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1. Introduction 

could be negative. The results demonstrated 
some of the potential  gains of time series 
methods, but they also raised several 
additional problems. First the proportions 
were bounded between 0 and 1 and yet the 
models fit ted were not so constrained. 

The theory of sample surveys has mainly Second the true variable of interest was the 
been concerned with univariate problems, complete vector of voting intentions, a 
Arguably this matters  little for random-  multinomial vector, not the single variables, 
ization inference since the only random and the Labour and Conservative votes would 
variable is the indicator representing sample be negatively correlated. 
selection. For model-based inference, The solution to these problems became 
however, the multivariate nature of survey clear when Aitchison (1982) r ead  a paper on 
data  must be taken into account. Scott and the statistical analysis of compositional 
Smith (1974) developed a model-based theory data  to the Royal Statistical Society. The 
for the analysis of repeated surveys which multinomial vectors formed compositions and 
was essentially univariate. If Yt is a so the problem was that  of the time series 
survey estimate of a parameter  0 t based on analysis of compositional data. The problem 
survey data  at time t then we can express was given to Teresa Brunsdon, a new research 
this in signal and noise form as student, and this paper reports some of the 

results contained in her thesis, Brunsdon 
Yt = 0t + et , t = 1,2,..., T .  (1.1) (1987). For univariate problems Wallis 

(1987) provides a similar analysis. 
If the estimator is unbiased then the 
estimation error, et, will have mean zero and 
its covariance structure will be determined 2. Compositional Data 
by the sample design. In randomization 
inference 0 t would be treated as an unknown Consider a multinomial response, 
constant with no relationship between 0 t m+s 
and past values 0t-l, 0t-2,... Scott and r r = (rl,r2 .... ,rm+l), ~ r/ = n , which 
Smith argued that  0t woul~i frequently i+1 
change stochastically over time and could be 
represented by a time series model. The represents an m dimensional random variable. 

- -  U T (Ul, , Urn) , then u covariance structure of 0 t could be Let u/ r / / n , _  = ... 
inferred from the observed covariances of is a composition which lies in the simplex 
Yt, and the known covariance structure of {u m } e t. They showed that time series predictors S m = • 0 < u/ < 1,i=1, ,m; ~ u i < 1 
of 0 t could be more efficient than the . . . .  
classical randomizat ion estimators, i =1 

Time series analysis requires a long run m 
of data  for efficient estimation. In addition The value urn+ 1 = 1 - ~ u/ is called the 
if the covariance structure of e t is to be i=1 
employed in a time series framework then this fill-up value, or FUV, and is determined by 
is much easier if the error structure remains the m values Ul,...,u m. The problems of 
constant over time, implying a long run of modelling and analysing compositional data  
surveys with the same design and sample size. are discussed thoroughly in the excellent 
One set of surveys which met these conditions monograph by Aitchison (1986). He demon-  
were monthly public opinion polls of voting strates the difficulties of applying standard 
intentions. Scott, Smith and Jones (1977), methods to the composition, u , due to the 
Smith (1978), fitted time series models to constraints of the boundary of the simplex. 
key variables such as, C t , the proportion Multivariate analyses based on null concepts 
who would vote Conservative, Lt , the such as independence are particularly 
proportion who would vote Labour, and, Ct-Lt~ difficult to handle. Aitchison's solution, 
the Conservative lead over labour, which which like all good ideas seems obvious when 
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you first hear of it, is to map u_ from the 
simplex S m onto I~ m and then to examine 
the statistical p r operties within R m. He a~ (k)-l" ui - ~  
considers several t ransformat ions  the most 
important  of which is the additive-logistic 
or a m t ransformat ion  defined by: 

v (k)  i 
e (i=1 m + l ; i ~ k ) ,  
m+ 1 v ( k  ) ' " "  

1 +  E e J 

j----1 

j ~k  

[u,] v i = an(ui) = log , ( i= l , . . . ,m) ,  (2.1) 
m + l  

where 
I n  

Urn+ 1 ----I - ~ u i ,  
i ' - - I  

with inverse 

V i  
1 e 

u i = ( v i ) =  
m 

V 1 + ~ e J 
j = l  

,(i= 1,.. . ,m), 

(2.2) 

= 1 ( i = k )  . 
m+ 1 V( k ) 

1 + ~ e J 

j - --1 

j ~k  

In using this t ransformat ion  we must  
therefore establish whether  subsequent 
analysis is invariant to the choice of 
reference variable. It is useful to note 
that ,  

v(k)=Z(k)v(re+l) where Z_(k)= { z i j ( k ) )  , 

zij(k) = 1 ( i=j~k;  i , j -1, . . . ,m) 

= - 1  ( j=k;  i = l , . . . , m . )  

= 0 elsewhere. 

(2.3) 

m 

1 + ~ eVj 
j = l  

( i - m + l ) ,  If we now assume that  

v ( m + l )  ,,, Nm(~_, ~_) 

then u ~ Lm(#. E) , the logist ic-normal 
distribution 

where urn+ 1 is the FUV. Let uf  denote the 
(m+l)  x 1 vector, consisting of u augmented i.e. f(u[_p, E) = 
by Um+x , so that  m + l  

12 El II u, 
i----1 

• 0 < u~ < Iti=l,...,m+l); u{ = 1 
i - - I  T 

ex -g2 n _ ~ - 1  tn - 
represents an al ternative definition of a 1 - Um+l 
composition. 

One problem is that  if the ui's are per-  (2.4) 
muted a different  FUV is obtained and so a 
different  version of am . In other words we 
may  select any element of u_f to be the Aitchison and Shen (1980) show that  for 
reference variable and obta in: -  

X(k) ~ Nm(Z_(k)~ Z_(k)~ Z_T(k)) the distribu- 

a~ (k) • v~k)= log (i= l ,  .. . ,m+l; i~k);  

with inverse 

tion Lm(Z(k)~ , Z(k)_~ ZT(k)) is simply the 

appropriate rotat ion of Lm(~, _~) i.e. it is 

the distribution of u* where u* is u 
but with u k and Um+x interchanged. 
Consequently any subsequent analysis is 
unaffected by the choice of reference 
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variable. This invariance property may be 
extended to time series models and we examine 
this in section 3. 

When m = 1 , a m reduces to the uni- 
variate logistic transformation log(u] l -u )  
and Lm(~,E) to Ll(#,a 2) which is 

equivalent to the S B distribution of 

• _(B)v t = O_(B)~_t , 

where ~(B) = I_m + ~1B + . . .  + ~pB p , 

and 9(B) = I_m + 9_1B + ... + O_q nq .  

Johnson (1949) with parameters 7" = - # / a  and In the multivariate case we follow the ideas 
a = 1]a . Thus the a m transformation and of Tiao and Box (1981) who give a very simple 
the Lm distribution provide a multivariate procedure for choosing, estimating and 
generalization of the approach suggested by testing such models. 
Wallis (1987). As in the previous section it is necessary 

The m o m e n t s o f t h e  Lm(~,_E ) distribution, to consider if the choice of reference 
although finite, cannot be evaluated variable in any way influences the analysis. 
algebraically. However, they may be evaluated Brunsdon (1987) proves the following results. 

(t=0,_+l,...), 

numerically by employing a suitable 
quadrature technique. As an alternative Result  1 
Brunsdon (1987) considers two approximations 
to the mean, but the preferred solution is Let 
numerical evaluation of the mean by 
quadrature. 

In many applications interest centres more 
naturally on the ratios uj]ut  or their 
logarithms. From standard log-normal theory 
we have, for example, 

_V(t k) - Z(k)V t 

= 

( k=l , . . . ,m)  , 

E (u j /uk ) - -  exp{#j -#k+½(aj j -2ajk+akk)}  

and 

Cov(uj/u k, u i /u  t)  = E(uj /Uk)E(ui /ue)  

{exp(ai  j+ake-aje-aik)  - 1} 

where 
E = {%). 

where Z_(k) is given by (2.3) and ~ = E(vt) , 

then if {Vt} follows a multivariate 
ARMA(p,q) process of dimension m then, 

{V(t k)} is also multivariate ARMA(p,q) . 
Further the roots of the determinantal 
equations of both the AR and the MA 
components from the two models are identical 
so that the stationarity and invertibility 
conditions remain consistent. 

For further discussion of this see 
Aitchison and Shen (1980). Result  2 

Consider the compositional time series 
3. C o m p o s i t i o n a l  t ime  se r ies  

{ut} where a(mk)(ut)(k=l,.. . ,m+l) follows 
If a survey is repeated at times an ARMA(p,q) process. Then each ARMA model 

t -- 1,..., T , then multinomial responses at ( k = l , . . . , m + l )  represents the same model for 
each time t , rt say, lead to compositions u t , except that the elements of uft and 

m associated parameters have been permuted. 
{ut:O<uit<l,i=l, . . . ,m; ~, uit<l; t= l , . . . , t }  That is, the model for u_.f is totally 

i=1 invariant to the choice of reference 
which form a multivariate time series, variable. 

The consequence of the above two results Transforming the series using the am 
transformation (2.1) produces a multivariate is that any component of u f may be selected 
time series defined on [~m at each time as the reference variable without affecting 
point t which can be analysed using the final results. For the rest of this 
standard methods. In particular we will section, we will assume, without loss of 
examine the use of ARMA models on the generality, that the reference variable is 
transformed series defined by Um+x,t • 
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The application of section 2 to modelling found numerically by calculating the mean 
and forecasting is now straight forward and of Lm(vt(t),_Et(e)) or ut(e ) may be 
follows the same argument as Wallis (1987). approximated. 
The series u t is transformed to vt "- From standard multivariate theory a 

confidence region for ut+ e may also be 
vt = a*n(Ut) " obtained, although it will not be centred at 

ut(t ). A 100(1-c~)% confidence region for 
{VT) is then modelled by the (multivariate) _ut+ ~ can be formed from 

ARMA(p,q). It is then a straight forward 
matter to obtain forecasts for vt+ e . If 
the e-step ahead forecast vt+ e of v t is 
denoted by vt(e ) and its covariance matrix 
Et(e) then we may obtain the "naive" 
forecast for u as 

- t + e  

_/£'t(e) = a m l ( v t ( e ) )  . 

ut+e 
t e - l n  

1 9 t + e  

Iv i uU: }1 -1  ( e ) t ( e ) - l n  _-t _e 
~t_ I. m + l  t + e  

2 Assuming normality for the distribution of < X~;m 
V t ~ SO that 

(Vt+e/Vt_l, . . .)  ,', N(v (e) ~ t ( e ) )  w h e r e  X~;m is the c~% point of a X~m) t ~ _ " 

distribution~ by mapping points from R m 
the optimum forecast of ut+e, ut(e ) may be onto the simplex S m , see Figure 1. 

Figure  1 .Confidence regions  fo r  u t 

[oo2ooo 1 
a )  _vt(e) ---- O, and ~et(e ) 0 . 0 0  0 . 0 2  

b) vt(e)= O, andE.. =[0.026 0.013] 
-at(g) ~0.013 0 026 

U3 U 2 U3 U2 

[:::] [ ] c)  v t (e )=  , and -~et(e ) -  0.000"020.020"00 

U3 

[ 1  d) vt (e)=  O, and _ ~et(e)-- 0.026 0.013 
0.013 0.026J 

U 2 U3 

U 1 

\ 
\ 

\ u2 
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Finally forecasts for either the ratios 
ui,t+e/uj, t+t or the log-ratios may be 
found. For example 

f 

= e x ~ v i t ( e  ) - vjt(g ) + ½(aiit(g) (uduj)t(e) 
[ 

- 2aijt(~ ) + aj j t (~))~ 
J 

where  _~t (e )=  {ai j t (e)  } . 

4. D e p e n d e n c e  f o r  c o m p o s i t i o n a l  
t i m e  se r i es  

,. ~(~) U_.a, F_(k) = dg(T~ k) ..,y(m k)) + .m+l 

for every lag k , which is eL very strong 
condition as might be expected. 

In many problems the basis may not be 
available, only the composition u is known, 
in which case the analysis is termed 
intrinsic. For example, in geology the 
composition of a soil or rock sample is all 
that is known. An intrinsic analysis 

Aitchison (1986) contains a good dis- examines amalgamations and subcompositions. 
cussion of the ideas of dependence and in- For the composition, ut , we have the 
dependence for cross-sectional compositional partition 
data. The sum constraint on compositional u t - - (Ut(c)  , u~ c), Vt(c)), (4.2) 
data induces an automatic dependence and if 
we wish to understand the inter-relationships 
between compositional time series it is 
necessary to develop new forms of 
dependence. 

In Section 2 we developed the idea of a 
composition from multinomial data 

m+l 
r T = (rl,...,rm+l) , .~ r i = n . More 

where 

and 

Ut(c) ---- (Ut ,1 , . ,  Ut, c) e S c 

U~ c) = (Ut,c+l,...,Ut,m+l) e S m-c+l, 

m+l 
Tt(c) = ~ Ut,j • 

j = c + l  

generally we can consider any positive 
variable w__ T = (Wl,...,wm+l) , w i > 0 , 

m+l 
r = ~ w i , and form the composition 

i---1 

c ( x )  = u ,  

Hence vt()c .is the FUV for ut(c) , and is 
an amalgamatmn of some of the elements of 
u t . Interest centres on whether one sub- 
compositon is independent of another, for 
example, whether in a public opinion poll we 
can study the vote for the major parties 
independent of the votes for minor parties. 
If the subcompositions formed from all 

where u i = wi/7" , i = 1,..., m , with partitions are independent then the 
FUV, urn+ 1 = Wm+l/T . For example, in a composition has complete subcompositional 
family expenditure survey w i would independence. Aitchison (1986) shows that 
represent the amount spent on some group of the Dirichlet distribution possesses this and 
commodities and ui would be the proportion other stronger properties which is why it is 
of expenditure on the group. The variable w unsuitable for modelling compositional 
is called the basis of the composition. I'T structures. 
the basis is .... available then analyses For time series of compositions the cross 
involving the basis are called extrinsic sectional ideas of dependence must be 
analyses, extended to embrace time series ideas of 

One of the earliest notions of extrinsic dependence or causality. Brunsdon (1987) 
independence was to consider independence in adopts the Wiener-Granger-Geweke causality 
the basis w .  If framework of linear predictability, see 

- -  Geweke (1982, 1984) Granger (1969). If Xt 
is the present value, Xt~, the set of past 

(i) II w , (ii) u = C(w) , values, nXt the set o I  past and present 
values a PPf~ the universe of information 

then u has basis independence. For time then for two series Xt, Yt, we have: 
series data this independence property must 
hold at each time point and also across time. (a) Causality • Yt ÷ Xt • 
If ut has basis independence then the auto-  If Var(Xtl~tv ) < V a r ( X t l ~ - Y ) t p )  then 
covariance function F(k) of v t has the form Y causes X. 
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(b) Feedback " Yt ~ Xt 

If Yt ÷ X t  and X t ÷ Y t  then we have 
feedback between Y and X. 

5. An application to public 
opinion polls. 

Gallup poll data in the U.K.  were 
available monthly for the nine years from 

(c) Instantaneous Causality • Y t ' X t  • January 1965 to December 1973 with no major 
If Var(Xt[~tp, Ytpp) <. Var(Xtlflt~! change in design. The best fitting 
then Y is instantaneously causing ~x multivariate ARMA model was an ARMA (1,1), 

which is consistent with the univariate 
and vice versa, analysis carried out by Scott, Smith and 

The twoextremecasesare l inear independence Jones (1977) which took into account the 
Yt II Xt ,  and complete dependence Yt *==~ Xt, rotating survey design. For the purposes of 
the latter holding if (a), (b), (c) all hold. testing dependence this was approximated by 

Following Geweke (1984) Brunsdon (1987) an AR(2) model, which fitted almost as 
derives a sequence of tests of sub- well. To justify analysing the data for the 
compositional dependence over time for a three main parties independent of votes for 
specific model. The number of possibilities minor parties we tested for the indepen~le,nce 
is very large and details will be given in a of ut(c) = (CON, LAB, LIB) from u~ ~j = 
subsequent paper. The basis of the tests is 
to map the partition of u t E S m onto v t ~ R m OTHER, DON~I ' KNOW). The tests supported the 

hypothesis that ut(c),c ) may be modelled 
• However the 

and to assume that Xt can be approximated 
by an ARm(p) process for some value of p . 
For the partition in (4.2) we have 

, . m 

v t -- (Vt(c) , v c), "t" t (c)) ,  7" t(c)-- ~ vt i  , 
i f  c +1 

independently of 
partition into (CON, LAB) alone, namely the 
two major parties, was not independent of the 
LIB party. 

The subcomposition formed from ut(c) was 
modelled by an ARMA2(1,1 ) processal/d the 

where Vt(c) - ac(Ut(c) ) etc. and the ARm(p) results were compared with those of 
' univariate modelling. As so often happens in 

model is of the form 

-~ ll (B) ~12(B) -~13 (B) 

_~21 (B) _~22 (B) _~23 (B) 

- ~ 3 1  ( B )  _ ~ 3 2 (  B ) _~33  ( B )  

_v 
t(c) 

X(c) = 
t 

~t 

T 
t(c) 

a 

t ( c )  

a (c)  
u 

t 

at 

where _a t is a white noise process with 

= 

r -  

E E E 
- 11 - 12  - 13  

S E S 
- 21 - 2 2  - 2 3  

E E E 
-- 31 -- 3 2  - 3 3  

multivariate time series analysis there were 
no obvious gains from fitting multivariate 
models over univariate models apart from the 
built in consistency of the results. The 
main benefits appeared at the earlier stage 
when justifying the analysis of the 
subcomposition. 

6. CCNCLUSION 

In this paper a model for compositional 
time series has been proposed which could be 
used for modelling data from repeated sample 
surveys. The approach is to apply an 
instantaneous transformation which will map 
the data from the positive simplex S m to the 
m-dimensional real space R m. In parti-  
cular we have suggested the use of the 
multivariate additive-logistic transforma- 
tion, am , because of its wide application. 
This transformation requires that one of the 
compositional variables be used as a 
reference variable. We have demonstrated 

The various forms of dependence can be that our approach is invariant to the choice 
modelled by making assumptions about the of reference variable. Forecasts may be 
coefficients ~_ii and the covariances ~ i j .  obtained by finding the mean of the 

appropriate additive-logistic-normal distri- 
Tests are based on natural logarithms of bution. A numerical integration routine may 
ratios of the determinants of suitably chosen be used for this purpose. 
estimates of the residual covariance It is possible to generalise the procedure 
matrices, we have explored by considering any trans- 



formation f (say) which maps S m to Rm. A other transformations and investigate a 
transformation may be selected so that, for variety of properties such as the causal 
example, the transformed variables are not relationships between variables. 
only on R m but also have some further 

' A c k n o w l e d g e m e n t :  This research was property e.g. normality or Stationarity. The 
advantages of this general approach for supported by a gramt from the ESRC. 
static compositional data have been well 
investigated and are summarised in Aitchison REFERENCF_~ 
(1986). Many of these advantages will carry AITC~ISON J. (1982) The statistical analysis 
over into this time series context. An of compositional data. J. Roy. Statist. 
important example is that a whole range of Soc. B, 38, 189-203. 
transformed-normal distributions become 
available to describe u ~ S m . Previously AITCHISON J. (1986) The Statistical Analysis 
the only distribution- available was the of Compositional Data. Chapman and Hall, 
Dirichlet and generalizations of it (e.g. New York. 
Connor and Mosimann (1969)). These BRUNSDON T.M. (1987) The time series analysis 
distributions impose a strong independence of compositional data, Phi) thesis, 
structure on the data such as neutrality or 
'independence except for the constraint'. 
The 'f-normal '  distribution overcomes this 
problem and allows dependence between the 
variables u ~ 5 ~ (other than the linear 
constraint). The additive-logistic-normal 
distribution was used by Aitchison (1982) for 
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