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Abstract 
A new time series method for estimating employment and 

unemployment in 40 States was introduced by the Bureau of Labor 
Statistics in 1989. It uses the Kalman filter to combine current 
period State-wide estimates from the Current Population Survey 
with past sample estimates and auxiliary data from the 
unemployment insurance system and the Current Employment 
Statistics payroll survey. The purpose is to reduce high variance in 
the CPS labor force estimates due to small sample sizes. This 
paper discusses the basic time series approach used and presents 
the unemployment model as an example. 
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1.0 Introduction 

In January 1989, the Bureau of Labor Statistics (BLS) 
introduced a new method for estimating monthly employment and 
unemployment for 39 States and the District of Columbia. The 
new method uses time series models fitted to the statewide monthly 
sample data from the Current Population Survey (CPS). The 
purpose of this paper is to provide information on the basic 
modeling approach used and on the current and planned research to 
develop further improvements. The unemployment rate models are 
presented as examples. 

The most direct way to estimate the characteristics of a 
population, such as labor force status, is to conduct a large-scale 
sample survey based on a probability design. Often times reliable 
estimates are available for a large area but the sample is too thinly 
spread to provide reliable estimates for subareas. For periodic 
surveys, time series techniques have received increasing interest as 
a way of making extensive use of whatever data are available from 
the survey specific to subareas. The CPS provides an example of a 
periodic survey that is particularly well-suited to the application of 
these techniques. Each month, a sample of about 59,000 
households is interviewed to provide estimates of the labor force 
status of the population. Reliable monthly estimates are produced 
for the nation as a whole and for eleven of the more populous 
States. For the remaining 40 States (including the District of 
Columbia), the sample is not large enough to support direct use of 
the monthly estimates. 

Prior to 1989, labor force estimates for the 40 States were 
based on the Handbook method (Bureau of Labor Statistics, 1988). 
This method used as its primary inputs data on a count of workers 
drawing unemployment insurance (UI) benefits and estimates of 
nonagricultural payroll employment from the Current Employment 

Statistics (CES) survey. 
The new approach to estimation is based on a signal plus noise 

model that treats the monthly CPS sample data as the sum of a 
stochastically varying true labor force series (signal) and error 
(noise) generated by the CPS sampling process. Monthly CPS 
labor force estimates along with sample design information are 
combined with UI and CES data in a time series model of the data 
generating process. The basic idea is to reduce the effects of high 
variance in the CPS due to small sample sizes by using both 
current and past sample data along with auxiliary data in a more 
systematic way than was done before. Given a model describing 
the dynamic behavior of the unobserved population series and 
autocovariances of the sample error, the Kalman filter (KF) may be 
used to estimate the true series. The KF has a number of 
particularl$, useful features: It allows for a wide variety of 
approaches to the specification of the signal and noise components; 
its recursive structure provides a very efficient algorithm for the 
preparation of labor force estimates each month by 40 State 

agencies; and finally, the KF is a very useful tool for implementing 
estimators of the unknown parameters of dynamic models. 

The remainder of this paper is organized in the following way: 
Section 2 presents the basic signal plus noise model in a state 
space framework; section 3 discusses practical implementation 
issues; section 4 presents an application of the model to estimating 
unemployment; and finally section 5 discusses current and future 
research plans. 

2.0 Time Series Approach to Modeling CPS Data 

The probability designed CPS yields monthly estimates of the 
labor force characteristics of each State's population. The classical 
survey sample approach treats the true labor force values as fixed 
and focuses on the variation due to sampling. The time series 
approach, as exemplified by Scott and Smith (1974) and Bell and 
Hillmer (1987b), treats the unobserved values estimated by sample 
surveys as varying stochastically over time. From this perspective, 
the data generating process giving rise to a State's CPS labor force 
series consists of a stochastically varying true labor force (signal) 
and measurement error (noise) generated by the CPS survey design. 
The time series approach seeks to synthesize two different 
approaches to estimation by using time series theory to model the 
signal component and information from the sample survey to 
specify the noise component of the observed sample series. 

2.1 Signal Component of the CPS 

A dynamic linear regression approach is used to model the true 
values of the employment level and the unemployment rate for 
each of the 40 States. Since each is estimated using a model of 
the same general form, we will first discuss those features common 
to both models and then use the unemployment rate as an example. 

The observed CPS labor force estimate, Yt' is represented as 

the sum of the signal, 0 t, plus a noise term, e t, 

Yt = 0t + et" 

The signal, or true labor force is specified as generated by a 
dynamic linear model consisting of a time varying mean l.tt/X and a 

disturbance u t, 

0t = ~t/X + u t  (1) 

The mean represents that part of 0 t that can be "explained" by the 

observed X variables, 

gt/X = Xt 13t 

where, 
X = 1 x k vector of observed regressor variables 

t 
13 t = k x 1 vector of stochastic coefficients. 

The presence of these variables serves two important and related 
functions. First, it allows the use of auxiliary data obtained 
through administrative and other non-CPS sources to improve the 
efficiency of model estimates. Secondly, as economic indicators, 
these variables play a useful descriptive function that helps State 
analysts explain their labor force movements. (The specific 
variables used as regressors will be discussed later for the 
unemployment rate model.) 

The regression coefficients are treated as varying stochastically 
according to a first order vector autoregressive process (VAR), 

13t = TI3 ~t-1 + vl3t (2) 

where, 
T o = k x k matrix of fixed parameters 

p 
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v13 t = k x 1 vector of white noise coefficient disturbances. 

The basic role of this variation is to represent uncertainty in the 
ability of the model to fully depict the true labor force. For 
example, changes in a coefficient may originate from omitting a 
variable whose correlations with the regressors change over the 
sample period (Engle and Watson, 1985). As discussed below, 
increasing these variances will tend to discount the model based 
estimates, thereby weighting the individual current period CPS 
sample estimates more heavily. 

The disturbance, u t, in (1) is the "errors in equation," or the 

stochastic part of the signal that is not accounted for by either the 
X variables or coefficient variation. Since this disturbance may. be 
autocorrelated, it is represented as a general ARMA (Pu' qu ) 

process, 

ut = ~u (L) q~-I (L) Vut (3) 

where, 
u = errors in equation 

t 
Vut = white noise disturbance to u t 

P 
u . Li (L) = 1 - ,Y_, W autoregressive operator for u t 

U U l  ' 
i= l  

qu 

Ou (L) = I + ~ Oui Li' MA operator for u 
i= l  t 

L = lag operator, such that L i Y = Y 
t t-i" 

The random disturbances, v13 t and Vut, are assumed to have 

zero means and be mutually independent, 

i i01 o ° 3t ~ ID , 

ut 0 0 

where, 

Q - Cov (vl3t) = Diag (~131131' ' ' "  ~3k~3k )" 

V V 
U U 

(4) 

2.2 Noise Component of the CPS 

The role of the noise component is to incorporate important 
features of the CPS sample design and estimation procedures 
directly into the modeling process. The noise component is treated 
as due entirely to error arising from sampling only a portion of the 
entire population. While other sources of error may be important, 
we do not deal with them here. For our purposes, we view the 
"true" labor force value in a practical context as that which would 
be measured by expanding the CPS sample to include the entire 
population. 

The CPS is a complex multi-stage sample of the population; in 
the first stage a stratified sample of PSU's are selected; and within 
PSU's housing units are selected from a stratified systematic cluster 
sample with only a partial replacement of housing units each 
month. The CPS estimation process consists of a noninterview 
adjustment, two stages of ratio adjustments, and a compositing 
procedure that takes into account the sample overlap in adjacent 
months (Bureau of the Census, 1978). Given that Y is the CPS 

t 
sample estimate of the total number of persons in the population 
having a specific labor force characteristic, 0 t, the sample error, 

et = Y t -  0t 

has variance, 

c = D S 2 (5) 
ee,t y y 

and covariance function, 

Tts = Cov (e t, es) for any t,s 

where, 
D = ratio of the variance of the CPS estimator to the 

Y 
variance of the simple random sample (SRS) estimator 
(design effect) 

S 2 
Y = (N t / nt) 0 t (1 - Pt) 

N t = population size 

n t = sample size 

Pt = 0t / Nt" 

As the above equations illustrate, the CPS sample error has both 
a heteroscedastic and autocorrelated structure. Equation (5) 
illustrates three major sources of heteroscedasticity: (1) sample 
redesigns as reflected by changes in Dy; (2) changes in the sample 

interval N t / nt; and (3) changes in the true values 0 t and Pt" The 

first two cause discrete shifts in the sample variance. For example, 
the CPS is redesigned each decade to make use of decennial census 
data to update the sampling frame and estimation procedures. Most 
recently, a State based design was phased in during 1984/85 along 
with improved procedures for noninterviews, ratio adjustments and 
compositing. Changes in State sample sizes have occurred more 
frequently than redesigns and have had a major impact on 
variances at the State level. Even with a fixed design and sample 
size, the error variance will be changing because it is a function of 
the size of the true labor force. Since the labor force is both 
highly cyclical and seasonal, we can expect the variance to follow 
a similar pattern. 

The autocovariance structure of e is influenced primarily by 
t 

three things. First, the monthly sample is composed of 8 
independent subsamples of housing units known as rotation groups. 
A rotation group is interviewed for 4 months, dropped from the 
sample for 8 months and then returned for 4 months. Clearly, 
correlations will be generated since identical housing units will 
appear in more than one monthly sample. The 4-8-4 feature of 
the rotation scheme will produce correlations over a 15 month 
period with the largest coming at 1 month (75% overlap) and at 2 
and 12 months (50% overlap). 

Secondly, the use of a rotation system requires the periodic 
selection of additional samples. When a cluster of housing units 
permanently drops out of a rotation group it is replaced with 
nearby units. Since the new units will have characteristics similar 
to those being replaced this will result in correlations between 
non-identical households in the same rotation group (Train, Cahoon 
and Makens, 1978). 

Finally, the dynamics of the sample error will also be affected 
by the composite estimator. This is a weighted average of an 
estimate based on the entire sample for the current month only and 
an estimate which is a sum of the prior month composite and 
change that occurred in the 6 rotation groups common to both 
months (Bureau of the Census, 1978). 

Both the heteroscedastic and autoregressive behavior of the 
CPS estimator may be accounted for by modeling e t in 

multiplicative form (Bell and Hillmer, 1989), 

e t = T t e*t 

with e* following an ARMA process with constant variance, 
t 

e*t = q~e (L) We 1 (L) Vet (6) 

Vet--, NID (0, Crv v ) 
e e 

oo 
2 

]g gk (re ,e ,  = CrveVe 
k=0 

where the weights {gk} are computed from the generating function, 

g (L) = ~e (L) ~£e 1 (L). 

The heteroscedastic component of e t is the square root of the ratio 



of variances, 

gee,  t 
~, (0 = ~ .  

ere, e ,  

The autocorrelation structure of e t is also likely to be affected 

by changes in sample design. For example, in the most recent 
redesign, the weights in the composite estimator were altered. As 
suggested by Bell and Hillmer (1989), one way to control for this 
is to treat the ARMA coefficients as constants that shift with major 
redesigns but are stable for a given design. 

2.3 State Space Form and the Kalman Filter Algorithm 

S 
t 

(mxl) 

J3 t 

S 
L t  

S 
t 
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+ 

O, 

The signal and noise components of the labor force model may 
be put into state space form. We will first consider a very general 
form that, while not suitable for estimation, is useful for 
demonstrating its flexibility and discussing the kinds of restrictions 
that must be imposed for practical implementation. 

In a state space formulation, the unobserved signal and noise 
are the state variables whose evolution over time is described by a 
set of transition equations• An observation equation transforms the 
state variables into the observed sample series. 

The transition equations in a state space system must take the 
form of a first order V AR. For our problem, the unobservable 
variables are 13 t, u t and e*.t The coefficient vector, [S t, is already in 

the appropriate form as can be seen from (2). While u t and et 

have been specified as ARMA processes in (3) and (6), they may 
be converted into vectors, Sut and Set respectively, that follow a 

first order VAR form. The basic rule is that any ARMA (p, q) 
process can be converted to an r x 1 first order VAR, r = max (p, 
q + 1), see Harvey (1981)• The transition equations are given 
below, where S t is the state vector consisting of 13 t, Sut and Set. 

St_ 1 + F t v t = T 
t 

(mxm) 

T~ 0 

T 
U 

O Tet 

O ~_t_ 

/vat/ 
Fet [. e t j  

(mx0 (&l) 

~t-1 

Sut_l  

Set_l  

E(vtvt ')  = block diagonal (Q, CrVuVu' aVeVe' t) 

Iru-1 

, Tet = 

I 
Wel,t  I Ire-1 

• I 

I 

I 

Were,tl 0 

where, 

Wul 

T = 
U . 

u r  
U 

1 1 

F u Oul , Oe 1, t = Fet = 

~e2r 1,t ~Uru-1 e 

m - k + r  + r  
U e 

k - number of regressor variables 
r e = k +  2 
ru = max (Pu' qu + 1), Pu' qu are order parameters of the 

ARMA form of of u t 

r e = max (Pe' qe + 1), Pe' qe are order parameters of the 

ARMA form of e 
t 

The observation equation, via the selection vector H t, takes 

linear combinations of the state variables to form the signal and 
noise components which sum to the observed series. 

Yt = Ht St = 0t + et 

0t = HOt St 

e t = Het S t 
where, 

[ [ [ [ [0m_k_ru_21 H t = Xtl  1 1 0 r - 1  I~'tl 
U 

( lxm)  

[ 1 [ ''Or_,] I I = 0k+r u H0t=  Xtl  1 10m-k-1 'He t  ITtl  

Given the state soace form of the unobserved signal and noise 
components, the KF provides a means of estimating them by 
conditioning on one sample observation at a time. To specify this 
algorithm, let the expectation of S t conditioned on the observed 

data up to time t -  j be given by 
I 

St/t_ j = E (St l Yt-j' " ' "  Y1 ) 

with covariance matrix, 
I 

Pt/~-j - E {(s t -  s~/t_j~ (s t -  St/t_j~' I vt-j'"" "' Vm~} 
and a prediction of the sample estimate Yt given its past values by 

Yt/t-1 = Ht St/t-1 
with variance, 

_ = H t 
E (Yt Yt/t-1 )2 Ht Pt/t-1 t = ft/t-l" 

Given an estimate of S t based on data up to but not including 

the tth observation, an estimator of S t involving current data is 

formed as a weighted average of St/t_ 1 and the current sample 

estimate Yt' 

S t/t - (I - K t Ht ) St/t_m + Kt Yt 

= St/t-1 + Kt ( Y t -  Yt/t-1 ) 
with covariance matrix, 
Pt/t ( I - K  t H ' ) P  = t t/t-1 
where St/t_ 1 and Pt/t-1 are estimated recursively from 

St/t_ 1 = T St_l/t_ 1 
t t i..~t 

Pt/t-1 = T Pt-1/t-1 T + F E(vtvt) . 

The weighting vector K t, known as the gain of the filter, is given 

by 
p 

Kt = Pt/t-1 Ht  / ft/t-1 
where the elements of K are determined by minimizing the sum of 

t 

the diagonal elements of Pt/t (Gelb, 1974). 

Using the KF equations, the observed sample estimate at time t 
is separated into its signal and noise components, 

Yt = 0t/t + et/t 

0t/t = 0t/t_ 1 + h0t ~'t 

et/t = et/t_ 1 + (1 - hot) ~'t 
where, 

~'t = Yt - Yt/t- 1 
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h 0 t = H 0 t K t =  [ V a r ( 0 t / 0 t _ l ) + H 0 t T P t _ l / t _ l T '  Ht] 

! ft/t-1 

1 - hot Het K t Cee,t + Het T Pt-1/t-1 Ht ft/t-1 

k 
Var(0 t / 0 t _  1 ) -  Z X 2 

i=l  it ~13i~3 i + ~v v 
U U 

2 
~ee,t = ~'t ~v v " 

e e 

The weight, hot, decomposes the prediction error ~'t into its 

signal and noise components, respectively. This decomposition 
illustrates how the KF combines a time series estimator, 8t/t_ 1, 

with a current sample estimate, Yt' to produce a minimum mean 

square error estimator of the signal. The amount by which 8t/t_ 1 

is adjusted toward Yt is a function of the size of the time series 

variance component, Var (0 t / St_l), relative to the heteroscedastic 

sample error variance, ~ee,t" A relatively large value of Cee,t 

results in a small value for hot and hence only a small adjustment 

to the time series predictor 8t/t_ 1 in forming 0t/t. Conversely, if 

the sample variance is small, St/t will not differ much from the 

current sample estimate Yt" 

The KF provides the minimum mean square error of the state 
vector, S t, based on all sample data through time t, in a recursive 

manner, and is thus ideally suited to real time situations where new 
sample data become available each period. However, as data 
become available after time t, the estimate St/t will not incorporate 

this new information, since the KF only moves forward in time. 
The suboptimality of previous period estimates is easily remedied 
through a process called smoothing. 

The basic type of smoothing (fixed interval) relevant to this 
paper can be described in simple terms as combining two types of 
KF estimators (Maybeck, 1979). The first is the forward filter 
estimate, previously described, which at time t is based on all past 
and present sample data, St/t. The second is a backward filter, 

which is the KF run in reverse, starting at the end of the sample 
period, say t = n, and proceeding to the beginning, producing at 
each t predictions based on only future data (relative to the forward 
filter). Let the backward filter be denoted by S t/t+l. The optimal 

smoothed estimator is then formed by combining the estimates from 
the two filters, in proportion to their mean square errors, as shown 
below. 

St/n = Pt/n [Pt~t St/t + (Pt/t+ 1)-1St/ t+ll  

Pt/n = [P t l t  + (Pt/ t+l)-l]  -1 

From the covariance expression for St/n we have p-1 = p-1 
' t / n  t / t  + 

-1 
(Pt/t+l) which implies that Pt/n - Pt/t is negative semidefinite. 

Thus, the smoothed estimator of S is never worse than the forward 
t 

filter estimator. In fact,-it is generally much better except for the 
last data point where the two estimators are identical. For this 
reason, historical labor force estimates are produced by the 
smoothing algorithm. 

3.0 Practical Implementation Issues 

The state space formulation allows for considerable flexibility 
in specifying the signal component. It includes as special cases 
two classes of model based approaches to sample surveys that have 

appeared in the literature. 
If the variances of stochastic coefficient change are set to zero, 

i.e. Q = 0 and e t and u t are white noise, the system reduces to 

Ericksen's (1974) sample regression model. In this case, the signal 
extraction problem is solved by fitting a weighted least squares 
equation to the observed sample data. 

By setting 13 t and Q to zero, we have a class of models based 

on Wiener-Kolmogorov signal extraction theory. The regression 
mean drops out and the signal reduces to a covariance stationary 
process. If in addition, the variance and the ARMA parameters of 
the e t process are also held constant, then e t will also be 

covariance stationary. Scott and Smith (1974) adapted the classical 
signal extraction approach to survey data where the covariances 
have to be estimated. Bell and Hillmer (1987a) discuss ways of 
handling nonstationarity in the signal process. 

In the model developed in this paper, nonstationarity in the 
signal is handled by the regressors and by stochastic changes in 
their coefficients. The transition equation (2) governing the 
behavior of the coefficients can accommodate a wide variety of 
patterns (Los, 1985). In practice, restrictions must be imposed to 
reduce this number to a manageable size. We specify these 
coefficients to follow independent random walks, i.e., TI] = I and Q 

is diagonal. This specification has several practical advantages 
(Engle and Watson, 1985). It is parsimonious, involving only k 
parameters, change tends to be smooth from month to month, but 
over long periods the model is allowed to adapt to fundamental 
structural change. 

If the state space parameters of the noise component are 
known, conventional identification and diagnostic methods may be 
used to estimate the signal component. In fact, these parameters 
are unknown and have to be estimated. Scott, Smith and Jones 
(1977) discuss two basic approaches. A direct designed based 
method follows the conventional sample survey approach by 
estimating lag error covariances directly from data on the sample 
units from which signal extraction weights can be derived. The 
second approach specifies a model of the aggregate series, e t, with 

identifying restrictions that incorporate known features of the 
sample design. 

These two approaches have their own particular strengths and 
weaknesses. As Bell and Hillmer (1987b) point out, the design 
based approach has the advantage that few constraints need to be 
imposed on the covariance structure of e t. However, there are 

many practical problems involved with this approach, one of the 
most important being the availability of the micro data on 
individual sample units. The time series approach to modeling e t 

has the advantage that it does not require these data. However, the 
error component cannot be identified from aggregate sample data 
without imposing restrictions. 

Little research has been conducted using either approach for 
CPS data. Hausman and Watson (1985) developed an ARMA (1, 
15) model of the error process for the national teenage 
unemployment rate series that incorporated the CPS 4-8-4 rotation 
design and the compositing procedure. An experimental application 
of the design based approach was performed by Bell and Hillmer 
(1987b) using the teenage data, but for a different time period. 
They developed an ARMA (1, 1) model as an approximation to the 
design based autocovariances estimated by Train, Cahoon and 
Makens (1978). 

Producing covariance estimates for a survey as complex as the 
CPS is costly, requiring the availability and processing of a large 
amount of micro data. Currently, not all of the data we need are 
available, but will be forthcoming in the near future. The last 
section of this paper discusses our plans for developing CPS error 
models. 

Because of these difficulties in developing designed based 
sample error covariances, we decided to initially fit the regression 
equations without attempting to estimate the individual effects of 
the errors in equation and the sample error. If the two component 
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errors are ARMA processes, then their sum will also be an ARMA 
process (Granger and Morris, 1975). If 
u t -- ARMA (Pu' qu )' and e t -- ARMA(Pe, qe ), 

then, 

w t = u t + e t - ARMA(p, q) 

where p < Pu + Pe' q < max (Pu + qe' Pu + qe )" The KF may 

then be used to extract the regression component and the aggregate 
disturbance. 

4.0 Unemployment Rate Models 

4.1 Explanatory Variables 

A common core of explanatory variables have been developed 
for the 40 State unemployment rate models. Each of the State 
models is based on two non-CPS data sources - - unemployment 
insurance claims developed from the Federal-State UI system and 
the Current Employment Statistics survey, a payroll survey of 
nonagricultural employment. These two data sources were the 
major inputs used in the Handbook methodology to prepare State 
estimates since the early 1960s. 

To control for important cyclical and seasonal labor force 
movements not accounted for by the UI and CES data, variables 
have been constructed from selected CPS data in such a way as to 
reduce, if not eliminate, the influence of sample error. While this 
raises an "errors-in-variables" issue, it differs from the classical 
case in that our focus is on estimating the unobserved true value of 
the dependent variable rather than the coefficients. It may be 
profitable to use more State specific CPS data as explanatory 
variables, but to do so will require a model that explicitly accounts 
for errors in variables. 

Monthly State data on the number of insured unemployed are 
the only source of current information on unemployment that are 
collected independent of the CPS. The nature of these data 
provide a starting point for the development of the rate model. 

Insured unemployment data represent a complete count of the 
number of workers who are filing for UI benefits. Each State 
administers its own separate program subject to certain federal 
requirements (Blaustein, 1979). In general, benefits are paid only 
to workers who were laid off and meet certain State specific 
monetary and nonmonetary eligibility standards. In contrast, the 
concept of unemployment used in the CPS includes all persons who 
did not have a job during the survey week and who were looking 
for work or on layoff and waiting to be recalled to work. In terms 
of size, the most important groups of unemployed not included are 
shown in table 1. Of the three major ways persons become 
u n e m p l o y e d - -  job loss, job leaving and labor force entry 
- - UI data essentially cover only a portion of one - -  job losers. 

Entrants account for the largest portion of unemployed not 
covered by UI. Because most have spent a substantial portion of 
their time prior to becoming unemployed outside the labor force, 
they will not have enough recent job experience and earnings to 
qualify for UI benefits. Job leavers who quit their jobs to search 
for other jobs generally are not eligible for benefits, at least for a 
period of time. 

If the relative size of the unemployed not collecting UI benefits 
was stable over time, the claims rate would be an excellent proxy 
for the total unemployment rate. In fact, the labor market is 
characterized by large cyclical and seasonal shifts in the 
distribution of unemployment, particularly between job losers and 
entrants. 

First, let us consider the seasonal movements in the distribution 
of unemployment. The most important phenomenon is the very 
different seasonal pattern of entrants and job losers. Youth and 
women make up the largest proportion of entrants. Youth 
unemployment shows a volatile seasonal pattern, reflecting the 
cycle of entry and exit from the labor force related to the school 
year. In contrast, job loss, the most common reason for adult male 
unemployment, reflects a seasonal layoff rehire pattern dominated 
by the annual production cycles of such industries as automobiles 

and construction. 
Table 2 illustrates the difference between seasonal patterns 

(average of the 40 States) of the CPS entrant and job loser rate and 
their net effect on the total rate. Also shown is a typical seasonal 
pattern for the insured unemployed. The table entries are seasonal 

factors where a value greater (less) than 100 indicates a month of 
higher (lower) than average unemployment. The entrant rate is 
lower than average during the winter and higher than average in 
the summer, while the loser rate shows just the opposite pattern. 
The seasonal highs for each group have a strong influence on the 
total rate. 

Of the three major categories of unemployed, job losers and 
entrants are numerically the most important, as, at different phases 
of the business cycle, they may account for as much as half of the 
total unemployed. Job leavers are less important quantitatively, 
usually accounting for about 15% of the total, but do have their 
own distinct seasonal pattern with highs in the late summer and 
early fall. Not surprisingly, the seasonal pattern of the claims rate 
closely follows job losers and does not reflect the influence of 
entrants or job leavers. 

Next, we consider changes in the distribution of unemployment 
related to business cycles (see table 3). During recessions, as labor 
demand falls, layoffs rise. We would thus expect the claims rate to 
be a good cyclical indicator. While it is, there are several reasons 
why the claims count may not fully reflect the cyclical behavior of 
job losers. Towards the latter stages of a recession, the duration of 
spells of unemployment lengthen and the number of workers 
exhausting their UI benefits increases. Also, once reemployed, it 
may take some time for these workers to build up sufficient wage 
and employment credits to qualify for benefits during subsequent 
spells of unemployment. Most importantly, there appears to have 
been a secular decline in the UI coverage of unemployed workers. 
This is illustrated by table 3. Instead of rising during recession 
years, UI coverage declined. Quantitative research by Burtless and 
Vroman (1984) and Corson and Nicholson (1988) indicate that most 
of this decline was unrelated to economic or demographic changes 
and appears to have occurred because potential UI recipients never 
applied for benefits. Changes in public policy may have been the 
primary cause. 

While the above discussion describes typical State behavior, 
there are important inter--State differences that must be accounted 
for in any modeling effort. In terms of UI data, there are 
variations in State eligibility requirements, benefit durations and 
administrative practices that have a major impact on UI coverage. 
This along with real differences in cyclical and seasonal behavior 
will cause regression coefficients and model parameters to differ 
across States. The diversity in UI coverage is illustrated by table 
4. This table presents the means of annual averages of UI claims 
as a percent of total CPS unemployment by State, the coefficient of 
variation across years within a State and the minimum and 
maximum annual averages. 

The general form of the regression component of the rate model 
is given below: 
Unemployment Rate = Intercept t 

+ 131 t Claims Rate 

+ 132t Employment-to-Population Ratio (EP) 

+ 133t Entrant Rate (8.0) 

where, 
Claims Rate = (continued claims w/o earnings 

J CES employment) * 100 
EP Ratio = (CPS employment J CPS 16+ population) * 100 
Entrant Rate = (CPS entrant employed [ 

(CPS entrants + CPS employment)) * 100. 

As discussed above, the claims rate provides a measure of the 
relative size of those job losers who are collecting UI benefits. 
The EP ratio accounts primarily for those job losers not included in 
the claims counts. Given a relatively fixed labor force participation 
rate for experienced workers, their unemployment over the business 
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cycle will be inversely related to the EP ratio. Although this 
variable is also sensitive to shifts in labor supply, its coefficient is 
negative, reflecting the dominance of labor demand fluctuations. 

The EP ratio also can pick up seasonal fluctuations in labor 
demand that affect the number of unemployed job leavers. From a 
seasonal peak in the summer, the EP ratio declines in the fall. 
During this period, a large number of seasonal jobs come to an 
end, and unemployment due to job leaving rises. 

In most States, the EP ratio was computed using CPS 
employment data in the numerator. While State CPS employment 
data are subject to sampling error, their coefficients of variation are 
five to six times smaller than the State CPS unemployment 
estimates. In a few States, CES data were used to compute the EP 
ratio. For most States the CES has a somewhat different seasonal 
pattern from the CPS employment measure, and is not likely to be 
as highly correlated with the "true" unemployment rate. 

The effect of labor supply shifts on the unemployment rate, 
particularly on a seasonal basis, is primarily captured by the CPS 
entrant rate variable. To reduce the effect of sampling error, this 
variable is computed for a geographic area larger than the State 
(national, Census region or Census division level). In some cases, 
a 3-month moving average of the State CPS entrant rate is used. 
Seasonal shifts in the entrant rate coefficients are added in a few 
States, primarily to control for the May to June increase in entry of 
students into the labor force. 

4.2 Estimation of State Models 

For each of the 40 States, models were fitted to the 
CPS monthly unemployment rate series for the period 1976 to 
1987. As previously discussed, the CPS sample data are 
represented in signal plus noise form as, 

Yt = 0t + et 

with the signal represented by, 

0 t = Xtl3 t + u t 

where the coefficients follow a random walk, 

13 t = 13t_ 1 + v13 t. 
Since we do not attempt to estimate the separate influences of u t 

and e t, the observed series is written as, 

Yt = Xtl3t + wt 

where w t = u t + e t ~ ARMA(p, q). 

Let S be the state vector form of w with order equal to max (p, 
wt t 

q + 1). Then, the state space model has the following transition 
equations 

[ 1[ 1 [ l[v0 t 13 t = I 0 13t_ 1 + 

S t =  Swt 0 T Swt-1 0 F 
w w Vwt 

with observation equation 

Yt = [ X t l 0  - . -  0] S t . 

The parameters of this system are: 

Cov (v13 t) = Diag (cl31131, . . . ,  crl3kl3k ) 

Var (Vwt) 
T contains p AR parameters 

w 
F contains q MA parameters. 

w 
These parameters are estimated using the innovation form of the 

likelihood function (Schweppe, 1965). If the white noise 
disturbances v13 t and Vwt are normally distributed, then the 

one-step ahead prediction errors or innovations, ~'t s, are also 

independent N (0, ft/t-1 ) random variables. 

It follows that the joint probability of the observed sample data 
may be expressed as the product of the individual innovation 

densities. If the state vector contains to nonstationary elements, then 
this joint density may be expressed as conditional on the first to 
observations and the log of the likelihood as a function of the 
unknown parameters, denoted by, f~, is within a constant, 

y 2  

1[ ~ln + ~ t  ] L(f~) = - ~ ft/t-1 ' 
t-tO 

Given f~, the KF recursions are used to evaluate L(f~) using the 
first to observations to compute starting values S to+l/t e and Pto+I/g" 

The parameter space must then be searched to locate the maximum 
value of the likelihood. In general, this is a difficult nonlinear 
optimization problem. Initially, we simplified matters by 
specifying, 

Cov (VBt) = q D 
| 

where q is a scalar and D a diagonal matrix of prior specified 
constants, either all ones or ratios of the variances of the 
coefficients to the mean square errors as estimated from a fixed 
coefficient model. We also started with a first order AR model for 
w t. This reduced the problem to the estimation of only two 

parameters. A coarse grid search was then performed to provide 
rough estimates of the degree of variation in the coefficients and 
the AR parameter value. These estimates, in some instances, were 
further refined by using them as starting values for the EM-  
scoring algorithm developed by Watson and Engle (1983). This 
algorithm allows for a general autoregressive structure for both 
coefficient change and the observation error. 

Good initial values for the parameters are very important for 
obtaining convergence within a reasonable number of iterations. 
The grid search produced small values for the coefficient variances, 
c . The standard deviation of the coefficients was about .6 

13i13 i 

percent of the standard deviation of the observation error. Using 
these as starting values, the EM algorithm generally converged 
within 3 to 6 iterations. Using large initial values for these 
variances required over 40 iterations with convergence to a lower 
value of the maximum likelihood function. Diagnostic testing 
generally did not reveal inadequacies in the first order AR 
specification of the observation error. 

There are a number of different ways to initialize the KF, as 
discussed by Harvey and Phillips (1979), Ansley and Kohn (1985), 
and Bell and Hillmer (1987a). While we used the information 
filter (which is not suitable for certain types of ARMA models) we 
found no problems with using the regular KF equations. Given 
calculations done in double precision, the KF produced results 
identical to the information filter. We tested the KF further by 
setting the coefficient variances to zero and compared the results 
with conventional regression software and again found no 
significant differences. 

4.3 Diagnostic Tests 

Once the models are estimated, the innovation series - - the 
difference between the current sample estimate and the best 
prediction of its value produced by the KF - - provides a natural 
check on overall goodness of fit. If the parameters of the state 
space model are known, then the standardized innovations will be 
normal and independently distributed with unit variance, 

I ' Yt = ( Y t -  Yt/t-1 ) / Ht Pt/t-1 Ht  N NID (0, 1). 

As discussed below, we test for a wide variety of departures from 
these properties. Of course, the test results should be treated as 
exploratory in nature rather than formal tests of significance since 
the state space parameters are estimated and repeated testing is 
performed on the same data. Nevertheless, it is reasonable to 
expect that strong departures from model assumptions would imply 
misspecification. 

(1) Autocorrelation 
A variety of tests were performed based on both correlogram 
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and frequency domain approaches. The correlogram was computed 
as 

n ~ ~ n -2 

= Z Yt Yt-e / Z Yt 
ig t=s+l+g t=s+l  
where, 

s = number of state variables 
n = total number of observations. 

In inspecting the correlograms for each model we used 

+ 2 ] ~ as a rough confidence interval around ~ g. The 

Durbin-Watson and the Ljung-Box version of the portmanteau test 
were used to supplement the correlogram analysis. 

n 'Yt 1 )2 m ~2 
D W =  Y. ('Yt- - / ,Z Yt 

t=s+2 t=s+l  
m 

LB(m) = (n-s)(n-s+2) Z ~2 ] (n-s-t) 2 
g= 1 g ~ Zm-P-q 

where p and q represent the order of the ARMA model fitted to the 
observation errors. 

Frequency domain methods are useful for revealing certain 
types of non-independence in the computed innovations that are 
less clearly detectable by the correlogram. In particular, cyclical 
properties may not be well characterized by the correlogram. 
Since the labor force is a highly seasonal series, we are particularly 
interested in detecting correlations in the innovations that are 
related to seasonal errors. We tested specifically for departures 
from white noise behavior at the seasonal frequencies. The statistic 
for testing this hypothesis is the ratio of the spectral density of the 
innovation to that for a white noise process. 

The spectral density for the innovations was computed as a 
weighted average of its periodogram ordinates, using a symmetric 
three-point weighting scheme. The spectral density for the white 
noise process is proportional to the total variance of the innovation. 
The test statistic is computed as 

s(fi) 2 
v -- 2v for f. = 1/12, 1/6, 1/4, 1/3, 1/2.4 

1 s0(f i) 
where, 

J wj P(fi), wj = , v  = 2 =-1 ' 

2 

S0(f i) - ~-~. 

(2) Heteroscedasticity with time 
Because there have been numerous changes in sample design 

and large increases in labor force size over the sample period, 
change in the variance of the standardized innovations is a real 
possibility. This is tested with the following statistic, 

n -  s s+m 
-2 2 n-s 

H =  Y'. Yt / £ Yt ~ Fm,m' m = w  
t=n- s-m+ 1 t= s + 1 3 

where the middle third of the observations are dropped to more 
easily detect differences between the average variances of the first 
and later part of the series. We also examined plots of the 
standardized innovations over time for evidence of 
heteroscedasticity. 

(3) Normality 
Potential departures of the innovations from normality are tested 

using the Bera-Jarque (1987) statistics based on measures of 
skewness (b l) and kurtosis (b2), 

~1 )2 2 
~ , = T  ~ +  24 ~ 2 2 '  T= to t a lnumbero f  

observations. 

This is a joint test of whether or not the estimates of skewness b 1 

and excess kurtosis, (b 2 - 3), are significantly different from zero. 

(4) Post-Sample Tests 
The innovation series produced by the KF are particularly 

well-suited to testing the adequacy of the model to make accurate 
predictions outside the set of data used in its construction (Harvey, 
1981). We divide our data into two parts, a sample period 
(1976-86) and a post-sample period (1987). A test that prediction 
errors are greater in the post-sample period is given by 

g -2  / / Y t YT+j g,T-s 
j= l  t=s+l  
where t > T is the post-sample period. 

In addition, it is useful to test for prediction error bias. A 
standard t statistic is used for this purpose, 

tt_s_ 1 = naffn-~-s ~ / s~ y 
where, 

n 
y =  Z .~t/(n-s) 

t=s+l  
n 

2 )2 
s~ = Z ('Yt- ~ / ( n - s - l ) .  
Y t= s+l  

4.4 Model Performance 

About 60 to 70 percent of the total variance in the monthly 
CPS series is attributable to the regression mean with the remainder 
due to the aggregate noise term. We have not yet developed mean 
square error estimates for the signal. To do so will require 
information on the CPS sample error covariances. 

The time varying regression mean looks considerably smoother 
than the CPS series. This can be seen by visually examining the 
plots of the various series. However, the highly seasonal nature of 
the labor force makes this visual comparison somewhat misleading. 
A useful rough summary measure of smoothness of a series is to 
decompose it into trend-cycle, seasonal and irregular components 
and compute the percent of the variance of monthly change due to 
the irregular. This smoothness measure was computed for both the 

model and CPS series. For the unemployment models, the median 
percent irregular (30 percent) is about half that of the 
corresponding CPS series. 

Based on the diagnostic tests, the 40 models appear to fit the 
systematic underlying movements in the CPS fairly well. There 
are, however, a number of areas that need improvement. Table 5 
shows the number of models that did not pass one or more of the 
tests. The major problems identified with the unemployment 
models were high order autocorrelation in 11, and 
heteroscedasticity in 9 of the 40 models. The primary source of 
the first problem appears to be the way in which some of the CPS 
explanatory variables were computed. Of the 11 models with 
positive Ljung-Box tests, 10 included CPS explanatory variables 
(either EP or entrant rate) that had been computed as three month 
moving averages of the original data. If the smoothing of these 
variables is eliminated, then 8 of these States would pass the 
Ljung-Box tests. The reason for using the moving averages was to 
dampen large irregular movements in the series. A more 
appropriate approach is to directly model the CPS explanatory 
variables as functions of their past values and directly incorporate 
them into the KF model. This approach is discussed in the last 
section of this paper. 

The heteroscedasticity identified in 9 of the unemployment rate 
models may in part be a reflection of changing variances in the 
CPS sample error. In general, the whole modeling approach could 
benefit by explicitly accounting for specific CPS sample design 
features, including heteroscedasticity of CPS sample errors. 
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5.0 Current and Future Research 

There is an ongoing program of research to develop further 
improvements to the time series models. This section discusses two 
major areas, modeling the CPS sample error and the 
errors-in-variables issue that arises in using CPS data as 
explanatory variables. 

5.1 Modeling CPS Sample Error 

As discussed in section 2.0 of this paper, information on the 
structure of the CPS sample error is necessary in order to 
decompose the composite regression disturbance term into its 
sample error and model error components. Given CPS error 
variances and lag covariances, ARMA models can be developed to 
approximate the time series behavior of the sample error. Treating 
the ARMA coefficients as known parameters of the state space 
system, standard time series diagnostic tools may be used to model 
the errors in equation disturbances. 

Currently, the major constraint to the development of sample 
error models is the lack of appropriate sample data. While the 
Census Bureau has routinely produced State variance estimates, 
based on generalized variance functions, since the mid-1970s, lag 
error correlations are more costly to obtain. As part of the rewrite 
of the CPS production system, BLS will begin receiving replicate 
weight files that can be used to compute correlations at varying 
levels of geographic detail. 

This will be an extensive project which requires processing of 
large amounts of CPS micro data. In the meantime, we are 
planning to use the CPS generalized variance estimates currently 
available to model the heteroscedastic structure of the error terms 
and experiment with alternative covariance structures for the 
sample error. 

5.2 Errors in Variables 

The CPS data used as explanatory variables in the 
unemployment rate model are themselves the sums of their true 
stochastic values plus measurement error. Thus, we have signal 
plus noise terms for both the dependent and regressor variables, 

Yt = 0yt + eyt  

0yt = Xtl3 t + Uyt 

X t = 0Xt + ext • 

For the fixed coefficient case, a well-known result is that 
random measurement errors induce an asymptotic bias in the 
coefficient estimators that is a function of the signal to noise 
variance ratio in the observed X series. The importance of this 
bias depends upon the purpose of the regression analysis. If it is 
used for predicting the dependent variable, on the basis of the 
observed X, then the errors-in-variables problem is less severe. In 
the analogous fixed coefficient case, it can be shown that the 
prediction is unbiased, provided the noise is stationary and retains 
those statistical characteristics it possessed in the data used to 
obtain the estimate (Johnston, 1963, Fuller, 1987). 

The approach used in this paper is to condition on the X 
variables. If Cov (ext, eyt  ) were zero we could consistently 

estimate 13, assuming it is a fixed parameter, as the empirical 
relationship between 0yt and X t. However, given that Yt and 

some X t come from the same survey, this covariance will not be 

zero, although in practice it may be small. For example, in the 
State unemployment rate model the CPS entrant rate is generally 
computed for a Census division, regional or national level. The 
CPS EP variable, while State specific, has a relatively small sample 
error. 

There are several approaches we could take to the 
errors-in-variables problem. We could drop the CPS explanatory 
variables and retain only the non--CPS variables and add stochastic 
trend and seasonal variables to control for behavior in the CPS not 

well reflected in the non--CPS data. Another approach is to retain 
the CPS explanatory variables but model their stochastic structure. 
The 0xt'S are clearly not independently distributed over time. This 

existence of an autocorrelation structure implies a certain degree of 
smoothness that could be exploited to solve the errors-in-variables 
problem. One way to do this is to model the observed X series in 
state space form, 

X t = 0Xt + ext = H X SXt 

SXt = T X SX,t_ 1 + F Vxt 

Sx,t/t = TX Sx,t/t-1 + KXt ?~t 

Kxt Cov (Var (Xt/t_l)) -1 = (Sx,t/t_ 1, Xt/t_l) 

Xt = X t -  HX St/t_l 

where, 
SXt = a state vector 

T X = transition matrix 

Vxt = vector of white noise disturbances 

Sx,t/t_ 1 = conditional expectation of SXt given Xt_l, • . . ,  X 1 

KXt = gain of the Kalman filter 

J(t = one-step ahead prediction error or innovation. 

It follows from the above that the observed series may be 
written as 

Xt = HX S x,t/t-1 + Xt 

= Xt/t-1 + Xt" 

Since Xt/t_ 1 is a function of past X's only it is uncorrelated with 

X t and also contemporaneously uncorrelatcd with measurement 

error in Yt" Thus Xt/t_ 1 may be used as an instrumental variable 

to replace X t in the regression equation, 

Yt = Xt/t_ 1 ~t + wt" 

This basic approach of using the autoregressive structure to 
smooth the X variables can be extended in a number of directions 
as suggested by Mehra (1976) and Eltinge (1987). The observation 
and transition equations for the CPS X-variables could be added to 
the state space equations for the dependent variable so that the 
autocorrelation of the X's could be estimated simultaneously with 
all the other parameters using maximum likelihood. If, in addition, 
we want to account for the sample error structure in the CPS 
X-variables we could construct a multivariate signal-extraction 
model. Time varying coefficients could be retained, but then the 
measurement equations would be nonlinear. The basic KF 
structure could be preserved by using an extended KF. 
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Table 1. Major Groups of Unemployed Not Counted 
in Unemployment Insurance Data 

1. Job Losers in following categories: 

a. Exhaustees- workers who have exhausted their 
benefit entitlements. 

b. Monetary Ineligibles- 
workers with insufficient prior 
employment or earnings to meet State 
eligibility requirements. 

c. Delayed and Never Fi ler -  
eligible workers who do not file for 
benefits at the start of their 
unemployment spell. 

2. Labor Force Entrants - 
workers who prior to their current 
spell of unemployment were outside the 
labor force. 

3. Job Leavers-  workers who left their previous job but 
continue to look for another job. 
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Table 2. Average of Unemployment Seasonal Factors for 40 State 
Aggregate, 1979-85 

CPS Unemployment Rates 

UI 
Job Job Claims 

Month Total Entrants Losers Leavers Rate 

Jan 110.6 99.1 120.9 104.3 131.2 
Feb 110.9 98.1 126.1 100.7 133,8 
Mar 105.3 96.2 115.7 95.5 120.8 
Apr 97.0 90.7 103.5 91.3 104.0 
May 93.2 96.4 91.0 92.8 91.0 
Jun 106.0 127.2 89.6 93.6 85.8 
Jul 98.7 106.0 90.8 101.0 95.9 
Aug 98.5 102.3 92.1 110.7 90.2 
Sep 95.5 102.7 84.7 112.8 77.6 
Oct 93.6 98.3 88.0 107.0 79.3 
Nov 94.9 94.5 93.5 101.3 87.7 
Dec 95.9 88.4 104.1 89.5 102.4 

NOTE: Seasonal factors were computed from X-11. The 
denominator of a CPS rate is the sum of CPS employment plus 
unemployment for the specific category. The denominator for the 
UI claims rate is total CES employment. 

Table 3. Relative Size of Categories of Unemployment, Average 
of 40 States by Year 

Percent of Total CPS Unemployment 

U.S. UI Claims as 
Unemp. % of CPS 

Year Rate Job Losers Claims 
Job Job 

Losers Entrants Leavers 

76 7.7 93.1 36.9 43.1 41.9 14.8 
77 7.1 86.5 34.5 41.3 43.6 14.9 
78 6.1 87.6 31.4 37.7 46.1 16.2 
79 5.8 87.5 32.8 39.4 44.4 16.1 
80 7.1 76.7 35.8 47.6 38.3 14.0 
81 7.6 68.1 31.9 48.8 38.4 12.7 
82 9.7 61.8 34.3 56.3 34.5 9.1 
83 9.6 50.7 27.7 55.1 35.5 9.2 
84 7.5 52.2 25.7 50.1 38.9 10.9 
85 7.2 56.6 26.9 48.3 40.1 11.5 
86 7.0 60.3 27.9 47.7 38.9 13.3 
87 6.2 57.0 25.3 45.6 40.2 14.0 
88 5.5 62.3 26.4 43.9 40.4 15.5 

Table 4. UI Claims as a Percent of Total CPS 
Unemployment by State, 1976-87 

UI Coefficient 
as a Percent of Variation Minimum Maximum 

State of CPS over Years Value Value 

AL 25.5 23.7 17.5 37.5 
AK 57.1 21.2 43.1 83.0 
AZ 24.3 13.8 19.8 29.5 
AR 28.1 21.6 20.2 38.5 
CO 23.6 10.9 20.2 28.1 
CT 37.5 17.0 29.3 48.9 
DE 29.9 17.1 22.8 38.0 
DC 26.6 10.7 21.9 30.3 
GA 25.8 15.0 21.2 33.4 
HI 32.9 9.5 29.0 39.8 
ID 31.6 15.4 24.7 39.5 
IN 24.4 17.5 19.4 33.5 
IA 30.3 20.9 22.6 42.1 
KS 35.5 13.6 29.5 45.9 
KY 29.2 29.7 17.2 40.0 
LA 27.9 20.6 20.0 37.6 
ME 35.8 11.2 28.7 41.1 
MD 28.5 12.2 23.6 34.0 
MN 33.7 18.7 24.0 44.4 
MS 26.1 19.7 20.1 35.3 
MO 32.8 19.5 24.3 44.2 
MT 32.2 21.6 23.1 44.2 
NE 30.0 18.7 20.7 43.9 
NV 34.7 19.7 25.3 48.2 
NH 26.4 17.4 19.2 34.7 
NM 24.2 10.5 20.4 28.1 
ND 31.1 14.7 24.3 36.7 
OK 27.5 21.7 19.4 39.0 
OR 37.6 16.7 28.8 48.4 
RI 51.2 12.7 39.5 61.4 
SC 26.3 18.1 19.8 33.9 
SD 22.5 30.6 14.7 35.0 
TN 27.2 26.2 18.1 41.0 
UT 31.4 25.7 19.9 41.1 
VT 40.0 9.7 33.9 46.3 
VA 17.6 20.1 13.3 24.7 
WA 36.1 15.7 30.1 49.1 
WV 32.8 24.7 21.1 42.7 
WI 34.2 24.1 24.8 47.1 
WY 28.7 28.7 20.7 49.7 

All 31.0 23.2 17.6 57.1 

Table 5. Summary of Diagnostic Checks: 
States with Significant Test Values at .05 Level 

Test Number of States 

Durbin Watson 1 
Ljung-Box [-12] 7 
Ljung-Box [-24] 10 

Spectral Density 
12 month frequency 9 
6 Month frequency 3 
4 month frequency 3 
3 month frequency 5 

Heteroscedasticity 9 
Bera-Jarque Normality 4 
Post-Sample Prediction 1 
Post-Sample Bias 0 
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