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1. INTRODUCTION 

The problem considered in this paper is the 
following: Having a sequence of surveys, carried out at 
regular time intervals on a given population, how can 
the data available to the analyst be combined in order 
to estimate population means and their unobservable 
components like trend levels and seasonal effects. As 
illustrated in subsequent sections, the answer to this 
question depends on three major factors. 

I. The sampling design, and in particular, whether or 
not the samples are partially overlapping so that 
primary and/or ultimate sampling units are retained 
in the sample over more than one period, 

2. The level of data availability: sometimes all past 
and current individual data is available with 
appropriate identification labels, but in other 
applications, the only available data are the 
aggregate estimates based on the samples selected 
in the corresponding time periods. These estimates 
may or may not include estimates for the sampling 
errors. 

3. The relationships between individual observations at 
different points of time and the long term behavior 
of the population means and their components. 

We adopt a time series approach by which the 
components of the population means are considered as 
random variates which evolve stochastically in time. 
The process underlying the evolution of the components 
is known up to a set of parameters which are estimated 
from the sample data. This approach is in contrast to 
the classical sampling approach for the analysis of 
repeated surveys which considers the population means 
as fixed parameters and hence uses the past data for 
the estimation of current means only when the surveys 
are partially overlapping and the distinct panel 
estimates are known. 

The model assumed for the population means is 
known in the time series literature as the 'Basic 
Structural Model' and it has been shown to perform well 
in various empirical studies. A notable feature of this 
model is that it uses the traditional decomposition of 
the mean into a trend level component and a seasonal 
effect which has an immediate interpretation and is 
routinely used by government offices for the production 
of seasonally adjusted data. The model is extended to 
account for the correlations between the panel 
estimates and it can be applied both in the case of a 
"primary analysis" for which individual panel estimates 
are available and in the case of a "secondary analysis" 
where only the published aggregate estimates are 
known. The immediate implication of this property is 
that the extended model permits the estimation of the 
trend levels and the seasonal effects taking into 
account the correlations between individual data and 
employing the distinct panel estimates when available. 
Estimates for the mean square error of the estimated 
components are obtained as a by-product of the 
estimation process. 

The plan of the paper is as follows: in section 2 we 
describe briefly the general form of state space models 

and their associated inferential method, the Kalman 
filter. Section 3 defines the basic structural model and 
discusses its application under various combinations of 
rotation patterns and data availability. The model is 
extended in section 4 to account for rotation group 
effects, a phenomenon known to sometimes affect 
estimates obtained from repeated surveys. Section 5 
describes the method used for the initialization and 
estimation of the Kalman filter. Empirical results 
illustrating the main features of the proposed procedure 
and comparing its performance to the performance of 
other procedures are presented in section 6. The 
empirical study uses simulated data and two actual 
series collected as part of the Israel Labor Force 
Survey. Section 7 contains some concluding remarks. 

Some key references to the classical sampling 
approach for the analysis of repeated survey data are 
the articles by Jessen (1942), Patterson (1950), Rao and 
Graham (1964), Gurney and Daly (1965) and Cochran 
(1977, sections 2.10-2.12). The time series approach 
has been explored in the articles by Blight and Scott 
(1973), Scott and Smith (1974), Scott, Smith and Jones 
(1977), Jones (1979, 1980), Hausman and Watson (1985), 
Tam (1987) and Binder and Dick (1989). Smith (1979) 
and Binder and Hidiroglou (1988) review the above and 
other related articles discussing in detail the pros and 
cons of the two approaches. 

2. STATE SPACE MODELS AND THE KALMAN FILTER 

In this section we review briefly the basic structure 
of state space models and their accompanying Kalman 
filter equations (Kalman, 1960), focusing on aspects 
most germane to the anlaysis presented in subsequent 
sections. 

State-Space models consist in general of two sets of 
linear equations which define how the observable and 
unobservable model components evolve stochastically in 
time. The following definitions and assumptions stem 
from the special structure of repeated survey data. 

I. Observations Equation: 

Yt = Zt~t + ~t (2.1) 

where Yt is the vector of observations (estimators) at 

time t ,  Z t is a known design matrix, ~t is a vector of 

unknown 'state components' ( e . g .  components 

comprising the population mean) which are allowed to 

vary in time and ~t is a vector of disturbances 

(estimation errors) satisfying the "wide sense" 

requirements, 

E(~t)  = O; E(~ t ~;_k ) = V~ k) ,  k = O, 1, . . .  (2.2) 

Notice that the error terms are allowed to be serially 
correlated. Ser ia l  correlations arise in repeated 
surveys when primary and/or ultimate sampling units 
are retained in the sample over several occasions. 

II. System Equation 

~-t = Tt~-t-1 + n-t (2.3) 

where T t is a transition matrix and _n t is another vector 



of disturbances which is independent of the vectors 

(~-t-k)' k = 0, i ,  . . .  and satisfies the conditions 

E(nt )  : 0; E(ntn~) : Qt; E ( n t n t - k )  = O, k>_1 (2.4) 

Assuming that the V-C matrices V~ k) f and Qt are 

known, the state vectors -~t can be estimated most 

conveniently by means of the Kalman filter. The filter 
consists of a set of recursive equations which can be 
used to update and smooth estimates of current and 
previous state vectors and to predict future vectors 
every time that new data become available. A good 
reference to the theory of the Kalman filter is the book 
by Anderson and Moore (1979). In the next section we 
show that the problem of serially correlated errors can 
be overcome by including the errors as part of the state 
vectors. Hence we present below the Kalman filter 
equations for the simpler case where all the error terms 
are serially independent. 

Let ~t-i  be the best linear unbiased predictor (blup) 

of ~-t-1 based on the data observed up to time t - l .  
^ ^ 

Since~t-i i fb lupf°r~ ' t - l '  ~t l t-1 = Tt-~t-1 is the 

blupof #t based on all the information up to time 

- ~t_l) '  is the V-C matrix of the prediction errors at 

time t - i ,  P t ! t - t  = TtPt-iTt + Qt is the V-C matrix 

of the predic t ion  errors  (,i~tit_ l -(~t )" (Follows 

s t r a i g h t f o r w a r d l y  from equat ions  2.3 and 2.4). 

When a new vec to r  of observa t ions  Y t~ becomes  

avai lable ,  the p red ic to r  of ~t  and the V-C mat r ix  Pt 

are updated  accord ing  to the fo rmulae  
^ ^ 

}t = ~ t l t - i  + Ptlt-iZtFtl(Yt - ~tlt-1 ) (2.5) 

and 

Pt = P t l t - i  - P t l t - 1  ZtFt  I Zt Ptlt-1 (2.6) 

where t lt-1 = Z t ~ t l t - l i s t h e b l u p ° f Y t  

( t - l )  so that (Yt - C(tlt_1 ) is the 

innovations (prediction errors) with V-C 

F t = (Z tP t l t_ IZ i~  + Vt) .  

at time 

vector of 

matrix 

An important use of the Kalman filter is the 
updating (smoothing) of past state estimates as new, 
more recent data become available, e.g. smoothing the 
estimates of the seasonal effects for previous periods. 
Denoting by T* the most recent period for which 
observations are available, the smoothing is carried out 
using the equation 

, - i  

~tIT* = -~t + PtTt+lPt+llt(~t+lIT * 
t -  2, 3 . . . . .  T* 

w h e r e  Pt lT *  = E(~_tlT, 
the equation 

- Tt+l~t), 
(2.7) 

- -~t )' satisfies - -~t ) ( - ~ t I T *  

p = 
t i T *  Pt + P T' - I  t t + I P t + l l t ( P t + l I T * -  P t + l l t  ) 

- i  P t '  t = 2, , T* (2 8) P t + l l t  T t+ l  . . . .  

Notice from (2.7) and (2.8) that a T.l T* - ~-T* and 

PT*I T* = PT* which defines the starting values for the 

smoothing equations. 

The actual application of the Kalman filter requires 

the estimation of the unknown V-C matrices V t and Qt' 

the initial state vector c~ o and the initial V-C matrie Po" 

We address these issues in section 5. 

3. BASIC STRUCTURAL MODELS 
FOR REPEATED SURVEYS 

3.1 System Equations for the 
C9mponents of the Population Mean 

The model considered in this study consists of the 
following system equations describing the evolution of 
the population mean and its components over time. For 
convenience of presentation we assume that the data 
are collected on a quarterly basis. 

e t = k t + S t 

Lt = L t -1  + R t - i  + ~'Lt; Rt = Rt-1 + nRt 

z 3 S = 
t - j  '~St j=O 

(3.1) 

where  {~Lt} ' { ~Rt i~ and {~St } are  th ree  independent  

white noise processes  with mean zero and va r iances  
2 2 2 

Ok, o R and ~S' r e spec t ive ly .  The f i rs t  equat ion  

pos tu l a t e s  an addi t ive  decompos i t ion  of the  popula t ion  
mean 0 t into a t rend  level componen t  t t and a seasonal  

e f f e c t  S t . As noted ear l ie r ,  such a decompos i t ion  is 

inheren t  in the  seasonal  ad jus tmen t  p rocedures  in 
common use like, for  example ,  X-1I  ARIMA (Dagum, 
1980). O the r  componen t s  like moving fes t iva l s  and 
t r ad ing  days e f f e c t s  can l ikewise be i nco rpo ra t ed  in the  
decompos i t ion  equa t ion  - Morris and P f e f f e r m a n n  
(1984), Dagum and Quennevi l le  (1988). 

The second and third equa t ions  app rox ima te  a local  

l inear  t r end  (the ease  of a cons t an t  level  is a specia l  

ease  by which o --OR=O and Ro=O ) where as the  last  

equa t ion  models the  va r i a t ion  of the seasonal  e f f ec t s .  
As can be seen, the  model pe rmi t s  changes  in the  
seasonal  p a t t e r n  but imposes the  condi t ion  tha t  the  
e x p e c t a t i o n  of the  sum of the  seasonal  e f f e c t s  over  a 

given span A (four quarters in our case) is zero. 

(Constant seasonality is obtained when a~=0). 

The model defined by (3.1) is known in the 
statistical literature as the "Basic Structural Model". 
The theoretical properties of this model in relation to 
other models are discussed in Harrison and Stevens 
(1976), Harvey and Todd (1983), Harvey (1984) and 
Maravall (1985). Although this model is more 
restricted compared to the family of ARIMA models, it 
is flexible enough to approximate the behaviour of 
many different time series as illustrated empirically by 
Harvey and Todd (1983), Morris and Pfeffermann (1984), 
Dagum and Quenneville (1988) and Quenneville and 
Dagum (1988). Important features of the model 
pertaining to the present problem are discussed in 
subsequent sections. 

The model defined by the last three equations of 
(3.1) can be written alternatively as 



~{1)  = T 1 c~(l~ + n~ 1) (3.1') 
l ~ t -  

~1), 
where ~ = (L t ,  R t ,  S t ,  St_ I, St_2) is the state 

vector at time t, 

i i 0 0 0 
0 1 0 0 0 

TII = 0 0 -I  - i  - i  is a time invariant 
0 0 1 0 0 transition matrix and 
0 0 0 i 0 

n is the corresponding error vector with mean zero 
2 2 2 

andV-C matrix Ql I = Diag(oL, o R , u S , 0, 0). We use 

the representation (3.1') in subsequent sections. 

3.2 Observations Equation for the Survey Estimators 

The model equations for the survey estimators 
depend on the sampling design, the rotation pattern and 
the covariances between individual observations. In the 
present study we follow Blight and Scott (1973) and 
assume that observations {Yti } pertaining to the same 
unit i follow a first order autoregressive model, i.e. 

Yt i  - ° t  = ° ( Y ( t - l ) , i  - ° t - l )  + v t i  (3.2) 

where the errors { v t i ;  t = 2, 3 . . . .  } are whi te 

noise wi th mean zero and variance ~v ~ and 101 < i .  
This is a standard assumption made (sometimes 
imp l ic i t l y )  in essential ly all the art ic les mentioned in 
sect ion I. It implies that correlat ions between 
individual observations decay geometr ica l ly  as t ime 
passes. It is assumed also that the sampling design is 
ignorable (Sugden and Smith,  1984) and that 
observations pertaining to different individuals are 
independent. The mode[ can be extended to the case of 
a two stage sampling design by adding random 
components >'tk to represent random cluster effects so 

thatYtkiv = @t + >'tk + ~tkj" Assuming that the 

cluster effects follow a separate autoregressive 
relationship, the model can be analysed similarly to the 
present case. The model  accounts then for 
contemporary and serial correlations between 
observations pertaining to different ultimate units 
belonging to the same cluster (cf .  Scott, Smith and 
Jones, 1977). 

The other factor determining the observations 
equation for the survey estimators is the rotation 
pattern. Consider first the special case of a non- 
overlapping survey. Assuming that the samples 
selected at different time periods can be considered as 
independent, the observation equation is 

?t = ° t  + ~ t ;  E(~ t )  = O, E (~ t~ t_k )  = 

o 2 
{ v / n t  k=O 

0 otherwise (3.3) 

where?t ~ i!tl = Yti is the aggregate survey 

estimator at time t and v t is the corresponding survey 
error. The model defined by (3.1') and (3.3) specifies 
the basic structural model to be used in the case of a 
nonoverlapping survey. 

Next we consider the case of overlapping surveys 
and to illustrate the ideas we focus for convenience on 

the Israel Labour Force Survey (ILFS) which provides 
the data used in the empirical study of section 6. Other 
rotation patterns can be handled in a similar way. The 
ILFS is a quarterly survey of households carried out by 
the Central Bureau of Statistics (CBS) to provide 
information on employment and other important 
demographic and socio-economic characteristics of the 
labour force in Israel. Every quarter the CBS surveys 
four panels each composed of approximately 3000 
households so that three panels have been included in 
some past surveys and one panel is new. Every new 
panel is included in the survey for two quarters, left out 
of the survey for the next two quarters and then 
included again for two more quarters. This rotation 
pattern produces a 50% overlap between two successive 
quarters and a 50% overlap between quarters 
representing the same months in two successive years. 
For a brief description of the sampling design used for 
the ILFS, see Nathan and Eliav (1988). As discussed 
there, the four concurrent panels can be considered as 
independent simple random samples of households. 

I whatfoiiow. Z m - >: Y i to 
m i = l  

be the mean observed at t ime t for the panel jo ining 
the survey for the f i rs t  t ime at t ime t - j ,  j=0 ,  i ,  4, 
5. It is assumed for convenience that the panels are of 
f ixed size m. The aggregate survey est imate at t ime t 

will bedeno ted  as before by ?t  = ~(7~ + 7~- 
1 +  

We distin i h betwee  the where 

the panel es t imates  are known and the case where the 
only available data at t ime t is the aggregate  es t imate  
?t" For the first ease we have 

? t~ = ~14e t + 7 t (3.4) 
where _14 is the unit vector  of length 4, 7i ~ = (? t  t ,  

v e c t o ,  e t,ma o,  

- ~ - t - 1  - t - 4  - t - 5  
at time t and ~ -  ( ~ ,  ~t , Et , ~t ) is the 

corresponding vector  of survey errors sat is fy ing the 
t rans i t ive relat ionships 

" - - t  "~ 
~t 0 0 0 0 0 0 -t-l'~t_l 

-t-i 

-t-4 

- t -31  
e t - 2  I 
- t - 2  .t-] e 1 

pO0000 

O000p30 

OOpO00 

000001 

010000 

- t - 2  
~ t -1  

- t - 5  
~ t - i  

- t - 6  )=T22~2~+.n(2 ~ t - i  +n~ 2 -  t ) 

- t - 4  
ct_ 3 

-t-3 .~t-2 (3.5) 

where q ( , p2#{ 4 + p#t + v t  , 

~t-5, 0, 0) is a vector of independent disturbances 

which is uncorrelated with the vectors {~2_~} and 

{ n.t_j (2) }, j _> 1 and has mean zero and V-C matrix 

~2) 1 o2 2 - i  V(n ) = (~ v) D i a g [ ( l - p  ) , i ,  

2 
- (p4 + p + i ) ,  i ,  O, O] = Q22 (3.6) 



Equations (3.5) and (3.6) follow directly from the 
- t - j  i m 

autoregressive assumption (3.2) so that Vt_k m i i 

t - j  is the mean of the white noise disturbances at V t - k , i  

t ime ( t - k )  for the panel joining the sample for the first  

t ime at t ime ( t - j ) ,  j L k. We included the survey 

errors et_1 and ~t_l in the vector ~ _ and the errors 

- t  - t -3 in the vecto r ~2) ~2_~ t and et_2 ~ in order tha t  a will 

contain the same components  as a with a t ime shift 

of 1. S ince~  -2 had to be added t o ~  we added it 

also t o ~ ( ~ ,  insuring tha t  way tha t  the error  vec tor  

n will be independent of past s ta te  vectors .  This in 

-t-~ (21 
turn required that ~t_ wi l l  be added to ~-t " 

Obviously when the same components are included in 
both the vectors,  the corresponding residual var iance is 
set to zero. This s t ra tez7  can be applied for general  
ro ta t ion  pat terns .  

For the ease of a secondary analysis we have 

- [ - - t - i + ~ - 4  - t - 5  i - 
Yt = et + 4( t + t _ +s t ) = s t + ~ I'E t (3.7) 

with (3.5) and (3.6) remaining unchanged. 

Equations (3.4) and (3.?) define the observations 
equation for the case of overlapping surveys. However, 
unlike the case of independent samples, the survey 
errors are now correlated. A simple way to overcome 
this problem in our case is by including the survey 
errors as part of the state vector and setting the 
residual variances of the observations equation to zero. 
The resulting model is specified in the next section. 

3.3 A Compact Model Representation 

The model defined by (3.1'), (3.4), (3.5) and (3.6) 
corresponding to the case of a primary analysis can be 
written compactly as 

- = ~ ' - ' ' ' ' 2 = Z g t  ( 3 . 8 )  

where 04 is a vector of zeros of length 4, 14 is the 

t L) (2) ident i ty  matr ix of order 4 and 9t  = (~. ' '  ~-t ' )  is 

the augmented  s t a te  vec tor  sat isfying the t ransi t ion 

equation 

~t = 9 t -  = T-~t- + n (3.9) 1 + ~2 1 - t  

In ( 3 .9 )T I I  is the transit ion matr ix of the state 

vector ~[1) defining the evolution of the population 

mean components (equation 3.1'), T22 is the transit ion 
matr ix of the survey errors (equation 3.5) and ~0 k 

defines a zero matr ix of order (~ x k). Notice that 

the elements of n t are independent so that Q = V (n t )  is 
diagonal with Qll - v(_nt(1)) and Q22 V(n ) 
comprising the diagonal e lements .  

For the case of a secondary analysis (equations 3.1', 
3.5, 3.6 and 3.7) the matrix Z of equation (4.8) is 
replaced by the row vector 

1 I 1 1 z' = (1, 0, l ,  0, 0, ~, ~, ~, ~, 0, 0) (3.10) 

so that ? t = z '~ t  (compare with 3.7). However, the 

system equations (3.9) remain unchanged. Thus, the 
model preserves the intrinsic relationships (3.5) among 
the separate panel estimators even though the only 
available data are the aggregate estimators {?t }. An 

interesting consequence of this formulation is that one 

can actually predict the original panel estimates {7~ -j} ~ 

using the relationship ?t t - j  = L t + S t + ~ - J  = c ' s  t, 

say. (Equation 3.7 guarantees that the average of the 

four predictors equals the aggregate estimate ?t)- 

Such an analysis might be useful for model diagnostic, 
e.g. by comparing the prediction bias and mean square 
error (MSE) of the distinct panel estimates as obtained 
under primary and secondary analyses: see table 3 of 
section 6.2. 

The common approach to the modelling of the 
behaviour of the survey errors in the case of a 
secondary analysis is to postulate  a moving average 
(M.A.) process for the errors e t  = ? t  - 0t as induced 

by the fact  that  the errors are uncorre la ted  a f te r  a 
cer ta in  lag de termined  by the ro ta t ion  pa t te rn .  This 
formulat ion does not allow the predict ion of the 
separa te  panel es t imates .  Notice also that  by uti l izing 
the relat ionship (3.2), the model holding for the survey 
errors includes in our case only two unknown 
pa rame te r s  compared to five pa ramete r s  if a general  
M.A. process of order 5 is used. (As easily seen, for the 
model defined by 3.10 and 3.9, Cov(7 t ,  7 t - j )  # 0 for 

j=0,  1, 3, 4, 5. One could argue on the other  hand 
tha t  postula t ing a general  moving average process is 
more robust. In par t icular ,  the M.A. formulat ion does 
not require tha t  the panel es t imators  corresponding to 
the same t ime period are independent.)  The use of 
M.A. models for the survey errors is less obvious in the 
ease of a pr imary analysis because of the d i f fe rent  t ime 
gaps in which the panels are not observed. 

The model defined by (3.8) (or 3.10) and (3.9) 
conforms to the general state-space formulation 
presented in section 2. Hence, once the unknown 
variances and the initial state components have been 
estimated, (the analysis of Maravall, 1985 illustrates 
that the model is uniquely identified), the Kalman filter 
equations can be applied to estimate the population 
means or changes in the means using the relationship, 
0 t - (L t + St).  Moreover, the use of the present 
model permits the extraction of the seasonal effects in 
a straightforward manner taking into account the 
correlations between the survey estimation errors and 
using the dis t inct  panel e s t imates  in the case of a 
pr imary analysis. Thus, the approach outl ined in this 
a r t ic le  enables to decompose the means into a t rend 
level component  and seasonal e f fec t s  using more 
informat ion than is commonly used by the t rad i t iona l  
procedures  for seasonal  adjustments .  These advantages  
are i l lus t ra ted  in the simulat ion study described in 
sect ion 6.1. As mentioned in the in t roduct ion and 
becomes evident  from the Kalman f i l t e r  equations,  the 
model provides es t ima tes  for the mean square errors  of 
the es t imated  components  at any given t ime period. 
(Quenneville and Dagum, 1988, propose to e s t ima te  the 
var iances  of the X-11 ARIMA es t ima tes  by f i t t ing  basic 



structural models which approximate the behaviour of 
the X-If ARIMA components.) Obviously, the price paid 
for this flexibility is that the analysis is more model 
dependent compared, for example, to the use of the X- 
i i  AR!MA procedure. 

4. ACCOUNTING FOR ROTATION GROUP BIAS 

The p rob lem of r o t a t i o n  group bias (RGB) is t ha t  
some  of the  panel  e s t i m a t o r s  may be biased.  In its 
c l ass ica l  use, RGB r e f e r s  to a phenomenon  by which 
r e sponden t s  provide  d i f f e r e n t  i n fo rma t ion  on d i f f e r e n t  
rounds of in te rv iew,  depending  on the  length  of t ime  
t h a t  t hey  have been included in the  sample .  However ,  
the  phenomenon  of RGB or at  l eas t  i ts magn i tude  could 
be r e l a t e d  to the  method  of d a t a  co l l ec t ion  (e.g. home 
in te rv iew in some  rounds and t e l ephone  in te rv iew in 
o t h e r  rounds) or even resu l t  f rom d i f f e r e n t i a l  
nonresponse .  Here  and in sec t ion  6.2 we r e f e r  to RGB 
in this  b roader  c o n t e x t .  

Bailar (1975) found clear evidence for rotation bias 
in some of the labour force data collected at the U.S. 
Current Population Survey. Kumar and Lee (1983) 
found similar evidence in the Canadian Labour Force 
Survey. A review of these and other studies on rotation 
bias can be found in Binder and Hidiroglou (1988). 

Using previous  nota t inn ,  ro t a t ion  bias impl ies  tha t  
t - j  E(? t - 0 t )  = ~ j t / 0  for some j.  Bailar  (1975) and 

Kumar  and Lee (1983) assume tha t  the bias f a c t o r s  are 
t ime  invar ian t  which implies  in our case  tha t  

t - j  ot+~ t - j  + ,~ tha t  ?t = t j or 
m I 

Yt = ~14 (Lt  + St) + 14B~ + ~~t (4.1) 

where B' = (Bo, ~i, ~4, B5) is a vector of constants. 

Equation (4.1), combined with (3.9) defines a model for 
incorporating constant RGB effects. However, the 
equations (4.1) and (3.9) alone are not sufficient for 
estimating the group effects and securing unbiased 
predictors for the population means because of the 
confounding effects of the trend level and a fixed shift 
in the bias coefficients. Thus, one needs to augment 
the model by a linear constraint of the form 

£w'~j = w O . ,  ~ wj # 0 (4.2) jJ j 
with known coefficients wj in order to secure the 
identifiability of all the model components. 

This problem is obviously not unique to the present 
model. If all the panel estimators are biased, one 
cannot hope for an unbiased estimator of the population 
mean without some information on the magnitude and 
relationship of the bias factors. Bailar (1975) assesses 
the bias by examining alternative data sources. Kumar 
and Lee (1983) assume that the bias coefficients add to 
zero in their analysis. We make a similar assumption in 
section 6.2 based on preliminary analysis of the data. 
In the absence of external information, this is a 
reasonable condition since it permits to test for the 
existence of g roup  effects conditional on the 
assumption that the aggregate estimates are unbiased. 

The model  def ined  by (4.1) and (4.2) can be ex t ended  
to the  case  of t i m e  changing group e f f e c t s  by 
p e r m i t t i n g  the  bias f a c t o r s  to vary  s t o c h a s t i c a l l y  over  
t ime ,  s imi la r ly  to the  o the r  model  componen t s ,  t ak ing  
into accoun t  the  possible  c o r r e l a t i o n s  b e t w e e n  them.  
Such an ex tens ion  is not  cons idered  in the  p resen t  
s tudy.  

5. ESTIMATION AND INITIALIZATION 
OF THE KALMAN FILTER 

The actual application of the Kalman filter requires 
the estimation of the autocorrelation coefficient p and 
the unknown elements of the V-C matrix O as well as 
the initialization of the filter, that is, the estimation of 
the state vector ~o and the V-C matrix Po. In this 
section we describe the estimation methods used in the 
present study. 

~I), 
Assuming  tha t  the  d i s tu rbances  n~: = (n , 

n ' )  are  no rma l ly  d i s t r ibu ted ,  the  log l ikel ihood 

func t ion  for  the  obse rva t ions  can be w r i t t e n  as 

T 
1 

L(a) : constant  ( - I / 2 )  s ( log IFt l  + e~F t et )  
- t - i  ~ 

(5.1) 
where e t = Yt - ~ t l t - i  is the vector of innovations 

2 2 2 2 
(p red ic t ion  errors)  and 5' = (o L, oR, oS, oV, p) is 

the  v e c t o r  of unknown model  p a r a m e t e r s .  
^ . ,  

Let  ~ ( o ) ,  c~° and Po def ine  the ini t ia l  e s t i m a t e s  of 

5, c~ o and Po. A s imple  way to max imize  the l ikel ihood 
~ 

func t ion  (5.1) is by app l i ca t ion  of the method  of 
scor ing  which consis ts  of solving i t e r a t i v e l y  the 
equa t ion  

# ( i )  = # ( i - l )  + x i { l [ # ( i - l )  ] } - i  G [ # ( i _ l )  1 (5.21 

In (5.2), # ( i _ l )  is the est imator of ~ as obtained in 

the ( i - l ) t h  i terat ion, I [ # ( i _ 1 ) ]  is the information 

matr ix evaluated at # ( i - l )  andG[# ( i _1 ) ]  is the 

gradient of the log l ikelihood again evaluated at 

-~ ( i - l ) "  The c o e f f i c i e n t  >,i is a var iab le  s tep  length  

d e t e r m i n e d  by a grid sea rch  p rocedure  and in t roduced  

to g u a r a n t e e  t ha t  C [ ~ ( i ) ]  L L [ ~ ( i _ l ) ]  at  each  

i t e ra t ion .  The f o r m u l a e  for the  k- th  e l e m e n t  of the  
g rad ien t  v e c t o r  and the  k l - t h  e l e m e n t  of the 
i n fo rma t ion  ma t r ix  are  given in Watson and Engle 
(1983). 

The i t e r a t i v e  solu t ion  of (5.2) may converge  to 
nega t ive  va r i ance  e s t i m a t o r s  or b e c o m e  uns tab le  if an 
i t e r a t i o n  produces  nega t ive  e s t i m a t e s .  A s imi la r  
ins tab i l i ty  may occur  if p is e s t i m a t e d  by a value 
outs ide  the  unit  c i rc le .  In order  to avoid this 
poss ib i l i ty ,  we t r a n s f o r m e d  the  v e c t o r  5' to the  v e c t o r  

~*' = [a L, o R , o S, o v,  0] where  p = ~/ (1+1~1)  so 

t ha t  the  l ikel ihood func t ion  has been m a x i m i z e d  with 
r e s p e c t  to the  e l e m e n t s  of 5* r a t h e r  than  the e l e m e n t s  

of ~. We used two c o n v e r g e n c e  c r i t e r ions :  I { L [ ~ ( i ) ]  

- L [ a ( i _ l ) ] } / L [ a ( i _ l ) ] l  < 10 .9 and max{l~ ( j )  - j ( i )  
^ 

5 ( i _ l ) ( J ) I / l a ( i _ l ) ( j ) I }  _< .01 where 6 ( j )  stands for 

any one of the parameters. The algori thm has been 
stopped once one of the cri ter ions was fu l f i l led (usually 
in less than 20 iterations). 

In i t i a l i za t ion  of the  Ka lman  f i l t e r  was ca r r i ed  out 
fo l lowing the  app roach  proposed  by Harvey  and P e t e r s  
(1984). By this approach ,  the n o n s t a t i o n a r y  c o m p o n e n t s  
of the  s t a t e  v e c t o r  are  in i t i a l i zed  with very  large  e r ro r  
va r i ances  (which a m o u n t s  to pos tu l a t i ng  a d i f fuse  prior) 



so that the corresponding state estimates can 
conveniently be taken as zeros. The stationary 
components are initialized by the corresponding 
unconditional means and variances. For the model 
defined by (3.9), the stationary components are the six 

(2 I 
survey errors comprising the sub-vector So, "naving zero 

2 21-i mean and var iance  (1/m)Ov(1 - p . In view of the 

use of large er ror  var iances  for the nons ta t ionary  s t a t e  
components ,  the likelihood is e s t i m a t e d  based on the 
last T-d observat ions  where d is the number  of the 
nons ta t ionary  components .  

The use of this procedure  has the c lear  advantage  of 
being computa t iona l ly  very simple.  Other  approaches  
to ini t ia l iz ing the Kalman f i l t e r  tha t  could be applied to 
the models considered in the present  paper  are 
discussed in Ansley and Kohn (1985) and DeJong (1988). 

A compu te r  program which implements  the methods 
described in this sect ion for the updating,  smoothing 
and predic t ion  of the s t a t e  vec tors  of the models 
proposed in sect ions 3 and 4 has been wr i t ten  using the 
procedure P ROC-IML of the SAS sys tem.  The program 
is a modif ica t ion of the sof tware  DLM developed at 
S ta t i s t ics  Canada by Quennevil le  (1988). 

6. SIMULATION A N D  EMPIRICAL RESULTS 

In this section we describe the results or" an 
empirical study aimed to illustrate some of the major 
features of the models presented in section 3. The 
study consists of two parts. In the first part discussed 
in section 6.1, we use simulated series thus enabling us 
to control the values of the model parameters. In the 
second part we use two actual series collected as part 
of the Israel Labour Force Survey. In this part we 
extend the models of section 3 by permitting for 
rotation group effects as described in section 4. The 
results are discussed in section 6.2. 

6.1 Simulation Results 

We generated several data sets, each containing 15 
independent series of panel estimates with four panels 
for every time period. The panel estimates were 
generated so that they obey the model and rotation 
pattern defined by (3.8) and (3.9). The difference 
between the various sets is in the values of the model 
parameters and in the length of the series. 

Here we focus mainly on the results obtained for 
two groups of data, each consisting of 2 separate data 
sets, one composed of series of length T*=I00 and the 
other restricted to series of length T*=36. The latter is 
the length of the labour force series analysed in section 
6.2. For the first group we used very small values of 
2 2 2 

o L, o R, o S implying an almost perfect linear trend 

with constant seasonality. We increased the values of 
the variances for the other group imposing that way 
more rapid changes in the components of the population 
mean. We used a relatively high value of p:0.7 for 
both series thereby emphasizing the effect of the 

2 
rotation pattern. The variances o v used are such that 

the survey errors account for about 20 percent of the 
MSE of the quarter to quarter difference in the 
aggregate means in the first group and for about 6 
percent in the second group. In the discussion below we 
mention briefly the results obtained for other values of 

2 
p and a . 

v 

As benchmark comparisons with the model results 

we have e s t ima ted  the seasonal  e f f ec t s  using the X - l l  
procedure  and computed  the sampling var iance of 
Pa t t e r son ' s  (1950) e s t ima to r  of the populat ion mean for 
the ease of "sampling on more than two occasions".  
The var iance is specif ied in fo rmula  12.84 of Cochran 
(1977). Not ice  tha t  the var iance of this e s t ima to r  is 
minimized in the ease of a 50 percen t  sample  overlap 
be tween two successive surveys which is the ease in the 
present  study. 

The resul ts  obta ined for the two groups are 
exhibited in tables  1 and 2 as averages  over the 15 
series considered in each ease. We distinguish be tween  
the ease where Q is known (denoted "Corr.Q") and the 
ease where Q (and hence also the t rans i t ion  matr ix  T) is 
e s t ima ted ,  and be tween  the resul ts  obta ined for a 
p r imary  analysis  which uses the dis t inct  panel  e s t ima te s  
and the resul ts  obta ined for a secondary  analysis using 
only the aggrega te  e s t ima tes .  Another  dis t inct ion 
made is be tween the predict ion one s tep ahead of the 
aggrega te  sample  e s t ima te s  (using e i ther  the cor rec t  
model or the model which ignores the corre la t ions  
be tween the survey errors) and the predict ion of the 
dis t inct  panel e s t ima te s  (presented as average over the 
4 panels). The prediction errors are presented mainly 
for comparison between primary and secondary 
analysis. 

The main results emerging from the tables can be 
summarized as follows: 

I) The use of primary analysis dominates the use of 
secondary analysis in almost every aspect studied 
(notice in particular the estimation of the survey 
error parameters in the case of the short series). 
The better performance in the case of a primary 
analysis is seen to hold also in the estimation of the 
seasonal effects (see table 2) despite the use of the 
smoothed estimators, an issue not investigated so 
far. 

2) Estimating the unknown model parameters by the 
method of scoring yields satisfactory results in the 
case of a primary analysis. The results are less 
encouraging, however, in the case of a secondary 
analysis with respect to the estimation of the survey 
error parameters. This outcome is explained by the 
fact that these parameters index the relationship 
between the panel estimators whereas the panel 
estimators are not observable in the case of a 
secondary analysis. Nevertheless and as emphasized 
in section 4, the survey parameters can be 
estimated consistently even in the case of a 
secondary analysis which is illustrated very clearly 
by comparing the results obtained for the long and 
the short series. 

Another notable result is the estimation of the 
seasonal effects in the case of the first group of 
data. The smoothed estimates of the seasonal 
effects using the correct Q matrix outperform in 
this case the smoothed empirical estimates obtained 
by using the estimated variances which could be 

expected considering the very small value of o~. 
f %  

Still, the empirical estimates perform well even in 
this case and interesting enough, the use of the 
estimated variances is reflected also in the 
estimates of the MSE's of the smoothed estimators 
so that for the long series, the latter estimates 
again perform relatively well. For the short series, 
the MSE's estimates underestimate the true MSE's, a 
well known phenomenon in other applications 



Table 1: Simulation Results, Data Set I 

Initial Components : L o = i00,  R o = 5, S o' = (4, i ,  -3 ,  -2) 

Residual State Variances: o~ = 0 . 1 ,  (J~ = 0 . 1 ,  a~ = 10 . 4  

2 ' 
Survey Error Pa rame te r s :  o = 8 . ,  0 = 0.7 

e 
100 T ime  Points  

P r i m a r y  Secondary 
Corr.Q Est.Q Corr.Q Est.Q 

Predic.  Bias panels 0.35 0.65 0.36 0.38 
aggregate -0 .09  0.25 -0 .16 -0 .14  

panels 26.00 26.20 32.70 32.90 
Predic. MSE aggregate 8.25 8.40 9.67 9.76 

p=0 10.75 - 10.75 - 

Est. of 2 { Bias - -0 .24  - -0 .66  
survey error °e RMSE - 0.56 - 3.20 
parameters  f Bias - -0 .01 - -0 .05 

o tRMSE - 0 .03  - 0 .10  

Var.  o f E s t .  3 model  3 .90  4 .22  4 .13  4 .56  
of popu la t i on  r e a l i z e d  4 .10  4 .45  4 .35  4 .85  
means  p a t t e r s o n  6 .50  6 .50  - - 

MSE of Est. ~ model 0. 003 0.25 0. 003 0.32 
of Seasonal realized 0. 003 0.21 0. 003 0.38 

2 

Effects p=0 0.003 - 0.003 - 
X-If  - - - 0.79 

36 Time Points 
P r i m a r y  

Cor r .Q  Est .Q C o r r . Q  
0 .63  0 .67  0 .69  

- 0 . 0 5  0 .06  - 0 . 0 5  

25 .80  25 .40  32 .40  
8 .42  7 .74  9 . 5 8  

11 .32  - 11 .32  

- - o . 7 2  - 

- 1 . 4 4  - 

- 0 . 0 0  - 

- 0.07 - 

3.55 3.97 3.76 
3.65 4.20 3.84 
6.60 6.60 

0.001 0.25 0.001 
0.001 0.47 0.001 
0.001 - 0.001 

_ _ _ 

Secondary 
E s t . q  

0 .60  
0 .09  

32 .60  
8 .62  

- 1 . 2 0  
6 .20  

-0 .27  
0.26 

3.35 
5.53 

_ 

0 .26  
0 .88  

_ 

0 .93  

, 2 E ( ? t _ e  )2 CJe = t is the  v a r i a n c e  of the  a g g r e g a t e  mean.  
2 

Resu l t s  ob t a ined  when ignor ing the  se r ia l  c o r r e l a t i o n s  b e t w e e n  the  panel  e s t i m a t o r s .  
3 

E s t i m a t o r s  a re  based  on past  and c u r r e n t  da ta .  
4 

E s t i m a t o r s  a re  " s m o o t h e d "  using all the  da t a .  

Tab le  2 : S imu la t i on  Resul t s ,  D a t a  Set  II 

Initial Components : L o = I00, R o = 5, S o ' = (4, i ,  -3 ,  -2) 
~ 

2 0 8  2 I (~  = 0 4  R e s i d u a l  S t a t e  V a r i a n c e s :  OL = " ' GR = ' 

2 l 
S u r v e y  E r r o r  P a r a m e t e r s :  ~ = 4 . ,  .~ = 0 . 7  

e 
100 T ime  Points 

P r i m a r y  S e c o n d a r y  
Cor r .Q  Est .Q Cor r .Q  Est .Q 

P r e d i c .  Bias pane l s  0 .38  0 .38  0 .43  0 .39  
a g g r e g a t e  - 0 . 2 9  - 0 . 2 8  - 0 . 3 4  - 0 . 3 7  

pane ls  20 .85  20 .45  25 .30  24 .70  
P red i e .  MSE aggrzegate 12 .16  11 .70  13 .80  13 .10  

p=0 14 .20  - 14 .20  - 

36 T ime  Poin ts  
P r i m a r y  

C o r r . q  E s t . q  
0.58 0.58 

-0 .08  -0 .03 

20.80 19.34 
11.90 10.24 
14.20 - 

Bias - - 0  1 2  - - 0  7 2  - - 0  06 Est. of o2 { . . . 

survey error e RMSE - 0.36 - 2.80 - 0.76 
parameters  Bias - -0 .01 - -0 .24  - -0 .01  

P {RMSE - 0.03 - 0.36 - 0.08 

Var. o f E s t .  3 model 2.90 2.87 3.31 2.40 2.81 2.84 
of population realized 2.90 2.94 3.27 3.42 3.12 3.09 
means patterson 3.16 3.16 - - 3.30 3.30 

M S E o f E s t .  ~ model 0.52 0.51 0.69 0.68 0.54 0.45 
of Seasonal realized 0.53 0.63 0.61 0.75 0.51 0.65 
Effects  p=02 0.70 - 0.70 - 0.71 - 

X-11 - - - 0.96 - - 

Secondary 
Corr.Q Est.Q 

0.63 0.59 
-0 .06  0.00 

25.40 22.97 
13.82 10.66 
14.20 

- -0 .32  
- 4.88 
- -0 .26  
- 0.45 

3.20 1.95 
3.56 3.68 

0.72 0.55 
0.67 0.87 
0.71 - 

- 1 . 0 0  

1 2 F ( ? t - 0 )  2 is t he  v a r i a n c e  of the  a g g r e g a t e  mean .  
°e  = t 

2 
Resu l t s  o b t a i n e d  when ignor ing  the  se r i a l  c o r r e l a t i o n s  b e t w e e n  the  pane l  e s t i m a t o r s .  

3 

E s t i m a t o r s  a r e  based  on pas t  and c u r r e n t  da t a .  
4 t !  t !  E s t i m a t o r s  a re  s m o o t h e d  using all  the  d a t a .  



resulting from ignoring the extra variation due to 
estimating the model  variances. A similar 
phenomenon can be observed with the variances of 
the estimators of the population means. Ansley and 
Kohn (1986) propose a correction factor of order 
I/T* to account for this extra variation in state 
space modelling. 

3) The use of the full model taking into account the 
intrinsic relationships between the survey errors 
d~creases  the predict ion errors very s ignif icant ly  
cbmpared  to the case where these relat ionships are 
ignored (i.e. se t t ing  p-0 in the t ransi t ion matrix).  
The same holds for the second group of da ta  with 
respec t  to the es t ima t ion  of the seasonal e f f ec t s  
when using a pr imary  analysis.  

Although not shown in the table,  we genera ted  
d i f fe ren t  da ta  sets  using smal ler  values of 0 but 

2 
increasing each t ime the value of a so that  the 

2 v 2 
uncondit ional  var iance a e = E (Yt -0 t )  remained 

fixed. Evidently, the smaller the value of 0, the 
larger are the prediction errors under both a 
primary and a secondary analysis (although the 
differences between the two analyses are 
diminished) and the smaller is the impact of setting 

~=0 in the analysis. Decreasing the value of 0 
increases also the MSE's of the estimates of the 
seasonal effects under both a primary and a 

secondary analysis using either the correct Q or its 
sample estimate. The increase is again very 
evident.  Thus, the major fac tor  de termining  the 

2 
ef f ic iency of the model is the residual variance,  ~v' 

and not the uncondit ional  variance of the survey 
errors  which is quite intuit ive considering the 
imposed autoregress ive  relat ionships between the 
survey errors.  

4) The use of the model yields more accura t e  
e s t ima te s  for the populat ion means than does the 
classical  sampling approach.  (For the first  group, 
the model per forms b e t t e r  even under a secondary  
analysis.) The major fac to r  a f fec t ing  the 
pe r fo rmance  of the classical  e s t ima to r  is the 
var iance of the survey errors  and since it is twice  as 
large for the first  group of da ta  as for the second 
group, the var iance of the e s t ima to r  is l ikewise 
doubled. Under the model, the variance of the 
e s t ima to r s  depends also on the residual var iances  of 
the populat ion mean components  and since they are 
much smal ler  for the f irs t  group than for the 
second, the overall  increase in the var iance of the 
e s t ima to r s  is only in the magnitude of about 30%. 
These resul ts  indicate  very c lear ly  the possible 
advantages  of modell ing the evolution of the 
populat ion means over t ime.  

5) The use of the model yields in general  b e t t e r  
p red ic tors  for the seasonal  e f f ec t s  than does the 
X - l l  procedure .  The much b e t t e r  pe r fo rmance  of 
the model in the ease of a p r imary  analysis may not 
surprise but it is another  indication for the possible 
gains in using the sepa ra t e  panel e s t ima te s  t a k i n g  
the design fea tu res  into account .  The super ior i ty  of 
the model in the ease of a secondary analysis is less 
obvious despi te  the exp lo i tment  of the model 
assumptions since a lmost  all the series analyzed 
were found to be in the accep tance  regions of the 
"Monitoring and Qual i ty  Assessment  S ta t i s t i c s"  
ca lcu la ted  by the X - l l  program.  It should be noted 
however  tha t  the two procedures  yield closer  

estimates once  the survey error variance is 
decreased. 

6.2 Empirical Results Using Labor Force Data 

We present the results obtained for two series: 

Series I: Number of hours  worked in the week 
preceding the survey 

Series 2: Number of weeks worked in the year 
preceding the survey 

In order not to burden the computations, we 
restricted the analysis to households in the city of Tel- 
Aviv. The time period covered was 1979-1987 so that 
each series consists of 36 x 4 panel estimates. We 
didn't include data for the years before 1979 because of 
changes in the sampling design and the questionnaire 
introduced in 1978. Data for 1988 was not available to 
us at the time of the analysis. Interested readers may 
obtain the data of the two series from the author. 

The trend levels of these two series are almost 
constant. The seasonal effects account for about 50 
percent of the MSE of the quarter to quarter 
differences in the aggregate means in the case of the 
first series and for about 30 percent in the case of the 
second series 

The results obtained when fi!tin~" the t~lodels of 
sect ions 3 and 4 to the series are exhi!)ited in table 3. 
The column headed "pr imrot"  gives the results obtained 
when account ing for ro ta t ion  group bias. We first 
analysed the series without including the bias fac tors  
(other columns of the table) and found that  for both 
series tile predic tor  one step ahead of the first panel 
estim~,tor is essent ia l ly  unbiased. This result  suggests  
that  i! 1 (B2+B4+B5)/3 but since there  is no apparent  

reason for a bias associa ted  with the first panel (see the 

discussion below) we presupposed also that  61 = 0 

which, t oge the r  with the previous relat ionship implies 
tha t  z j 6 j -  0. Nonetheless ,  when es t ima t ing  the bias 

coef f i c ien t s  we only imposed the milder condition z 
J 

6j = 0. (Star t ing values for the coef f ic ien t s  were set 

to zero with correspondingly large error  variances).  

Compar ing  the panel predic t ion biases with and 
without the account ing  for the group e f fec t s  reveals  
re la t ive ly  large biases for the o ther  panels in the l a t t e r  
ease.  For the f i rs t  ser ies  the smoothed e s t ima to r s  of 
the bias coef f i c ien t s  and the corresponding s tandard 

deviations (in brackets) are: ~i = - .027(.17),  ~2 = 

. 2 6 ( . 1 7 ) ,  ~4 = " 1 3 ( ' 1 7 ) '  ~5 = . - 3 7 ( . 1 7 ) .  Thus~5 is 

significant at the .03 level and likewise with respect to 

the difference (~5 -~2 ) (the S.D. of the difference is 

.29). For the second series the corresponding values are 

~i = - . i 0 ( . 1 6 ) ,  ~2 = . 2 0 ( . 1 6 ) ,  ~4 = . 0 9 ( . 1 6 ) ,  
~5 = -  .19 ( .16 )  so that none of the coeff ic ients is 

signif icant  even though they  exhibit  a s imilar  pa t t e rn  to 

tha t  observed for the f i rs t  series.  

The fact that only one group effect came out 
significant may result from the short length and the 
relatively large error variances of the two seires. 
Notwithstanding, it is likewise not clear that the 
observed prediction biases reflect real rotation group 
effects. It was suggested to us that the negative effect 
observed for the forth panel could result from the fact 



Table 3: Empirical Results, Labour Force Survey, Israel, 1979-1987 

Series I : Hours Worked in the Week Preceding the Survey 
Series lh Weeks Worked in the Year Preceding the Survey 

Primary 

Ser ies  I Ser ies  II 

P r i m r o t  ~ Seconda ry  P r i m a r y  P r i m r o t  ' Se /kondary  

Prediction Bias 
pane l  1 0 .07  0 .16  0 .05  0 .02  0 .16  0 .02  
pane l  2 0 .36  0 .08  0 .34  0 .27  - 0 . 0 2  0 .23  
pane l  3 0 .27  0 .10  0 .26  0 .17  0 .07  0 .18  
pane l  4 - 0 . 3 1  0 .11  - 0 . 2 1  - 0 . 2 0  0 .04  - 0 . 1 9  

a g g r e g a t e  0 .10  0 .10  0 .11  0 .07  0 .06  0 .06  

Prediction MSE 
panels (average) i .  63 1.56 I. 71 I. 16 1.14 i .  18 
aggr2egate 0.51 0.50 0.48 0.21 0.21 0.24 
p=0 1.21 1.36 1.35 0.51 0.52 0.50 
Ytlt_l=Yt_l I. 47 1.47 1.47 0.41 0.41 0.41 

Est. Survey. Param. 
a 2 0.42 0.38 0.69 0.38 0.36 0.37 e 
0 0 .39  0 .42  0 .07  0 .36  0 .38  0 .46  

Var.  Est .  Pop. Means 
Model O. 15 O. 14 0 .20  O. 10 O. 11 O. 10 
P a t t e r s o n  O. 39 O. 39 - O. 31 0 .31  - 

' Resul t s  ob ta ined  when a c c o u n t i n g  f,:,;" .,'otati(~n gvoup e f f e c t s .  

2 Resu l t s  ob ta ined  when ignoring the  ser ia l  c o r r e l a t i o n s  b e t w e e n  the  
panel  e s t i m a t o r s .  

t ha t  this is the  only panel  su rveyed  also on income.  
A n o t h e r  n o t e w o r t h y  f e a t u r e  of the  [LFS is t ha t  about  
hal f  of the  i n t e rv i ews  of the  second  and third  panels  are  
c a r r i ed  out by t e l ephone .  Thus, a l though  the  r e su l t s  of 
our ana lys i s  a re  inconc lus ive  at  this s t age  t hey  a re  
ind ica t ive  enough to jus t i fy  a more r igorous  and 
c o m p r e h e n s i v e  s tudy  using more  ser ies  and if possible  
more  d e t a i l e d  da t a .  

Two other notable outcomes in talbe 3 are: i) The 
use of primary and secondary analysis gives consistent 
results. This is true in particular for the second series 
but holds also for the first series except for the 
estimation of the survey error parameters and hence 
the estimation of the variance of the population mean 
estimator ii) The estimates of the variance of the 
model dependent estimators of the population means 
are substantially smaller than the estimated variances 
of the sampling (Patterson) estimator. One needs to be 
cautious in comparing the two sets of variances since 
the former are model dependent and employ estimates 
for all the unknown model parameters. However the 
substantial reduction in the prediction MSE's under the 
model as compared to the case where the correlations 
between the survey errors are ignored or when 
predicting the aggregate means by the means observed 
in the previous periods as well as the other results 
discussed above make us believe that the difference in 
the variances is real and not just the result of model 
misspecification or sampling errors. (see also the 
concluding remarks). W h a t  seems to make the 
difference between the model  and the sampling 
estimator is the fact that these series exhibit almost 
constant trend levels and very stable seasonal 
components which of course is ideal for the use of 
model based predictors. (See the discussion in point 4 
of section 6. i). 

7. CONCLUDING REMARKS 

The resu l t s  ob ta ined  in the  e m p i r i c a l  s tudy i l l u s t r a t e  
the  possible  a d v a n t a g e s  of using a p r i m a r y  analys is  as 
c o m p a r e d  to the  use of a s econda ry  analysis .  First ,  the  
use of a p r i m a r y  ana lys i s  yields  more a c c u r a t e  
e s t i m a t e s  for the  model  p a r a m e t e r s  and in p a r t i c u l a r  
the  su rvey  e r ro r  p a r a m e t e r s  and second,  it p roduces  
b e t t e r  p r e d i c t o r s  for  the  popu la t ion  means  and the  
s ea sona l  e f f e c t s .  P r a c t i t i o n e r s  in the  su rvey  sampl ing  
a r e a  o f t e n  p r e f e r  the  use of a s e c o n d a r y  ana lys i s  
b e c a u s e  of r o t a t i o n  group e f f e c t s  but  as we have  
i l l u s t r a t ed ,  t he se  e f f e c t s  can be i n c o r p o r a t e d  in the  
model .  

The use of the  model  for  s easona l  a d j u s t m e n t  
p r o b l e m s  is an i m p o r t a n t  a s p e c t  which should be f u r t h e r  
exp lo red .  Our s tudy  i nd i ca t e s  the  p o t e n t i a l  a d v a n t a g e s  
of using a p r i m a r y  ana lys i s  t ak ing  into a c c o u n t  the  
c o r r e l a t i o n s  b e t w e e n  the  obse rved  e s t i m a t e s .  It is 
u n f o r t u n a t e  t h a t  de sp i t e  the  i nc reas ing  use of r e p e a t e d  
su rveys  by s t a t i s t i c a l  bu reaus  and the  widely  r e c o g n i z e d  
need  for  p roduc ing  a c c u r a t e  e s t i m a t e s  for  the  s easona l  
e f f e c t s ,  the  spec i a l  s t r u c t u r e  of the  d a t a  is g e n e r a l l y  
ignored  when p roduc ing  such e s t i m a t e s .  In this  r e s p e c t ,  
t he  p r o c e d u r e  p roposed  in the  p r e s e n t  a r t i c l e  is a f i r s t  
a t t e m p t  to use more  d a t a  and t a k e  the  design f e a t u r e s  
into a c c o u n t  when e s t i m a t i n g  the  seasona l  e f f e c t s  
which  hopefu l ly  will e n c o u r a g e  f u r t h e r  r e s e a r c h .  
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