with 
r. having Y = YT" A subsample of b nonrespondents has b. with 

, ( , I 
} = Y(i~" q~i an~ 7r i are constants presumed to estimate ~ and 5" 
The rehlaining symbols are defined in Table 1 and formulas (3.2) 
and (3.3). 

The nomenclature is: N means n__0_o imputation while R and M 
denote, respectively, random and mean imputation. Also, C de- 
notes a correct and I an incorrect specification of ~ or ~ For the 

• I I"  scale-change methods (S) RE denotes esumation of ~ by (r/r) 
• . ~ . • I 

while D ("double samphng") denotes estimation of ~] by (r:/r) and 
by (b~/b). Finally, for the double sampling methods (D / "B" 

implies use of ~c, as in (3.6) rather than as defined in (2.2). 

Tab le  3. Uncond i t iona l  Dis t r ibut ion  of Y, Probabil i ty  
of N o n r e s p o n s e  Given  Y = y and M o m e n t s  of 
Dis t r ibut ions  for R e s p o n d e n t  and N o n r e s p o n d e n t  
Populat ions .  Sales 5052. 

Yl~l(in 000's) P, 0~ 
25 •058 

1 )] o49 
+ V a r ( Y I N R ) { ( 1 - f 2 ) f - 1 1  P , ° i -  (1-f)(nf) -1 ' 200125 .059°43 

i = 312.5 •057 
(A.44) 437.5 •046 

625 .069 
875 .050 and 1250 •062 

1750 •059 
E(/72c) = Va r (Y)  2250 .039 

2750 .033 
35o0 .051 

[ - D  1 4500 •042 
- ( ~ P~0i 6250 .073 ( n - 1 ) - ' V a r ( Y [ N R )  (1-ff)f -~ v-i=1 8750 .037 

12500 •055 
20000 .051 
37500 .065 

_ (l_f)(nf) -' ) .  (A.45) NOTE: Var(,~l}~)=E(Y = 78931.~1x108, 
er(R) = 0.57 

.676 

.553 

.685 

.561 

.604 

.428 

.654 

.546 

.373 

.474 

.365 

.307 

.280 

.359 

.356 

.388 

.243 

.112 

.174 
E(Y NR = Var([O ] ~R) 3101 _ = 4.43x10 / 
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T a b l e  4. U n c o n d i t i o n a l  D i s t r i b u t i o n  of  Y, P r o b a b i l i t y  
o f  N o n r e s p o n s e  G i v e n  Y - y a n d  M o m e n t s  o f  
D i s t r i b u t i o n s  for  R e s p o n d e n t  a n d  N o n r e s p o n d e n t  
P o p u l a t i o n s .  P a y r o l l  5052.  

Yol ( in  000 ' s )  P~ O~ 

25 .250 .571 
75 .137 .376 

125 .125 .385 
200 .174 .411 
312.5 .103 .259 
437.5 .056 .269 
625 .064 .283 
875 .041 .287 

1250 .024 .139 
1750 .018 .569 
2250 .008 .229 

NOTE: E ( Y [ R )  = 314 
Var(~glR ) = la,8092, 
Pr(R) = O.6O 

E(Y INR) = 225 
V a r ( ~ l N R  ) = 126318 

T a b l e  5. Sa les  5052.  V a l u e s  a of  B, P, Q2 for  
I m p u t a t i o n  M e t h o d s  in T a b l e  2 for  S e v e r a l  C h o i c e s  b 
o f  (n,f).  

M e t h o d  B P Q~ 

a. (n,f) = (200,0.5) 

N 1.98 0.30 1.00 
R 1.78 0.29 0.45 
MC 0.00 0.00 1.25 
RC 0.00 0.00 1.00 
SC 0.00 -0.16 0.74 
SC-RE 0.00 -0.16 1.00 
SD 0.00 -0.10 0.69 
DM 0.00 0.00 0.83 
DR 0.00 0.00 0.71 

b. (n,f) = (200,0.1) 

SD 0.00 0.16 0.37 
DM 0.00 -0.01 0.35 
DR 0.00 -0.01 0.33 

c. (n,f) = (100,0.5) 

N 1.40 0.30 1.00 
R 1.26 0.29 0.45 
MC 0.00 0.00 1.25 
RC 0.00 0.00 1.00 
SC 0.00 -0.16 0.74 
SC-RE 0.00 -0.16 1.00 
SD 0.00 0.00 0.71 
DM 0.00 0.00 0.83 
DR 0.00 0.00 0.71 

d. (n,f) = (100,0.3) 

SD 0.00 0.05 0.61 
DM 0.00 0.00 0.68 
DR 0.00 -0.01 0.60 

e. (n,f) = (40,0.5) 

N 0.88 0.30 1.00 
R 0.80 0.26 0.44 
MC 0.00 0.01 1.26 
RC 0.00 0.00 1.00 
SC 0.00 -0.17 0.73 
SC-RE 0.00 -0.16 1.00 
SD 0.00 0.16 0.75 
DM 0.00 -0.01 0.83 
DR 0.00 -0.01 0.72 

a B = bias(-]c)/{Var(-]c)} l/a , P = {E(~c)- o2}/o 2, 

02 = E { ~ / n  Var(~c) }. 

bThe results for (n,f) and (n,f') are the same for methods N, R, 
MC, RC, SC, SC-RE. 

T a b l e  6. P a y r o l l  5052.  V a l u e s  a o f  B, P, Q2 for  
I m p u t a t i o n  M e t h o d s  in T a b l e  2 for  S e v e r a l  C h o i c e s  b 
of  (n,f).  

M e t h o d  B P Q2 

a. (n f )  = (200,0.5) 

N 1.01 0.05 1.00 
R 0.91 0.04 0.48 
MC 0.00 0.00 1.56 
RC 0.00 0.00 1.00 
SC 0.00 0.08 0.55 
SC-RE 0.00 0.09 1.00 
SD 0.00 0.75 0.71 
DM 0.00 0.00 0.73 
DR 0.00 0.00 0.58 

b. (n, o = (200,0.1) 

SD 0.00 3.38 0.55 
DM 0.00 0.00 0.23 
DR 0.00 0.00 0.22 

c. (n,f) = (100,0.5) 

N 0.72 0.05 1.00 
R 0.64 0.04 0.48 
MC 0.00 0.00 1.56 
RC 0.00 0.00 1.00 
SC 0.00 0.08 0.54 
SC-RE 0.00 0.09 1.00 
SD 0.00 1.41 0.77 
DM 0.00 0.00 0.73 
DR 0.00 -0.01 0.58 

d. (n,f) = (100,0.3) 

SD 0.00 2.29 0.74 
DM 0.00 -0.01 0.54 
DR 0.00 -0.01 0.46 

e. (n,f) = (40,0.5) 

N 0.45 0.05 1.00 
R 0.41 0.02 0.47 
MC 0.00 0.01 1.57 
RC 0.00 0.00 1.00 
SC 0.00 0.07 0.54 
SC-RE 0.00 0.09 1.00 
SD 0.00 3.39 0.86 
DM 0.00 -0.01 0.73 
DR 0.00 -0.02 0.59 

a See footnote a to Table 5. 
bSee footnote b to Table 5. 

T a b l e  7. U n c o n d i t i o n a l  D i s t r i b u t i o n  of  Y; C o r r e c t  
a n d  I n c o r r e c t  P r o b a b i l i t i e s  o f  N o n r e s p o n s e  G i v e n  
Y = y. S a l e s 5 1 8 1 .  

Incorrect 0 i 
Correct 

Y(i) Pi 0i 1 2 3 4 

125 .09 .64 .60 .40 .50 
625 .22 .28 .25 .40 .40 

2000 .33 .18 .15 .20 .20 
6500 .26 .13 .10 .11 .10 

30000 .10 .16 .10 .11 .05 

.23 

.23 

.23 

.23 

.23 

NOTE: The probability of nonresponse is about 0.23 for each 
choice of the 0 i . 
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Table  8. Sales 5181. Values  a of B, P, Q2 for 
Imputa t ion  Methods  MC and MI for Several  Choices 
of n and Several  Al ternat ive  b Choices of the 0~. 

B p Q,2 

Incorrect 
Set of 0 i n MC MI MC MI MC MI 

100 0.00 -0.19 0.00 -0.03 1.22 1.17 
40 0.00 -0.12 0.00 -0.03 1.22 1.17 
20 0.00 -0.09 0.01 -0.02 1.23 1.17 

100 0.00 -0.21 0.00 -0.04 1.22 1.15 
40 0.00 -0.13 0.00 -0.04 1.22 1.16 
20 0.00 -0.09 0.01 -0.03 1.23 1.16 

100 0.00 -0.46 0.00 -0.09 1.22 1.08 
40 0.00 -0.29 0.00 -0.09 1.22 1.08 
20 0.00 -0.20 0.01 -0.09 1.23 1.08 

100 0.00 0.51 0.00 0.04 1.22 1.28 
40 0.00 0.32 0.00 0.05 1.22 1.29 
20 0.00 0.23 0.01 0.05 1.23 1.30 

~ See footnote a to Table 5 for definitions of B, P and 02. 
The alternative choices of 0 i are given in Table 7. 

Table  9. Sales 5181. Values a of B, P, Q2 for 
Imputa t ion  Methods  R C  and RI for Several Choices 
of n and Second Al ternat ive  b Choices of the 0i. 

B P C 

Incorrect 
Set of 0 i n RC RI RC RI RC RI 

100 0.00 -0.18 0.00 0.19 1.00 1.23 
40 0.00 -0.11 0.00 0.20 1.00 1.24 
20 0.00 -0.08 0.00 0.20 1.00 1.24 

100 0.00 -0.19 0.00 0.18 1.00 1.24 
40 0.00 -0.12 0.00 0.19 1.00 1.24 
20 0.00 -0.09 0.00 0.19 1.00 1.24 

100 0.00 -0.44 0.00 0.14 1.00 1.25 
40 0.00 -0.28 0.00 0.14 1.00 1.25 
20 0.00 -0.20 0.00 0.15 1.00 1.26 

100 0.00 0.45 0.00 0.26 1.00 1.22 
40 0.00 0.29 0.00 0.27 1100 1.22 
20 0.00 0.20 0.00 0.27 1.00 1.23 

~See footnote to Table 8. a 
See footnote b to Table 8. 

Table  10. Sales 5181. Values a of B, P, Q2 for Impu- 
ta t ion Methods  SC-RE and SI-RE for Several Choices 
of n and Several  Al ternat ive  b Choices of the 0,. 

B P C 

Incorrect 
Set of 0 i n SC-RE SI-RE SC-RE SI-RE SC-RE SI-RE 

100 0.00 -0 .19 -0.08 -0.12 1.00 1.00 
40 0.00 -0 .12 -0.08 -0.12 1.00 1.00 
20 0.00 -0 .08 -0.08 -0.12 1.00 1.00 

100 0.00 -0 .20 -0.08 -0.13 1.00 1.00 
40 0.00 -0 .13 -0.08 -0.13 1.00 1.00 
20 0.00 -0 .09 -0.08 -0.13 1.00 1.00 

100 0.00 -0 .45 -0.08 -0.15 1.00 1.00 
40 0.00 -0 .29 -0.08 -0.15 1.00 1.00 
20 0.00 -0 .20 -0.08 -0.15 1.00 1.00 

100 0.00 0.46 -0.08 0.01 1.00 1.00 
40 0.00 0.29 -0.08 0.01 1.00 1.00 
20 0.00 0.21 -0.08 0.01 1.00 1.00 

~ See footnote a to Table 8. 
See footnote b to Table 8. 
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