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I. INTRODUCTION 

It is common practice to analyze data from surveys 
where similar data items are collected on repeated 
occasions, using time series analysis methods• Most 
standard methods for these analyses assume the data 
are either observed without error or have independent 
measurement errors. However, in the analysis of 
repeated survey data, when there are overlapping 
sampling units between occasions, the survey errors can 
be correlated over time. 

A commonly  used model in the  analysis of t ime  
ser ies  is the  seasonal  i n t eg ra t ed  au to reg res s ive -moving  
ave rage  (ARIMA) regress ion  model,  which we discuss in 
this paper.  We show how to incorpora te  the (possibly 
co r re la t ed )  survey e r rors  into the  analysis.  In 
par t icu la r ,  we consider  the  ease  where  the survey 
(design) e r ro r  can be assumed to be an ARMA process  
up to a mul t ip l ica t ive  cons tan t .  

When such a model for the behaviour of the 
population characteristics is assumed, the minimum 
mean squared error, or, equivalently, the Bayes linear 
estimator for the characteristic at a point in time can 
be derived. This  estimator incorporates the model 
structure which the classical estimators, such as the 
minimum variance linear unbiased estimators, ignore. 
When the model parameters are estimated from the 
survey data, the estimators are empirical Bayes. 

Blight and Scott (1973), Scott and Smith (1974), 
Scott, Smith and Jones (1977), Jones (1980) and others 
considered the implications of certain stochastic 
models for the population means over time. In Binder 
and Dick (1989), these results were generalized using 
state space models and Kalman filters. In this paper, 
we extend the framework to include the model where 
differencing of the original series of the population 
means yields an ARMA model. We use the modified 
Kalman filter approach given by Kohn and Ansley 
(1986). To estimate the unknown parameters, we 
maximize the marginal likelihood function using the 
method of scoring. This  approach can also handle 
missing data routinely. We also show how the survey 
estimates can be smoothed to incorporate the model 
features using empirical Bayes methods. Confidence 
intervals for these smoothed values are also given, 
using the method described by Ansley and Kohn (1986). 

An example of this model is described in Section 5 
using data from then Canadian Labour Force Survey. 
This example shows the implications on the estimates 
of the model parameters when the survey errors are 
taken into account. We also derive a smoothed estimate 
of the underlying process under the model assumptions. 

2. THE MODEL 

Suppose we have a series of point estimates from a 
repeated survey of a population characteristic, given 
byy l ,  Y2' " ' ' '  YT" We assume thatYt can be 
decomposed into three components, so that 

Yt = X'tY + E)t + et '  (2.1) 

where X~y is a deterministic regression term, e t is a 
population parameter following a time series model, 

and e t is the survey error, assumed to have zero 

expectation• 

We first describe an integrated seasonal 
autoregressive-moving average model for {et}. We let 

B be the backshift operator; V = I-B and v = I-B s, 
where s is the seasonal period. We define ~he following 
polynomial functions: 

x(A)  = i -  X l A -  x2A2 - 

a(A) = 1 - a l  A - ~2 A2 - 

v(A)  = i - v i A -  v2A2 - 

and B(A) = i - B IA-  B2 A2 -  

• .. - XpA P, 

• . .  - apA p, 

. . .  - VQA Q, 

. . .  - BqA q. 

The seasonal ARIMA (p,d,q)(P,D,Q) s model for {e t} is 
given by 

x(BS)e(B)vdvDset : v(BS)B(B)e t ,  (2.2) 

'S are independent N(0,o2)• We define where the e t 

a(B) = x(BS)~(B), a (p+sP)-degree polynomial; 

A(B) = vdv D s'  a (d+sD)-degree polynomial;  

b(B) = v (BS)B (B ) ,  a (q+sQ)-degree polynomial; 

A(B) = a ( B ) A ( B ) ,  a (p+d+sP+sD)-degree polynomial; 

U t = A(B)e t, an ARMA(p+sP,q+sQ) process. 

Therefore, alternative representations of (2.2) are 

a(B)A(B)B t : b(B)e t ,  (2.3) 

A(B)B t = b(B)e t ,  (2.4) 

and a(B)u t = b(B)e t ,  (2.5) 

We now consider the survey errors {e t} of expression 

(2.1). It will be assumed that the sample sizes of the 
repeated survey are sufficiently large that the errors 
for the survey estimates can be approximated by a 
multivariate normal distribution. In the simplest case, 
where the surveys are non-overlapping and the sampling 
fractions are small, the e t ' s  can be assumed to be 

independent. In a rotating panel survey, the survey 
errors are usually correlated. In this case, since the 
correlations between survey occasions are zero after 
panels have been rotated out, a pure moving average 
process can be used to describe the survey error 
process. 

Alternatively, if a random sample of units are 
replaced on each survey occasion, a pure autoregressive 
process may best describe the process. More 
complicated models are also possible. For example, in 
a two-stage design, some of the first stage units may be 
replaced randomly on each occasion and the second 
stage units may have a rotating panel design. This 
might be represented by an autoregressive-moving 
average process. 



In this paper, we assume that the survey error 
process is given by 

e t = ktw t ,  

where {~t } is an ARMA (m,n) process, given by 

and 

and 

(2.6) 

$(B)m t : @(B)n t (2.7) 

¢(B) = 1 - ¢1B - ¢2 B2 - . . .  - Sm Bm, 

$2 B2 . . .  B n $ ( B )  = i - ~ i  B - - - ~n  ' 

The nt ' s  are independent N(0,T2). The factor k t has 

been included in (2.6) to allow for non-homogeneous 
variances, even when the autocorrelation function is 
homogeneous in time. 

In the model just described we assume that 2 ,  the 
k t ' s  and the coefficients of $(B) and of @(B) can be 
estimated directly from the survey data, using design- 
based methods. However, in general, 2 the other 
parameters are unknown. This includes y, o , and the 

! 
coefficients of }.(A), ~(A), ~(A) and of B(A). The x t s 
is the regression term are assumed known. 

3. STATE SPACE FORMULATION OF THE MODEL 

3.1 General Formulation 

The model described in Section 2 can be formulated 
as a state space model with partially improper priors. 
This has a number of advantages. It permits, through 
use of a modified Kalman filter, calculation of a 
marginal likelihood function, which can be maximized 
to estimate unknown parameters. It also accommodates 
smoothing of the original survey estimates, by removing 
the estimates of survey error from the data. 

In the state space model, two processes occur 
simultaneously. The first process, the observation 
system, details how the observations depend on the 
current state of the process parameters. The second 
process, the transition system, details how the 
parameters evolve over time. 

For the state space models we consider here, the 
observation equation is written as 

Yt = htz t  (3.1a) 

and the transition equation is 

z t = Fzt_ 1 + G~ t ,  (3.1b) 

where z t is an (r × i) state vector and h t is a fixed 

(r × i) vector. In the transition equation, F is a fixed 
(r x r) transition matrix, G is a fixed (r × m) matrix 
and the ~t 's  are independent normal vectors with mean 
zero and covariance U. 

The final requirement to complete the specification 
of the state space process is the initial conditions for 
z N. In this paper, we shall use the improper prior 
f~rmulation given in Kohn and Ansley (1986). In 
general, we assume that z0has a partially diffuse 
r-variate normal distribution with mean In(0 ]0) = 0 and 
covariance matrix V (0 I0), where 

V(010) = KVI(010 ) + V0(010 ) (3.2) 
for large K. 

We denote the conditional mean of z t g i v e n  the 

observations up to and including time t ' by m(t It '  ), 
and the conditional variance by V (t  ~ t ' ), where 

V ( t l t ' )  = ~ V l ( t l t '  ) + V o ( t l t '  ) .  (3.3) 

Recursive formulae for the cases where t = t '  and 
t = t'+1 are given in Kohn and Ansley (1986). They 
refer to this as the modified Kalman filter. 

Since the model for {yt } given by (2.1) contains 

survey errors {e t} an estimate of the components 

without survey error, given by 

Yt (smoothed) = X~y + 0 t (3.4) 

is often of interest. When the right hand side of (3.4) 
! 

can be expressed as gtzt, for some g~, then it is 

possible to obtain the conditional mean and variance of 
! 

the linear combination gtzt given all the data, using 
the modified Kalman filter. To do this, the recursions 
are applied up to time t to obtain m(t I t) and V(t I t) .  
Then the state vector z t is augmented by the state 

Zt,r+ 1 = g~z t, and re(tit) and V(t[t) are also 
appropriately augmented. The matrix F in (3.1b) is 
modified to add the equation ze, I ~,1 = Zt,r+ I" 
After these modifications, themo~if'ied Kalman filter 
can be used as before, so that the last component of 
re(TIT) gives the conditional expectation of g~zt, given 

component of V(t[t) gives the conditional variance. 
This procedure can be generalized to include any 
number of smoothed estimates and their conditional 
covariances. 

3.2 Model for 0 

Harvey and Phillips (1979) described a method to put 

the ARIMA model (2.4) into the state space form given 

by (3.1). The dimension of z t is r = max(p+d+sP+sD, 

q+sQ). By augmenting A = (AI, . . . ,  Ap+d+sP+sD) or 

b = (b 1, . . . ,  b q+sQ ) with zeroes to have dimension 

r, the ARIMA model may be written in the form given 

by (3.1), where h t ( i ,  0, . . . ,  0), G t ( i ,  -b I, 

. . . ,  -br_1 ) and 

A 1 

" Ir_ 1 

F = Ar-1 

A r O' 

where Ir_ 1 is the (r- 1) × (r- I) identity matrix and 0' 
is a row vector of zeroes. 

In this formulation, the state vector z t = (Zlt,  
. . . ,  Zrt ) ' is defined as 

z i t  = Ai0t_ 1 + Ai+10t_ 2 + . . .  + ArSt_(r_i+l) 

- b i_ le t - biet_ I - . . .  - b r_ l~ t_ ( r_ i  ) ,  

f o r i  = 2, 3, . . . ,  r a n d z l t  = E) t .  

(3.5) 
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To comple t e  the  speci f ica t ion for {0t}, init ial  

condit ions for z N are  required.  These are  given in 
Ansley and Kohfi (1985), a summary  of which is provided 
here .  

From expression (2.5), {u t} is an ARMA process.  We 
define 

e = (o O, o 1 '  ' ° - S ) '  - -  o o o  9 

where S = max(O, p+sP+d+sD-l). We let 

u__ = (u O, U_l, " " '  U-R)"  

where R = max(0,  p+sP-1) .  Finally,  we let  

w_ = (O_R_I, B_R_2, . . ,  O_S)', 

when S > R. 

Now, u_ is assumed to be a stationary ARMA 
process, so that its covariance matrix can be derived 
from expression (2.5). It is assumed that w is N(0, ~I) 
and is independent of u . Since (u_', w ')'is a linear 

m 

combination of e_, the covariance matrix for e_ can be 
derived. Using the form of expression (3.5) for z0, the 

initial covariance matrix can be computed. Note that 
when both d and D are zero, so that no differencing 
takes place in the model, then w__ is the null vector and 
we haveu =h . 

3.3 Model for the Observed Data 

In Section 2 we assumed that e t = k t ~t' where mt 

is an ARMA(m,n) model. Therefore, from the discussion 

in Section 3.3, it is clear that e t can be represented in 

state spaceform, withh t = (k t ,  0, . . . ,  0) ' ,  and 

= h t t  e t 'z . 

The regress ion component  can be similarly 

represen ted .  We let  z 0 = y, the regress ion 

coeff ic ients ,  assumed to have mean zero and 

covar iance  KI. The t rans i t ion  equat ion is simply 

z t+  1 = z t .  

Since we can represen t  each of the  components  of 
Yt in expression (2.1) by a s t a t e  space model, it 

s t ra igh t forward  to combine the  individual models into 
an overal l  model,  by extending the  s t a t e  vec to r  to 
include the  s t a t e  vec tors  from the  individual 
components .  The observat ion equat ion is then the  sum 
of the th ree  individual components .  

4. ESTIMATION OF THE STATE SPACE MODEL 

4.1 Estimation of the Parameters 
2 

The unknown parameters of this model are o , and 

the coe f f i c ien ts  of  x ( A ) ,  ~ ( A ) ,  ~(A)and B(A). We 

log(o2), 2 performed the iterations on rather than o , to 

avoid problems with negative values. Note that the 

regression coefficients, x, are included as parameters 

of the state vector. The model for the vector of 

observat ions  y = (Yl '  Y2' " ' "  YT ) '  given in Sect ion 
3 is equivalent to 

y = Hn + ~, (4.1) 

where n is j-variate N (0, K I) ,  ~; is T-variate N (0, W), 
andMisaT × j matrix. 

Kohn and .A.nsley (1986) recommended maximizing 

the limit of K J/~ times the likelihood function for the 

data, as K tends to infinity. It can be shown that the 
limit of the likelihood function is equivalent to the 
marginal likelihood function of y - Nil, where fi is the 
maximum likelihood estimate of n when M and W are 
known. Tunnicliffe-Wilson (1989) has shown that the 
Jacobian of transformation f rom the data y to 
(~, y - Mfl) does not depend on the model parameters 
of W whenever M is known. As well, the derivative of 
the transformation from y to ~ is M. Ansley and Kohn 
(1985) has shown that M does not depend on the unknown 
parameters. By using the modified Kalman filter, the 
computations for the marginal likelihood function are 
straightforward. 

The procedure we employed computes both the 
marginal likelihood function and its first derivatives 
with respect to the unknown parameters. This involves 
taking first derivatives of the initial conditions and of 
m(t I t '  ) and the components of V(t I t '  ) for t=t '  and 
t=t'+1. All the computations were done using PROC 
IML in SAS. 

\ 

The likelihood function was maximized using~a 
modification of the method of scoring. This 
modification allowed for varying step sizes. On each 
iteration, the likelihood function was computed at the 
previous step size, as well as at this step size multiplied 
and divided by a predetermined constant. (We used I.i 
as the factor.) The next step size was that which 
maximized the likelihood function among the three 
points. Each time a check was made to determine 
whether the parameters were in range. This was done 
by checking for positive semi-definiteness of the initial 
covariance matrix of the state vector. If it was out of 
range, the step size was divided again by the constant 
and the procedure repeated. 

To obtain the estimated variance matrix for the 
estimated parameters, the inverse of the Fisher 
information was used. This is readily computed since 
the first derivatives of the likelihood function are 
available. 

4.2 Estimation of the Smoothed Values 

Smoothed values for the estimates can be obtained 
by zeroing out that component of the state vector 
which corresponds to the survey error. However, this 
still leaves open the question of how to estimate its 
variance. To derive the standard error of the smoothed 
estimate it is necessary to account for the fact that the 
unknown parameters have been estimated from the 
data, particularly when the data series is short; see 
Jones (1979). 

To obtain the variance of g ' z + ,  it is sufficient to 
derive the variance z T - m(TIT),where re(TIT) is the 

estimate of re(TIT) at the estimated parameter values. 
This is because the state vector has been augmented to 
include g' z t. Now, 

z T - m(TIT) = [z  T - m(T IT ) ]  
^ 

+ [m(TIT)  - m ( T I T ) ] .  (4.2) 
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The first component of the right hand side of (4.2) 
has conditional variance V(TIT) = V0(TIT), assuming 
that VI(T[T ) = 0. The second component of (4.2) 

represents a bias term and is independent of the first 
term, since itdepends only on the data y. By taking a 
Taylor series expansion of the second term around the 
true parameter values and ignoring higher terms, we 
have the second component of (4.2) is 

m(TIT) - m(TIT) = [ -~m(TIT)], (¢ _ ¢) 
B ~  9 

(4.3) 

where ¢ is the vector of unknown parameters and ¢ is 
its estimate. Therefore, the variance of (4.2) is 
approximately 

Var[z T m(TIT)] = Vo(TIT) 

^ ^ (4.4) 
+ [ Bm(TIT)I,V¢ [ Bm(TIT)] 

Be Be 

where V# is the covariance matrix for the unknown 

parameters. Expression (4.4) is estimated by using the 
estimated parameter values. This is the same approach 
as that given by Ansley and Kohn (1986). 

5. LABOUR FORCE SURVEY DATA 

To demonstrate this procedure, we took data from 
the Canadian Labour Force Survey (LFS). The LFS is a 
monthly rotating panel survey. Each panel, which 
contains one-sixth of the selected households remain in 
the sample for six consecutive months. The sample 
design is a stratified multi-stage design. The primary 
sampling units are rotated out after approximately two 
years. 

The data were from the ten years from January 
1977 to December 1986. We used the series of number 
of employed for the province of Nova Scotia and from 
the subprovincial area within Nova Scotia corresponding 
to Cape Breton Island. This  province was chosen 
because the sampling errors were moderate compared 
to the larger provinces and because subprovincial data 
were available. The models were fitted to the 
logarithm of the series. 

Lee (1987) estimated the autocorrelations for Nova 
Scotia up to a lag of eleven. Using these autocor- 
relations, we estimated the coefficients of ¢(B) and of 

2 
@(B) given in (2.7) and we estimated T . A good fit was 

found using an ARMA(I,6) model. The estimated 

parameters were ¢1 - 0.7322, ~1 - -0.005589, 

~2 = -0.02736, ~3 = -0.06153, ~4 =-0.03175, 
2 ~5 = -0.03184, ~6 = -0.06027, and • = 0.4160. The 

kt ' s  of (2.6) were the estimated standard errors of the 

estimates, taking a Taylor series approximation for the 

logarithms. 

A series of models were fitted to the data where no 
sampling error was assumed; that is, all the k t ' s  were 

taken as zero. These models were then refitted using 
the assumed structure for the survey error. We 
compared the estimated parameter values. As well in 
the case where the survey error structure is assumed to 
be non-zero, we computed smoothed values for the 

survey estimates and compared their standard errors 
with the standard errors of the original series. 

After some model fitting, ignoring the survey error 
component, a model selected for the Nova Scotia series 
was a seasonal ARIMA (2,1,0) (0,1,1) 12" However, 
the seasonal moving average component converged to i, 
implying that a deterministic regression term rather 
than differencing should be used to account for the 
seasonality. A seasonal ARIMA (2,1,0) (0,0, I) with a 
regression term was fitted. The 12 regression variables 
included a linear trend and a dummy variable for each 
of the the first 11 months. The dummy variable for a 
reference month took the value i ,  -1 or 0, for the 
reference month, for December and for the other 
months, respectively. (Note that an intercept term is 
not estimable because the first differences for the data 
are fitted.) The same model was then fitted to the 
Cape Breton Island data. 

The parameter estimates for both Nova Scotia and 
Cape Breton Island are displayed in Table 1. We display 
the estimates which do not take into account the survey 
error component in the "Without Sampling Error" 
columns. 

The estimated model, when the sampling errors are 
taken in account, is strikingly different. In both series, 
the estimates for the ARIMA parameters are all zero, 
implying that there is no ARIMA component. (Note that 
when the model variance is zero, the other ARIMA 
model parameters are no longer identifiable.) The 
regression parameter estimates are similar to the 
estimates obtained by ignoring the sampling error 
component. This is because the estimates are unbiased 
under either model assumption. However, the t-values 
for the regression coefficients are too large when the 
survey error component is ignored. 

In summary, when the sampling errors component is 
incorporated, the best model will differ from the case 
where the sampling errors are ignored. Instead of 
including an ARIMA term, the fitted model contains 
only a deterministic regression component along with 
the sampling error component. In effect, the 
component from the ARIMA model which is found when 
the sampling error is ignored is small compared to the 
survey error in the data. 

Once the parameters are estimated, the smoothing 
procedure described in Section 4.2 was applied to the 
two series. The variance reduction of the smoothed 
values was substantial, ranging from an 80% to 95% 
reduction over the original survey error variances. Of 
course, this reduction makes strong assumptions about 
the validity of the model, which could easily be 
violated. In fact, the fitted model, consisting of only a 
deterministic regression term, seems unrealistic. 
However, for analytical purposes it is quite revealing. 
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TABLE 1. Parameter Estimates 

Nova Scotia Cape Breton Island 

Parameter 

Alpha (I) 

Alpha (2) 

Sigma 

Without Sampling 

Error 

Estimate T-value 

-0.19 -1.9 

0.01 0.1 

0.08 0.7 

0.009 

With Sampling 

Error 

Estimate T-value 

0.000 

Without Sampling 

Error 

Estimate T-value 

-0.17 -I .8 

-0.08 -0.8 

-0.12 -I .I 

0.031 

With Sampling 

Error 

Estimate T-value 

0.000 

Trend 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

0.0013 2.0 

-0.06 -22.2 

-0.06 -21.8 

-0.05 

-0.04 

0.01 

0.04 

0.07 

0.07 

0.02 

0.02 

-0.003 

-20.8 

-15.2 

3.7 

15.8 

26.0 

27.0 

10.0 

6.0 

-I .2 

0.0011 3.7 

-0.06 -5.9 

-0.06 -5.5 

-0.05 

-0.04 

0.01 

0.04 

0.07 

0.07 

0.03 

0.02 

-0.004 

-5.3 

-4.0 

1.0 

4.4 

7.6 

8.1 

3.1 

1.8 

-0.4 

0.0017 0.7 

-0.07 -7.5 

-0.08 -8.2 

-0.08 

-0.05 

0.02 

0.06 

0.11 

0.10 

0.03 

0.01 

-0.01 

-8.1 

-5.6 

2.3 

6.4 

11.0 

10.7 

3.3 

1.0 

-I .5 

O. 0008 I. 4 

-0.07 -3.5 

-0.09 -4.2 

-0.09 

-0.06 

0.02 

0.06 

0.10 

0.10 

0.03 

0.01 

-0.001 

-3.8 

-3.4 

1.0 

2.8 

5.0 

5.3 

1.2 

0.6 

-0.1 
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A KALMAN FILTER APPROACH TO LABOR FORCE ESTIMATION USING SURVEY DATA 

Richard Tiller, Bureau of Labor Statistics 
441 G Street NW, Washington, DC 20212 

Abstract 
A new time series method for estimating employment and 

unemployment in 40 States was introduced by the Bureau of Labor 
Statistics in 1989. It uses the Kalman filter to combine current 
period State-wide estimates from the Current Population Survey 
with past sample estimates and auxiliary data from the 
unemployment insurance system and the Current Employment 
Statistics payroll survey. The purpose is to reduce high variance in 
the CPS labor force estimates due to small sample sizes. This 
paper discusses the basic time series approach used and presents 
the unemployment model as an example. 

KEY WORDS: Time series, correlated measurement error, state 
space models 

1.0 Introduction 

In January 1989, the Bureau of Labor Statistics (BLS) 
introduced a new method for estimating monthly employment and 
unemployment for 39 States and the District of Columbia. The 
new method uses time series models fitted to the statewide monthly 
sample data from the Current Population Survey (CPS). The 
purpose of this paper is to provide information on the basic 
modeling approach used and on the current and planned research to 
develop further improvements. The unemployment rate models are 
presented as examples. 

The most direct way to estimate the characteristics of a 
population, such as labor force status, is to conduct a large-scale 
sample survey based on a probability design. Often times reliable 
estimates are available for a large area but the sample is too thinly 
spread to provide reliable estimates for subareas. For periodic 
surveys, time series techniques have received increasing interest as 
a way of making extensive use of whatever data are available from 
the survey specific to subareas. The CPS provides an example of a 
periodic survey that is particularly well-suited to the application of 
these techniques. Each month, a sample of about 59,000 
households is interviewed to provide estimates of the labor force 
status of the population. Reliable monthly estimates are produced 
for the nation as a whole and for eleven of the more populous 
States. For the remaining 40 States (including the District of 
Columbia), the sample is not large enough to support direct use of 
the monthly estimates. 

Prior to 1989, labor force estimates for the 40 States were 
based on the Handbook method (Bureau of Labor Statistics, 1988). 
This method used as its primary inputs data on a count of workers 
drawing unemployment insurance (UI) benefits and estimates of 
nonagricultural payroll employment from the Current Employment 

Statistics (CES) survey. 
The new approach to estimation is based on a signal plus noise 

model that treats the monthly CPS sample data as the sum of a 
stochastically varying true labor force series (signal) and error 
(noise) generated by the CPS sampling process. Monthly CPS 
labor force estimates along with sample design information are 
combined with UI and CES data in a time series model of the data 
generating process. The basic idea is to reduce the effects of high 
variance in the CPS due to small sample sizes by using both 
current and past sample data along with auxiliary data in a more 
systematic way than was done before. Given a model describing 
the dynamic behavior of the unobserved population series and 
autocovariances of the sample error, the Kalman filter (KF) may be 
used to estimate the true series. The KF has a number of 
particularl$, useful features: It allows for a wide variety of 
approaches to the specification of the signal and noise components; 
its recursive structure provides a very efficient algorithm for the 
preparation of labor force estimates each month by 40 State 

agencies; and finally, the KF is a very useful tool for implementing 
estimators of the unknown parameters of dynamic models. 

The remainder of this paper is organized in the following way: 
Section 2 presents the basic signal plus noise model in a state 
space framework; section 3 discusses practical implementation 
issues; section 4 presents an application of the model to estimating 
unemployment; and finally section 5 discusses current and future 
research plans. 

2.0 Time Series Approach to Modeling CPS Data 

The probability designed CPS yields monthly estimates of the 
labor force characteristics of each State's population. The classical 
survey sample approach treats the true labor force values as fixed 
and focuses on the variation due to sampling. The time series 
approach, as exemplified by Scott and Smith (1974) and Bell and 
Hillmer (1987b), treats the unobserved values estimated by sample 
surveys as varying stochastically over time. From this perspective, 
the data generating process giving rise to a State's CPS labor force 
series consists of a stochastically varying true labor force (signal) 
and measurement error (noise) generated by the CPS survey design. 
The time series approach seeks to synthesize two different 
approaches to estimation by using time series theory to model the 
signal component and information from the sample survey to 
specify the noise component of the observed sample series. 

2.1 Signal Component of the CPS 

A dynamic linear regression approach is used to model the true 
values of the employment level and the unemployment rate for 
each of the 40 States. Since each is estimated using a model of 
the same general form, we will first discuss those features common 
to both models and then use the unemployment rate as an example. 

The observed CPS labor force estimate, Yt' is represented as 

the sum of the signal, 0 t, plus a noise term, e t, 

Yt = 0t + et" 

The signal, or true labor force is specified as generated by a 
dynamic linear model consisting of a time varying mean l.tt/X and a 

disturbance u t, 

0t = ~t/X + u t  (1) 

The mean represents that part of 0 t that can be "explained" by the 

observed X variables, 

gt/X = Xt 13t 

where, 
X = 1 x k vector of observed regressor variables 

t 
13 t = k x 1 vector of stochastic coefficients. 

The presence of these variables serves two important and related 
functions. First, it allows the use of auxiliary data obtained 
through administrative and other non-CPS sources to improve the 
efficiency of model estimates. Secondly, as economic indicators, 
these variables play a useful descriptive function that helps State 
analysts explain their labor force movements. (The specific 
variables used as regressors will be discussed later for the 
unemployment rate model.) 

The regression coefficients are treated as varying stochastically 
according to a first order vector autoregressive process (VAR), 

13t = TI3 ~t-1 + vl3t (2) 

where, 
T o = k x k matrix of fixed parameters 

p 
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