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1. INTRODUCTION

The problem considered in this paper is the
following: Having a sequence of surveys, carried out at
regular time intervals on a given population, how can
the data available to the analyst be combined in order
to estimate population means and their unobservable
components like trend levels and seasonal effects. As
illustrated in subsequent sections, the answer to this
question depends on three major factors.

1. The sampling design, and in particular, whether or
not the samples are partially overlapping so that
primary and/or ultimate sampling units are retained
in the sample over more than one period,

2. The level of data availability: sometimes all past
and current individual data is available with
appropriate identification labels, but in other
applications, the only available data are the
aggregate estimates based on the samples selected
in the corresponding time periods. These estimates
may or may not include estimates for the sampling
errors.

3. The relationships between individual observations at
different points of time and the long term behavior
of the population means and their components.

We adopt a time series approach by which the
components of the population means are considered as
random variates which evolve stochastically in time.
The process underlying the evolution of the components
is known up to a set of parameters which are estimated
from the sample data. This approach is in contrast to
the classical sampling approach for the analysis of
repeated surveys which considers the population means
as fixed parameters and hence uses the past data for
the estimation of current means only when the surveys
are partially overlapping and the distinet panel
estimates are known.

The model assumed for the population means is
known in the time series literature as the 'Basie
Structural Model' and it has been shown to perform well
in various empirical studies. A notable feature of this
model is that it uses the traditional decomposition of
the mean into a trend level component and a seasonal
effect which has an immediate interpretation and is
routinely used by government offices for the production
of seasonally adjusted data. The model is extended to
account for the correlations between the panel
estimates and it can be applied both in the case of a
"primary analysis" for which individual panel estimates
are available and in the case of a "secondary analysis"
where only the published aggregate estimates are
known. The immediate implication of this property is
that the extended model permits the estimation of the
trend levels and the seasonal effects taking into
account the correlations between individual data and
employing the distinet panel estimates when available.
Estimates for the mean square error of the estimated
components are obtained as a by-product of the
estimation process.

The plan of the paper is as follows: in section 2 we
describe briefly the general form of state space models

and their associated inferential method, the Kalman
filter. Section 3 defines the basic struetural model and
discusses its application under various combinations of
rotation patterns and data availability. The model is
extended in section 4 to account for rotation group
effeets, a phenomenon known to sometimes affect
estimates obtained from repeated surveys. Section 5
describes the method used for the initialization and
estimation of the Kalman filter. Empirical results
illustrating the main features of the proposed procedure
and comparing its performance to the performance of
other procedures are presented in section 6. The
empirical study uses simulated data and two actual
series collected as part of the Israel Labor Force
Survey. Section 7 contains some concluding remarks.

Some key references to the classical sampling
approach for the analysis of repeated survey data are
the articles by Jessen (1942), Patterson (1950), Rao and
Graham (1964), Gurney and Daly (1965) and Cochran
(1977, sections 2.,10-2.12). The time series approach
has been explored in the articles by Blight and Scott
(1973), Scott and Smith (1974), Scott, Smith and Jones
(1977), Jones (1979, 1980), Hausman and Watson (1985),
Tam (1987) and Binder and Diek (1989). Smith (1979)
and Binder and Hidiroglou (1988) review the above and
other related articles discussing in detail the pros and
cons of the two approaches.

2. STATE SPACE MODELS AND THE KALMAN FILTER

In this section we review briefly the basie structure
of state space models and their accompanying Kalman
filter equations (Kalman, 1960), focusing on aspects
most germane to the anlaysis presented in subsequent
sections.

State-Space models consist in general of two sets of
linear equations which define how the observable and
unobservable model components evolve stochastically in
time. The following definitions and assumptions stem
from the special structure of repeated survey data.

I. Observations Equation:

Yt = Zt(—’ft + ey (2.1)
where Yt is the vector of observations (estimators) at
time t, Zt is a known design matrix, ay is a vector of
unknown 'state components' (e.g. components
comprising the population mean) which are allowed to
vary in time and ¢ is a vector of disturbances

(estimation errors) satisfying the '"wide sense"
requirements,

E(ey) = 05 E(gy e ) =V k=0, 1, .. @

Notice that the error terms are allowed to be serially
correlated. Serial correlations arise in repeated
surveys when primary and/or ultimate sampling units
are retained in the sample over several occasions.

II. System Equation

‘i‘t=T

where Tt is a transition matrix and ¢ is another vector

t2-1 * 0t @.3)



of disturbances which is independent of the vectors

(Et-k)’ k = 0, 1, ... and satisfies the conditions

Assuming that the V-C matrices V,Ek) and Q¢ are
known, the state vectors oy can be estimated most

conveniently by means of the Kalman filter. The filter
consists of a set of recursive equations which can be
used to update and smooth estimates of current and
previous state vectors and to prediet future vectors
every time that new data become available. A good
reference to the theory of the Kalman filter is the book
by Anderson and Moore (1979). In the next section we
show that the problem of serially correlated errors can
be overcome by ineluding the errors as part of the state
vectors. Hence we present below the Kalman filter
equations for the simpler case where all the error terms
are serially independent.

Let cﬂft-l be the best linear unbiased predictor (blup)
of a1 based on the data observed up to time t-1.
Since a1 if blup for Ye 10 Yptol T Tt‘i‘t-l is the
blup of oy based on all the information up to time

_ ' if P = & - o
(t-1}. Furthermore, if Py_3 E((ft_l gt_l)(gt_l
- gt_l)' is the V-C matrix of the prediction errors at

time t-1, Pt\t—l = Ttpt—th + Qt is the V-C  matrix

of the prediction errors (étlt—l ~gt). (Follows
straightforwardly from equations 2.3 and 2.4).
When a new vector of observations Xt becomes

available, the predictor of o, and the V-C matrix Pt
are updated according to the formulae

o = orieg P Zefe (g - Yeee) @29)
and -1

Pe=Poer - Peieer ZeFe 2 P (2.6)
where Yt}t 1= Ztatlt 1 is the blup of Yt at time

(t-1) so that (Y
innovations (predlctlon errors) with V-C matrix

Fy = (ZtPtlt 1Z + V )

An important use of the Kalman filter is the
updating (smoothing) of past state estimates as new,
more recent data become available, e.g. smoothing the
estimates of the seasonal effects for previous periods.
Denoting by T* the most recent period for which
observations are available, the smoothing is carried out
using the equation

+PT

tte l) is the vector of

G TH T O t+1pt+1|t(“t+1|T* - Tip2e)s

t=2,3, ..., T 2.7

where Py Tx = E@tlT* - gt)(ét\T* - gt)' satisfies
the equation

P P+PT

-1
t+1lit t+1 t?

- Peat)

t=2, ..., T* (2.8)

£ T* = £+l t+1|t(Pt+l|T*

P

Notice from (2.7) and (2.8) that Urx T T OTx and
P

smoothing equations.

T*|T* = Pr+ which defines the starting values for the

The actua!l application of the Kalman filter requires
the estimation of the unknown V-C matrices Vt and Qt’
the initial state vector oy and the initial V-C matrie PO.
We address these issues in section 5.

3. BASIC STRUCTURAL MODELS
FOR REPEATED SURVEYS

3.1 System Equations for the
Components of the Population Mean

The model considered in this study consists of the
following system equations deseribing the evolution of
the population mean and its components over time. For
convenience of presentation we assume that the data
are collected on a quarterly basis.

8 = L+ 5
Ly = Lpop Y Recp *ompes Ry = Ryl * npg
3
b S, . = - 3.1)
j=0 t-] St
where “Lt“" (”Rt‘\ and “‘St" are three independent

white noise processes with mean zero and variances
(!E, Ug and /sg, respectively. The first equation

postulates an additive decomposition of the population
mean 8t into a trend level component Lt and a seasonal

effect St.  As noted earlier, such a deecomposition is

inherent in the seasonal adjustment procedures in
common use like, for example, X-11 ARIMA (Dagum,
1980). Other components like moving festivals and
trading days effects can likewise be incorporated in the
decomposition equation - Morris and Pfeffermann
(1984), Dagum and Quenneville (1988).

The second and third equations approximate a local
linear trend (the case of a constant level is a special
case by which GE=0§=0 and RO=O) where as the last

equation models the variation of the seasonal effects.
As can be seen, the model permits changes in the
seasonal pattern but imposes the condition that the
expectation of the sum of the seasonal effects over a

given span A (four quarters in our case) is zero.
(Constant seasonality is obtained when o§=0).

The model defined by (3.1) is known in the
statistical literature as the "Basic Structural Model".
The theoretical properties of this model in relation to
other models are discussed in Harrison and Stevens
(1976), Harvey and Todd (1983), Harvey (1984) and
Maravall (1985). Although this model is more
restricted compared to the family of ARIMA models, it
is flexible enough to approximate the behaviour of
many different time series as illustrated empirically by
Harvey and Todd (1983), Morris and Pfeffermann (1984),
Dagum and Quenneville (1988) and Quenneville and
Dagum (1988). Important features of the model
pertaining to the present problem are discussed in
subsequent sections.

The model defined by the last three equations of
(3.1) can be written alternatively as



(1), (1)

(1) _
o "= Tee1

(

nt (.19
1 .

where gE . (Lts Rty St, St_1» St-2) is the state

vector at time t,

1 1 000
01 0 0 O
Tll =10 0-1-1-1 is a time invariant
0 01 00O transition matrix and
0 0 010
(1)

t is the corresponding error vector with mean zero
and V-C matrix Q11 = Diag(of, cﬁ, cg, 0, 0). We use
the representation (3.1") in subsequent sections.

3.2 Observations Equation for the Survey Estimators

The model equations for the survey estimators
depend on the sampling design, the rotation pattern and
the covariances between individual observations. In the
present study we follow Blight and Scott (1973) and
assume that observations (Yt i} pertaining to the same
unit i follow a first order autoregressive model, l.e.

Vi - 0 3e_q) Ve (3.2)

TR
where the errors {v¢js £ =2, 3, ... } are white

noise with mean zero and variance :xg and 1ol < L.

This is a standard assumption made (sometimes
impliecitly) in essentially all the articles mentioned in
section 1. It implies that correlations between
individual observations decay geometrically as time
passes. It is assumed also that the sampling design is
ignorable (Sugden and Smith, 1984) and that
observations pertaining to different individuals are
independent. The model can be extended to the case of
a two stage sampling design by adding random
components Atk to represent random cluster effects so

that Ytkj =0 f gt tkje Assuming that the

cluster effects follow a separate autoregressive
relationship, the model can be analysed similarly to the
present case. The model accounts then for
contemporary and serial correlations between
observations pertaining to different ultimate units
belonging to the same ecluster {ef. Scott, Smith and
Jones, 1977).

The other factor determining the observations
equation for the survey estimators is the rotation
pattern. Consider first the special case of a non-
overlapping survey. Assuming that the samples
selected at different time periods can be considered as
independent, the observation equation is

Yt =8y V43 E(Vt) =0, E(Vtvt-k) =
2
{Ov/nt k=0
0 otherwise (3.3)

1 Nt
here Y4 = =-
where Y¢ At 1_51
estimator at time t and ‘_’t is the corresponding survey
error. The model defined by (3.1") and (3.3) specifies
the basie structural model to be used in the case of a
nonoverlapping survey.

Next we consider the case of overlapping surveys
and to illustrate the ideas we focus for convenience on

Yti is the aggregate survey

the Israel Labour Force Survey (ILFS) which provides
the data used in the empirical study of section 6. Other
rotation patterns can be handled in a similar way. The
ILFS is a quarterly survey of households carried out by
the Central Bureau of Statistics (CBS) to provide
information on employment and other important
demographic and socio-economic characteristics of the
labour force in Israel. Every quarter the CBS surveys
four panels each composed of approximately 3000
households so that three panels have been included in
some past surveys and one panel is new. Every new
panel is included in the survey for two quarters, left out
of the survey for the next two quarters and then
included again for two more quarters. This rotation
pattern produces a 50% overlap between two successive
quarters and a 50% overlap between quarters
representing the same months in two successive years.
For a brief description of the sampling design used for
the ILFS, see Nathan and Eliav (1988). As discussed
there, the four concurrent panels can be considered as
independent simple random samples of households.
. m .

In what follows we define VE—J = n% _.f_‘l y%}J to
be the mean observed at time t for ‘che1 panel joining
the survey for the first time at time t-Jj, j=0, 1, 4,
5. It is assumed for convenience that the panels are of
fixed size m. The aggregate survey estimate at time t

will be denoted as before by ¢ = 211(7% + Y%fl +

VE_4+ VE—S). We distinguish between the case where

the panel estimates are known and the case where the
only available data at time t is the aggregate estimate
Yt. For the first case we have

Vo= lgfp ey @4
where 1, is the unit vector of length 4, Y’IC = (7%,
YE_} 7%_4, YE_S) is the row vector of panel estimators

at time t and ¢;= (EE, E%—l, E%—A, E:E_5) is  the

corresponding vector of survey errors satisfying the
transitive relationships

et Jfooo00o0]fzE]]
el o002
24 loooo e}
9§2)= &%=lo0p000]}sES +n§2)=T229§ﬂ+9§2)
i3l 00000 1f[ei]
H:i 010000 _gtg_ (3.5)

where g,ﬁz)' = (E%, VE‘l, 929%:3 + DVEI‘{ + Vt’4,
\7%—5, 0, 0) is a vector of independent disturbances

which is uncorrelated with the vectors {gt(:z)-} and

-J
{31(:3)]'} » J > 1 and has mean zero and V-C matrix

v = & B piagl(1-sH) 7L, 1

Ghe e, 1,0,0020, @ (36



Equations (3.5) and (3.6) follow directly from the

- m
autoregressive assumption (3.2) so that VE i = rln 'Zl
R - i=
VE_ﬂ j is the mean of the white noise disturbances at
TRy

time (t-k) for the panel joining the sample for the first

time at time (t-j), j > k. We included the survey
-t-2 -t-6 (2)
errors e¢_] and e¢_] in the vector ay 3 and the errors

EE and Et:g in the vector (31(:2) in order that gg% will

contain the same components as (31(:2) with a time shift

of 1. Since Et:g had to be added to 91(22) we added it
(2)

also to ay s insuring that way that the error vector

(2)

ny will be independent of past state vectors. This in

turn required that EE:% will be added to ?£2).

Obviously when the same components are included in
both the vectors, the corresponding residual variance is
set to zero. This strategy can be applied for general
rotation patterns.

For the case of a secondary analysis we have

- otel,-ted otes

7o Li- oo - Ly
Vo= o #glegrey THeg reg ) =0 g Lleg B

with (3.5) and (3.6) remaining unchanged.

Equations (3.4) and (3.7) define the observations
equation for the case of overlapping surveys. However,
unlike the case of independent samples, the survey
errors are now correlated. A simple way to overcome
this problem in our case is by including the survey
errors as part of the state vector and setting the
residual variances of the observations equation to zero.
The resulting model is specified in the next section.

3.3 A Compact Model Representation

The model defined by (3.1, (3.4), (3.5) and (3.6)
corresponding to the case of a primary analysis can be
written compactly as

L(1)

— _ ~t _
Yo = [14:00:14:04:04 14:00:0] (7)) = 72y @B
o

where 94 is a vector of zeros of length 4, 4 is  the

(1, (2

identity matrix of order 4 and 9}% = (gt N Y)

the augmented state vector satisfying the transition

equation
1)
T 0 n(
_ 111" 5% |
e N T T3] I R
6°5° '22 It

In(3.9) T11 is the transition matrix of the state
vector 9%1) defining the evolution of the population

mean components (equation 3.1", Tpp is the transition
matrix of the survey errors (equation 3.5) and Oy

Notice that
the elements of n, are independent so that Q = V(gt) is

diagonal with Qli = V(gél)) and @, = V(n(z))
comprising the diagonal elements. -t

defines a zero matrix of order {2 x k).

For the case of a secondary analysis (equations 3.1,
3.5, 3.6 and 3.7) the matrix Z of equation (4.8) is
replaced by the row vector

Vo 1111
z - (]-a 09 1s Oa Oa 4* 4 4° 4§ 09 0) (3-10)

so that V¢ = g‘gt (compare with 3.7). However, the

system equations (3.9) remain unchanged. Thus, the
model preserves the intrinsic relationships (3.5) among
the separate panel estimators even though the only
available data are the aggregate estimators {Yt}. An

interesting consequence of this formulation is that one
can actually predict the original panel estimates {‘?E_‘]}
using the relationship V%‘J = Ly + S¢ + E%_J = C'ag,
say. (Equation 3.7 guarantees that the average of the
four predictors equals the aggregate estimate V).

Such an analysis might be useful for model diagnostic,
e.g. by comparing the prediction bias and mean square
error (MSE) of the distinct panel estimates as obtained
under primary and secondary analyses: see table 3 of
section 6.2.

The common approach to the modelling of the
behaviour of the survey errors in the case of a
secondary analysis is to postulate a moving average
(M.A.) process for the errors et = Yt - 8t as induced

by the fact that the errors are uncorrelated after a
certain lag determined by the rotation pattern. This
formulation does not allow the prediction of the
separate panel estimates. Notice also that by utilizing
the relationship (3.2), the model holding for the survey
errors includes in our case only two unknown
parameters compared to five parameters if a general
M.A. process of order 5 is used. (As easily seen, for the
model defined by 3.10 and 3.9, Cov{(Y¢, Yt.35) # 0 for

j=0, 1, 3, 4, 5. One could argue on the other hand
that postulating a general moving average process is
more robust. In particular, the M.A. formulation does
not require that the panel estimators corresponding to
the same time period are independent.) The use of
M.A. models for the survey errors is less obvious in the
case of a primary analysis because of the different time
gaps in which the panels are not observed.

The model defined by (3.8) (or 3.10) and (3.9)
conforms to the general state-space formulation
presented in section 2. Hence, once the unknown
variances and the initial state components have been
estimated, (the analysis of Maravall, 1985 illustrates
that the model is uniquely identified), the Kalman filter
equations can be applied to estimate the population
means or changes in the means using the relationship,
8t = (Lt + St). Moreover, the use of the present
model permits the extraction of the seasonal effects in
a straightforward manner taking into account the
correlations between the survey estimation errors and
using the distinet panel estimates in the case of a
primary analysis. Thus, the approach outlined in this
article enables to decompose the means into a trend
level component and seasonal effects using more
information than is commonly used by the traditional
procedures for seasonal adjustments. These advantages
are illustrated in the simulation study described in
section 6.1. As mentioned in the introduction and
becomes evident from the Kalman filter equations, the
model provides estimates for the mean square errors of
the estimated components at any given time period.
(Quenneville and Dagum, 1988, propose to estimate the
variances of the X-11 ARIMA estimates by fitting basie



structural models which approximate the behaviour of
the X-11 ARIMA components.) Obviously, the price paid
for this flexibility is that the analysis is more model
dependent compared, for example, to the use of the X-
11 ARIMA procedure.

4. ACCOUNTING FOR ROTATION GROUP BIAS

The problem of rotation group bias (RGB) is that
some of the panel estimators may be biased. In its
classical use, RGB refers to a phenomenon by which
respondents provide different information on different
rounds of interview, depending on the length of time
that they have been included in the sample. However,
the phenomenon of RGB or at least its magnitude could
be related to the method of data collection (e.g. home
interview in some rounds and telephone interview in
other rounds) or even result from differential
nonresponse. Here and in section 6.2 we refer to RGB
in this broader context.

Bailar (1975) found clear evidence for rotation bias
in some of the labour force data collected at the U.S.
Current Population Survey. Kumar and Lee (1983)
found similar evidence in the Canadian Labour Force
Survey. A review of these and other studies on rotation
bias can be found in Binder and Hidiroglou (1988).

Using previous notation, rotation bias implies that
E(VE_J - 8t) = 3jt#0 for some j.  Bailar (1975) and

Kumar and Lee (1983) assume that the bias factors are
time invariant which implies in our case that

t-3 _ -t-J, .. .
Vt = 8t+et +85or that

Yt = 14 (Lt + St) + 14§ +oey (4.1)

where 8' = (Bg, B8], 84, B is a vector of constants.
8 0 1. B4, B5

Equation (4.1), combined with (3.9) defines a model for
incorporating constant RGB effects. However, the
equations (4.1) and (3.9) alone are not sufficient for
estimating the group effects and securing unbiased
predictors for the population means because of the
confounding effects of the trend level and a fixed shift
in the bias coefficients. Thus, one needs to augment
the model by a linear constraint of the form

J

with known coefficients Wj in order to secure the
identifiability of all the model components.

This problem is obviously not unique to the present
model. If all the panel estimators are biased, one
cannot hope for an unbiased estimator of the population
mean without some information on the magnitude and
relationship of the bias factors. Bailar (1975) assesses
the bias by examining alternative data sources. Kumar
and Lee (1983) assume that the bias coefficients add to
zero in their analysis. We make a similar assumption in
section 6.2 based on preliminary analysis of the data.
In the absence of external information, this is a
reasonable condition since it permits to test for the
existence of group effects conditional on the
assumption that the aggregate estimates are unbiased.

The model defined by (4.1) and (4.2) can be extended
to the case of time changing group effects by
permitting the bias factors to vary stochastically over
time, similarly to the other model components, taking
into account the possible correlations between them.
Such an extension is not considered in the present
study.

IWiBj = Wg s 5 wj # 0 (4.2)

5. ESTIMATION AND INITIALIZATION
OF THE KALMAN FILTER

The actual application of the Kalman filter requires
the estimation of the autocorrelation coefficient o and
the unknown elements of the V-C matrix Q as well as
the initialization of the filter, that is, the estimation of
the state vector ag and the V-C matrix Pg. In this
section we describe the estimation methods used in the
present study.

Assuming that the disturbances Htl: = (n,gl)' ,
Dﬁz) ') are normally distributed, the log likelihood

function for the observations can be written as
! -1
L(s) = constant (-1/2) 1t (log |Ft| + eéFt et)
- t=1 - -

N (5.1)
where et = Yt - Ytjt_] is the vector of innovations
(prediction errors) and §' = (oE, 05, oé, 06, 0) is
the vector of unknown model parameters.

Let §(o)’ ag and pg define the initial estimates of
8, ag and pg. A simple way to maximize the likelihood

function (5.1) is by application of the method of
scoring which consists of solving iteratively the
equation

- -1

S(iy T 8icny t Mgy U Bl gyl G

In (5.2), §(1.~1) is the estimator of§ as obtained in
the (i-1)th iteration, I[§(1'—l)] is the information
matrix evaluated at §(1._1) and G[§(1._1)] is the
gradient of the log likelihood again evaluated at
§(1._1). The coefficient x4y is a variable step length
determined by a grid search procedure and introduced
to guarantee that L[§(1.)] > L[§(i-l)] at each
iteration. The formulae for the k-th element of the
gradient vector and the k1-th element of the
information matrix are given in Watson and Engle
(1983).

The iterative solution of (5.2) may converge to
negative variance estimators or become unstable if an
iteration produces negative estimates. A similar
instability may occur if p is estimated by a value
outside the unit ecircle. In order to avoid this
possibility, we transformed the veetor &' to the vector

§*l = [GL’ UR’ Usa UV’ QJ} where o = '«!}/(1+|w!) so
that the likelihood function has been maximized with
respect to the elements of §* rather than the elements

of §. We used two convergence criterions: I(L{S(i)]
-Lls(i-1)13/LLs(i-1)11 < 1079 and m%x{ls(i)(j) -

g(i—l)(‘j)[/ls(i-l)(j)l} < .0l where §(j) stands for

any one of the parameters. The algorithm has been
stopped once one of the eriterions was fulfilled (usually
in less than 20 iterations).

Initialization of the Kalman filter was carried out
following the approach proposed by Harvey and Peters
(1984). By this approach, the nonstationary components
of the state vector are initialized with very large error
variances (which amounts to postulating a diffuse prior)



so that the corresponding state estimates can
conveniently be taken as zeros. The stationary
components are initialized by the corresponding
unconditional means and variances. For the model
defined by (3.9), the stationary components are the six

o (2 i
survey errors comprising the sub-vector ag, having zero

mean and variance (1/m)c§(l - 02)—1. In view of the

use of large error variances for the nonstationary state
components, the likelihood is estimated based on the
last T-d observations where d is the number of the
nonstationary components.

The use of this procedure has the clear advantage of
being computationally very simple. Other approaches
to initializing the Kalman filter that could be applied to
the models considered in the present paper are
discussed in Ansley and Kohn (1985) and DeJong (1988).

A computer program which implements the methods
described in this section for the updating, smoothing
and prediction of the state vectors of the models
proposed in sections 3 and 4 has been written using the
procedure PROC-IML of the SAS system. The program
is a modification of the software DLM developed at
Statistics Canada by Quenneville (1988).

6. SIMULATION AND EMPIRICAL RESULTS

In this section we describe the results of an
empirical study aimed to illustrate some of the major
features of the models presented in section 3. The
study consists of two parts. In the first part discussed
in section 6.1, we use simulated series thus enabling us
to control the values of the model parameters. In the
second part we use two actual series collected as part
of the Israel Labour Force Survey. In this part we
extend the models of section 3 by permitting for
rotation group effects as described in section 4. The
results are discussed in section 6.2.

6.1 Simulation Resuits

We generated several data sets, each containing 15
independent series of panel estimates with four panels
for every time period. The panel estimates were
generated so that they obey the model and rotation
pattern defined by (3.8) and (3.9). The difference
between the various sets is in the values of the model
parameters and in the length of the series.

Here we focus mainly on the results obtained for
two groups of data, each consisting of 2 separate data
sets, one composed of series of length T*=100 and the
other restricted to series of length T*=36. The latter is
the length of the labour force series analysed in section

6.2, For the first group we used very small values of
GE’ cﬁ, °§ implying an almost perfect linear trend
with constant seasonality. We increased the values of
the variances for the other group imposing that way
more rapid changes in the components of the population
mean. We used a relatively high value of p=0.7 for
both series thereby emphasizing the effect of the

rotation pattern. The variances 02 used are such that

the survey errors account for about 20 percent of the
MSE of the quarter to quarter difference in the
aggregate means in the first group and for about 6
percent in the second group. In the discussion below we
mention briefly the results obtained for other values of

2
o and 9y

As benchmark comparisons with the model results

we have estimated the seasonal effects using the X-11
procedure and computed the sampling variance of
Patterson's (1950) estimator of the population mean for
the case of "sampling on more than two occasions".
The variance is specified in formula 12.84 of Cochran
(1977). Notice that the variance of this estimator is
minimized in the case of a 50 percent sample overlap
between two successive surveys which is the case in the
present study.

The results obtained for the two groups are
exhibited in tables 1 and 2 as averages over the 15
series considered in each case. We distinguish between
the case where Q is known (denoted "Corr.Q") and the
case where Q (and hence also the transition matrix T) is
estimated, and between the results obtained for a
primary analysis which uses the distinct panel estimates
and the resuits obtained for a secondary analysis using
only the aggregate estimates. Another distinetion
made is between the prediction one step ahead of the
aggregate sample estimates (using either the correct
model or the model which ignores the correlations
between the survey errors) and the prediction of the
distinct panel estimates (presented as average over the
4 panels). The prediction errors are presented mainly
for comparison between primary and secondary
analysis.

The main results emerging from the tables can be
summarized as follows:

1) The use of primary analysis dominates the use of
secondary analysis in almost every aspect studied
(notice in particular the estimation of the survey
error parameters in the case of the short series).
The better performance in the case of a primary
analysis is seen to hold also in the estimation of the
seasonal effects (see table 2) despite the use of the
smoothed estimators, an issue not investigated so
far.

2) Estimating the unknown model parameters by the
method of scoring yields satisfactory results in the
case of a primary analysis. The results are less
encouraging, however, in the case of a secondary
analysis with respect to the estimation of the survey
error parameters. This outcome is explained by the
fact that these parameters index the relationship
between the panel estimators whereas the panel
estimators are not observable in the case of a
secondary analysis. Nevertheless and as emphasized
in section 4, the survey parameters can be
estimated consistently even in the case of a
secondary analysis which is illustrated very clearly
by comparing the results obtained for the long and
the short series.

Another notable result is the estimation of the
seasonal effeets in the case of the first group of
data. The smoothed estimates of the seasonal
effects using the correct § matrix outperform in
this case the smoothed empirical estimates obtained
by using the estimated variances which could be

expected considering the very small value of og.

Still, the empirical estimates perform well even in
this case and interesting enough, the use of the
estimated variances 1is reflected also in the
estimates of the MSE's of the smoothed estimators
so that for the long series, the latter estimates
again perform relatively well. For the short series,
the MSE's estimates underestimate the true MSE's, a
well known phenomenon in other applications



Table 1: Simulation Results, Data Set [

Initial Components Lo = 100, Ry = 5, Sg' = (4, 1, -3, -2)
Residual State Variances: OE = 0.1, oﬁ = 0.1, og = 10_4
1
Survey Error Parameters: Oz_ =8 ., p=0.7
100 Time Points 36 Time Points
Primary Secondary Primary Secondary
Corr.Q Est.Q Corr.Q Est.Q Corr.Q Est.Q Corr.Q Est.Q
Predic. Bias panels 0.35 0.65 0.36 0.38 0.63 0.67 0.69 0.60
aggregate  -0.09 0.25 -0.16 -0.14 -0.05 0.06 =-0.05 0.09
panels 26.00 26.20 32.70 32.90 25.80 25.40 32.40 32.60
Predic. MSE aggregate 8.25 8.40 9.67 9.76 8.42 T7.74 9.58 8.62
=0 10.75 - 10.75 - 11.32 - 11.32 -
Est. of OZ{Bias - -0.24 -  -0.66 - -0.72 - -1.20
survey error e RMSE - 0.56 - 3.20 - 1.44 - 6.20
parameters {Bias - -0.01 - -0.05 - 06.00 - -0.27
RMSE - 0.03 - 6.10 - 0.07 - 0.26
Var. of Est.’ model 3.90 4.22 4.13 4.56 3.55 3.97 3.76 3.35
of population realized 4.10 4.45 4.35 4.85 3.65 4.20 3.84 5.53
means patterson 6.50 6.50 - - 6.60 6.60 -
MSE of Est.” model 0.003 0.25 0.003 0.32 0.001 0.25 0.001 0.26
of Seasonal realzized 0.003 0.21 0.003 0.38 0.001 0.47 0.001 0.88
Effects 0=0 0.003 - 0.003 - 0.001 - 0.001 -
X-11 - - - 0.79 - - - 0.93
' og = E(Vt—et)2 is the variance of the aggregate mean.
’  Results obtained when ignoring the serial correlations between the panel estimators.
’ Estimators are based on past and current data.
" Estimators are "smoothed" using all the data.
Table 2 : Simulation Results, Data Set [I
Initial Components : Lg = 100, Rg = 5, S5 = (4, 1, -3, -2)
Residual State Variances: oE = 0.8, Us =1, <1§ = 0.4
1
Survey Error Parameters: oi =4 ., p=0.7
100 Time Points 36 Time Points
Primary Secondary Primary Secondary
Corr.Q Est.Q Corr.Q Est.Q Corr.Q Est.Q Corr.Q Est.Q
Predic. Bias panels 0.38 0.38 0.43 0.39 0.58 0.58 0.63 0.59
aggregate -0.29 -0.28 -0.34 -0.37 -0.08 -0.03 -0.06 0.00
panels 20.85 20.45 25.30 24.70 20.80 19.34 25.40 22.97
Predic. MSE aggregate 12.16 11.70 13.80 13.10 11.90 10.24 13.82 10.66
0=0 14.20 - 14.20 - 14.20 - 14.20 -
Est. of Z{Bias - -0.12 - -0.72 - -0.06 - -0.32
survey error _e!RMSE - 0.36 - 2.80 - 0.76 - 4.88
parameters {Bias - -0.01 - -0.24 - -0.01 - -0.26
P lpRMSE - 0.03 - 0.36 - 0.08 - 0.45
Var. of Est.’ model 2.90 2.87 3.31 2.40 2.81 2.84 3.20 1.95
of population realized 2.90 2.94 3.27 3.42 3.12 3.09 3.56 3.68
means patterson 3.16 3.186 - - 3.30 3.30 - -
MSE of Est.” model 0.52 0.51 0.69 0.68 0.54 0.45 0.72 0.55
of Seasonal realjzed 0.53 0.63 0.61 0.75 0.51 0.65 0.67 0.87
Effects p=0 0.70 - 0.70 - 0.71 - 0.71 -
X-11 - - - 0.96 - - - 1.00
! 02 = E(Yt_et)z is the variance of the aggregate mean.

Results obtained when ignoring the serial correlations between the panel estimators.

Estimators are based on past and current data.

Estimators are "smoothed" using all the data.



3)

4)

5)

resulting from ignoring the extra variation due to
estimating the model variances. A similar
phenomenon can be observed with the variances of
the estimators of the population means. Ansley and
Kohn (1986) propose a correction factor of order
1/77 to account for this extra variation in state
space modelling.

The use of the full model taking into account the
intrinsic relationships between the survey errors
décreases the prediction errors very significantly
compared to the case where these relationships are
ignored (i.e. setting 0=0 in the transition matrix).
The same holds for the second group of data with
respect to the estimation of the seasonal effects
when using a primary analysis.

Although not shown in the table, we generated
different data sets using smaller values of o but

increasing each time the value of 05 so that the

unconditional variance 0523 = E(Vt—et)2 remained

fixed. Evidently, the smaller the value of o, the
larger are the prediction errors under both a
primary and a secondary analysis (although the
differences between the two analyses are
diminished) and the smaller is the impact of setting

0=0 in the analysis. Decreasing the value of ¢
increases also the MSE's of the estimates of the
seasonal effects under both a primary and a

secondary analysis using either the correct Q or its
sample estimate. The inecrease is again very
evident. Thus, the major factor determining the

efficiency of the model is the residual variance, ENE

and not the unconditional variance of the survey
errors whieh is quite intuitive considering the
imposed autoregressive relationships between the
survey errors.

The wuse of the model yields more accurate
estimates for the population means than does the
classical sampling approach. (For the first group,
the model performs better even under a secondary
analysis.) The major factor affecting the
performance of the eclassical estimator is the
variance of the survey errors and since it is twice as
large for the first group of data as for the second
group, the variance of the estimator is likewise
doubled. Under the model, the variance of the
estimators depends also on the residual variances of
the population mean components and since they are
much smaller for the first group than for the
second, the overall increase in the variance of the
estimators is only in the magnitude of about 30%.
These results indicate very eclearly the possible
advantages of modelling the evolution of the
population means over time.

The use of the model yields in general better
predictors for the seasonal effects than does the
X-11 procedure. The much better performance of
the model in the case of a primary analysis may not
surprise but it is another indication for the possible
gains in using the separate panel estimates taking
the design features into account. The superiority of
the model in the case of a secondary analysis is less
obvious despite the exploitment of the model
assumptions since almost all the series analyzed
were found to be in the acceptance regions of the
"Monitoring and Quality Assessment Statisties"
calculated by the X-11 program. It should be noted
however that the two procedures yield closer

estimates once the
decreased.

survey error variance is

6.2 Empirical Results Using Labor Force Data

We present the results obtained for two series:

Series 1: Number of hours worked in the week
preceding the survey
Series 2: Number of weeks worked in the year

preceding the survey

In order not to burden the computations, we
restricted the analysis to households in the city of Tel-
Aviv. The time period covered was 1979-1987 so that
each series consists of 36 x 4 panel estimates. We
didn't include data for the years before 1979 because of
changes in the sampling design and the questionnaire
introduced in 1978. Data for 1988 was not available to
us at the time of the analysis. Interested readers may
obtain the data of the two series from the author.

The trend levels of these two series are almost
constant. The seasonal effects acecount for about 50
percent of the MSE of the quarter to quarter
differences in the aggregate means in the case of the
first series and for about 30 percent in the case of the
second series

The results obtained when fitting the models of
sections 3 and 4 to the series are exhibited in table 3.,
The column headed "primrot" gives the results obtained
when accounting for rotation group bias. We first
analysed the series without including the bias factors
{(other columns of the table) and found that for bhoth
series tire predictor one step ahead of the first panel
estimator is essentially unbiased. This result suggests
that &, = (82+84+85)/3 but since there is no apparent

reason for a bias associated with the first panel (see the

discussion below) we presupposed also that 8, = 0

which, together with the previous relationship implies

that Zij = 0. Nonetheless, when estimating the bias

coefficients we only imposed the milder condition z

. - J
Bj = 0. (Starting values for the coefficients were set
to zero with correspondingly large error variances).

Comparing the panel prediction biases with and
without the accounting for the group effects reveals
relatively large biases for the other panels in the latter
case. For the first series the smoothed estimators of
the bias coefficients and the corresponding standard

deviations (in brackets) are: ?31 = -,027(.17), éz =
.26(.17), 54 = 13(.17), Bg =.-37(.17). Thusés is
significant at the .03 level and likewise with respect to
the difference (é5 —§2) (the S.D. of the difference is
.29). For the second series the corresponding values are
éi = -.10(.16), éz = .,20(.16), ?34 = .09(.16),

§5= - .19(.16) so that none of the coefficients is
significant even though they exhibit a similar pattern to
that observed for the first series.

The faet that only one group effect came out
significant may result from the short length and the
relatively large error variances of the two seires.
Notwithstanding, it is likewise not clear that the
observed prediction biases reflect real rotation group
effects. It was suggested to us that the negative effect
observed for the forth panel could result from the fact



Table 3: Empirical Results, Labour Foree Survey, Israel, 1979-1987

Series [ : Hours Worked in the Week Preceding the Survey
Series II: Weeks Worked in the Year Preceding the Survey

Series | Series II
Primary Primrot Secondary Primary Primrot ' Sef\ondary

Prediction Bias

panel 1 0.07 0.16 0.05 0.02 0.16 0.02
panel 2 0.36 0.08 0.34 0.27 ~-0.02 0.23
panel 3 0.27 0.10 0.26 0.17 0.07 0.18
panel 4 -0.31 0.11 -0.21 -0.20 0.04 -0.19
aggregate 0.10 0.10 0.11 0.07 0.06 0.06
Prediction MSE

panels (average) 1.63 1.56 1.71 1.16 1.14 1.18
aggregate 0.51 0.50 0.48 0.21 0.21 0.24
p=0 1.21 1.36 1.35 0.51 0.52 0.50
Ytlt—let—l 1.47 1.47 1.47 0.41 0.41 0.41
Est. Survey. Param.

og 0.42 0.38 0.69 0.38 0.36 0.37
0 0.39 0.42 0.07 0.36 0.38 0.46
Var. Est. Pop. Means

Model 0.15 0.14 0.20 0.10 0.11 0.10
Patterson 0.39 0.39 - 0.31 0.31 -
' Results obtained when accounting for rotation group effects.

2

panel estimators.

that this is the only panel surveved also on income.
Another noteworthy feature of the ILFS is that about
half of the interviews of the second and third panels are
carried out by telephone. Thus, although the results of
our analysis are inconelusive at this stage they are
indicative enough to justify a more rigorous and
comprehensive study using more series and if possible
more detailed data.

Two other notable outcomes in talbe 3 are: i) The
use of primary and secondary analysis gives consistent
results. This is true in particular for the second series
but holds also for the first series except for the
estimation of the survey error parameters and hence
the estimation of the variance of the population mean
estimator ii) The estimates of the variance of the
model dependent estimators of the population means
are substantially smaller than the estimated variances
of the sampling (Patterson) estimator. One needs to be
cautious in comparing the two sets of variances since
the former are model dependent and employ estimates
for all the unknown model parameters. However the
substantial reduction in the prediction MSE's under the
model as compared to the case where the correlations
between the survey errors are ignored or when
predicting the aggregate means by the means observed
in the previous periods as well as the other results
discussed above make us believe that the difference in
the variances is real and not just the result of model
misspecification or sampling errors. (see also the
concluding remarks). What seems to make the
difference between the model and the sampling
estimator is the fact that these series exhibit almost
constant trend levels and very stable seasonal
components which of course is ideal for the use of
model based predictors. (See the discussion in point 4
of section 6.1).

Results obtained when ignoring the serial correlations between the

7. CONCLUDING REMARKS

The results obtained in the empirical study illustrate
the possible advantages of using a primary analysis as
compared to the use of a secondary analysis. First, the
use of a primary analysis vyields more accurate
estimates for the model parameters and in particular
the survey error parameters and second, it produces
better predictors for the population means and the
seasonal effects. Practitioners in the survey sampling
area often prefer the use of a secondary analysis
because of rotation group effects but as we have
illustrated, these effects can be incorporated in the
model.

The use of the model for seasonal adjustment
problems is an important aspect which should be further
explored. Our study indicates the potential advantages
of using a primary analysis taking into account the
correlations between the observed estimates. It is
unfortunate that despite the increasing use of repeated
surveys by statistical bureaus and the widely recognized
need for producing accurate estimates for the seasonal
effects, the special structure of the data is generally
ignored when producing such estimates. In this respect,
the procedure proposed in the present artiecle is a first
attempt to use more data and take the design features
into account when estimating the seasonal effects
which hopefully will encourage further research.
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