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ABSTRACT

Exact upper confidence limits for small proportions in
stratified samples are derived. An algorithm for their
computation which employs a new normal approximation for the
case of large strata and a finite number of defectives is proposed.
Using selected examples it is shown that the usual confidence
intervals derived from the standard normal approximation can be
highly misleading. The loss of efficiency of non-proportionate
designs, vis-a-vis simple random sampling or proportionate
designs for setting confidence limits on small proportions is
studied in a variety of examples.

Exact upper confidence 1imits for small proportions are also
derived for simple random sampies of equal-size clusters, and &
similar algorithm for their derivation is presented. The loss in
efficiency due to clustering is shown to be proportional o the
cluster size when no defectives are found in the sample. In other
cases the loss is slightly smaller.

I. The problem.

Applications which rely on probability sampling to estimate
population proportions which are very small have gained
prominence in recent years. Examples include: estimation of the
prevalence of a disease in & population in which it is known to be
rare; quality asssessment, evslustion and control in highly
reliable production processes; estimation of error rates, or
adjustments, in financial auditing.

In this paper we present a preliminary report on some exact
results and an iterstive algorithm for computing upper
confidence intervals for small proportions in  stratified samples
of elements. The approach we take is completely model-free:
probabilities arise entirely from the sampling procedure. in
fact, the approach taken here is simflar to that taken by Sedransk
and Meyer (1978), and Smith and Sedransk (1983) in their
work on the estimation of quantiles from stratified samples from
finite populations. They present both s conservative confidence
interval, which requires a prodigious amount of computation to
determine, and short-cul approximstion methods which are
demonstrated to be valid in a large number of examples.

We present exact resulls pertaining to specisl types of
stratified samples . The essentials of the proofs are included in an
appendix. Further details will be included in & longer version of
this paper. An algorithm for computing the desired upper
confidence limit in the general case is developed. The algorithm
is initiated at a new normal approximation for the limit, that
appears to yield quick conservative confidence limits that
improve with sample size. These normel approximations are not
to be confused with the classical ones  (Cochren (1977), page
109 ). We show via examples, as Clopper and Pearson ( 1934)
have done for simple random sampling, that the classical normal
confidence 1imit is generally inappropriate for stratified samples
when the proportion being estimated is very small. The algorithm
fs based on a highly time consuming tree search, which is
significantly speeded up by simple pruning procedures. The
latter are not guaranteed to yield the exact 1imit, but have done so
in a veriety of simple cases tested so far.

In section 1l we present the aigorithm and its modification,
and in section 111 we present selected examples that demonstrate
both the need for an exact procedure for computing confidence
bounds for small proportions, end the fessibility of the methods
we propose. We point out that, strictly spesking, no exect
confidence limits exist for population proportions from
stratified semples because all the probabilities involved depend
not only on the number of defectives (the parameter to be
estimated) in the population, but also on their actual distribution
among the strats (nuisance parameters) . We refer to a
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confidence limit that guarantees gt least (1-«)% coverage
probability as an exact ( 1-«)% confidence bound. We employ
similarly loose terminology in the cluster sample case.

In section {V we briefly describe the setting of upper
confidence limits for small proportions from cluster samples of
equal size. The possible within-cluster homogeneity of element
values is well recognized in survey sampling theory. Its positive
presence (as measured by the intraclass correlation coefficient)
in a population of clusters must be taken into account when
inference is made within the context of cluster sampling. When
the "worst case” approach is used, the defectives themselves are
assumed to be clustered, and not distributed randomly in the
population.

Exact results are presented for defective-free samples only.
A new normal approximation, and an algorithm for computing an
exact upper confidence limit are presented in some detail. The
exact procedure, the classical approximate normal limit, and o
new normal confidence limit are compared via selected examples
in section Y.

11, Upper confidence bounds from stratified ssmples

Assume that the population and sample consist of H strata of
sizes N=N,, ... , N,, end samples of sizes n=n; , .. , ny

respectively. A (1-«)® upper confidence bound for the
population proportion p may be based on the unbiased estimate of
the number of elements in the population D with the
characteristic

T=Zy%y/ fh (1)
where x;, represents the number of defective elements in 8
sample of size ny, from stratum h, and  fp= ny /N, i its
sampling fraction. In the interest of clarity, we shall use the
term “defectives” for elements with the characteristic of
interest. Here T represents the projected totsl number of
defectives in the population. We denote by d=(dy, ... , dy) the
array of defective counts actually observed in the stratified
sample. The observed value of T in the sample is

t=:h dh / fh. (2)
The stendard approximate normal confidence bound for D, the
total number of defectives in the population, is given by d+z_ s

where the estimated standard deviation s of T is given by the
square root of

§2 = £ Np2 (dp/0g)( 1= dp/ng)(1= f)/ny (3)
The exact clessical upper confidence bound for D is based on
PplTst], the probability the T does not exceed the observed
number of defectives t. This probability depends not only on the
total number of defectives in the population D, but on its exact
distribution D=(D, ... , Dyy ) among the strata. The largest value
this probability can assume , for a given D, is

PplT<=t] =MAX{ Pp[Tst] : £, Dp= D }. (4)
This extremal probability Pp[Tst] is increasing in D. The classic
upper { 1-«)% bound for D is given by

D(=MIN{D: PplTst] s« }. (S)
The use of this max-min procedure guarantees that P [D(t) >=
D] isat lesst (1-«) , regardless of the actual distribution D of
defectives in the populstion. This procedure is 8 direct extension
of the classical interval for proportions from simple random
samples (see e.g. Lehmann (1959), 173-180). Here too the
procedure represents a "worst-case™ approach: Even under the
worst of circumstances, where the D defectives are distributed in
a manner that would make them least likely to be detected by the
stratified sample, the a priori probebility is at lesst (1-«)%



that the interval will actuslly include the true number of
defectives D. Due to this interpretation, the distribution of
defectives that achieves the maximum probability in (4) will be
referred to as the least favorsble distribution of D defectives
among the H strata.

Except in two special cases, the least favorable distribution
of defectives is hard to find.

Proposition 1: (Defective-free samples in non-proportionate designs)

In non-proportionate stratified designs, when no defectives
are found in the semple, the least favorable distribution of
defectives to the strats sssigns all D defectives to the least
sampled strotum, i.e., to the stratum with smallest sampling
fraction. The maximal probsbility is given by:

PD[T=0] = Cn‘ '(NI'D) /Cnl 'N‘ (6)
provided D <= Ny(1-1/f5). Here C;,, denotes the number of
combinations of 1 elements from an unordered set of k elements,
and stratum 1 possesses the smallest sampling fraction among the
H strata,

Proposition 2. (Defective ~free samples in proportionate designs)

In proportionate stratified designs with & common sampling
fraction f=n/N, when the sample is defective-free, the least
favorable allocation of D defectives to the H strats D* satisfies

(D-H+ 1)(Np/N) <= D*}, <= (D-H+ D(Np/N)+1 (7)
Foreachh=1,... H, i.e., in proportionate designs and defective-
free samples, the (non-unique) least favorable allocation is
proportional to the strata sizes.

The essentials of the proofs appear in the sppendix. These
propositions provide a simple way to determine the desired
upper confidence interval, by searching for the smallest
number of defectives D, denoted by D*, 1o yield a probability not
exceeding « in (6) or (7), when no defectives are observed in
the sample. A starting value Dy for D , is provided in the proposition

3 below. it specifies the normal approximation to D* for the
general case, when an array d of dfectives is dbsarvedin the sample.
Proposition 3. (Normal approximation in the general case)

in stratified random samples, if stratum 1 has the smallest
sampling fraction, and if

A Sampleandstratesizsare large, with np/Ny, - <> fj, forall 1¢= he=H
B. Thenumber of defectives inthe strataaresmall, 1, D, <Ny, forall 1<==H

then the normal approximation to the (1-8)% confidence Himit
for D is given by

D=d+Hiz . /2X1-f VI V24002 /2)201-1) /61 )+8) V/2)2] (8)
ie,lim {PD[D<= Doli Nh/Np > 1, Dp /Ny >0 and  Np->e for
8l 1<=h¢e=H}>=1-«

The derivation of this approximation relies on the standard
normal approximation to the distribution of T, for & fixed number
of strota H, when np/Ny, cen be repleced by fy,, and Dy/N;, are
considered negligible relative to 1 in the asymptotic varience.

The latter is then maximized by replacing all sampling fractions
by fy, and Jensen's inequality is epplied to the cumulative

distribution function of the standard normal distribution.

Before we turn to the general case of stratified samples in
which some defectives are found, we note great simplification in
the determination  of the desired upper confidence bound in
proportionate designs. Unlike the defective-free case, this resuit
is asymptotic.

Proposition 4. (Binomial approximation for proportionats designs)

In proportionate designs with sampling fraction f, under

conditions A end B above, the probability PD[T<—t] converges to

the probability that @ binomial rendom veriable, with D trials
and probabilily f of success does not exceed d, denoled by
P{Bin(D,f)<=d}. In particuler, when the sample and strata sizes
are large, end the total number of defectives D in the semple is
finite, the probability Pp[T<=t] does not depend on the specific
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distribution of the D defectives in the H strate. The upper (1-
« )% confidence limit for D is given by

MINI D: D>=dand P [Bin(D f)<=t] <= «] with f=n/N (9)

In several examples of proportionate designs we tried, we found
the exact product-hypergeometric probabllity
{=t] =

bhehﬁw@aﬁidhﬁrﬂmdhb@mmhm

for non-proportionste designs, when some defectives are
found in the sample, the binomial approximation is not as useful,
and will not be presented here. The problem of determining the
desired upper confidence limit D*(t) depends on locating the
least favorable allocation of D defectives to the H strata. Note that
the least favorable distribution for a fixed D is obtained from
(10) es the array D, that sums to D, and maximizes the
probability

z “h{CDh'Xh Nh-Dn’nh-Xh/cNh'Xh} (1

xev(t)
among all such D arrays. Al the H-tuplets x = (xy, xp, ...,
xy) satisfying Epxy, / fr <=t , Epxp = n,and xp <= ny, make
up theset permissible x's denoted here by Y(t). We also denote
by H* the largest subscript <= H for which some Xyx20, and

assume that the strata are ordered in order of increasing
sampling fraction. The solution to the problem can now be
described in three steps:

1. Generate the set of all x's satisfying Epxp, / T, <=, Ipxp =
n,end xp <= ny,

The order in which the set v(t) is generated is immaterial,
but in order to speed up the search for D* in step iii, Y(t) is
generated as & tree structure. Let {y] denote the integer part of
y. Atthe root of the tree is the tuplet (xy, xo, ... , xy)=(x* 0,

. ,0) where x*-max{[t f1] .ny). The root has x* offspring
nodes {x*-1, ,0), (x*-2,2,0,.,0) elc. down to
(0,1t fQJ.O,. 0) A [t r,]>n; then the generation of second
level nodes will stop with(x*-ng, ny, 0 , 0). The offspring
of a node (xy X3, 0,..,0) in the second level e similarly
generated, except tnat now the total number of defectives to be
divided smong H- 1 strata 2 through His t- x;/f; end the total
remaining sample size is n~x,. Thus the offspring of a node in the
second level share the same x 1 » their Xz decreases monotonically
from t~ xy/fy~1 down to xo-n3 if [t fz]>n3 or down to zero
otherwise. Units removed from stratum 2 are added to stratum 3.
Thus x3 increases from 1 to st most nz, Continuing in the same

manner, the tree thus genersted has H levels, and up to x*
offspring per node. When the tree is traversed inorder, tuplets
with high entries xy, for strate with small sampling fractions are

encountered first. This property of the tree will be useful in
eliminating D values that are too small and lead to probabilities
in(11) that are greater than «.

ii. Generate the set of allocations D that sum to D, and satisfy Dy,
>= dy, for all h<=H.

The set of all possible allocations that distribute D defectives
among the H strata can be generated ss a tree structure that
esses the process of terminating the search for the least
favorable distribution in fruitless directions on one hand, and
exposes the D which is too small (yields a probebility in (11)
that exceeds «) after computing the probability in {(11) for es
small a number of allocations D as possible. Such a tree structure
is & rootless tree, with up to Dy (as given in (12) below)

siblings at its first level, starting with the extreme allocation
D= (D| .DH) with Di=d+min(D-d,N-n) Dn=thforto=2, (12)



and ending with  Dy= max(0, D-(N-n)+(Ny-ny)), Dop=d;
+(D-d-Dy) and Dy= dy, for h>=2. The offspring of & level~ 1 node

is generated in the same way, except thet they all share the same
D¢, and D, is decreased within the permissible limits etc. The

tree has H-1 levels, and when it is traversed inorder, tuplets
with large allocations for streta with small sempling fractions
are encountered first.
iii. Search for the |

t D_for_which the maximal probabili

Determine the starting velue Dg using the normal

approximation in (8). Starting with thst value for D, provided it
is permissible given the tole) size of the finite population N,
devise a strategy of first decreasing and then incressing D, or
vice versa, until the largest D for which the maximum
probability in (11) does not exceed « is found. For each D
considered, terminate the search for & least favorable
distribution &s soon as the probability in (11) exceeds «.

The search step in this procedure can be inordinstely time
consuming. Following & large number of examples, it was
empirically determined , that when selecting the allocation of D’
defectives between two strats with sampling fractions f I‘f2-

starting from D’y =D', D’'»=D"-D’y &nd ending with D'y=0 and
D'p=D’ {neglecting the d's for the time being, which simply bound
the D's away from zero), the probabilities either increesed to a
maximum and then decreased monotonically, or simply decreased
monotonically. This statement hes not been proved anelyticelly, and may not
always be true. It does however lead 0 an appraximate procedure that speeds
up the search in step iii considerably :

For a node et level i in the D-tree, compute the probability
sum (11) for the offspring subtree inorder. Stop the search
among the leaves of the subtree as soon as a local maximum
probability is found. Repeat the search for a local maximum for
all levels from H-1 uptoi+1, replacing leaves by offspring
subtrees in the pruning procedure described . A more detailed
description of the algorithm will be given in the expanded version
of this paper.

This curtailed search is extremely effective in eliminati
all D values below the desired D*(1). The validity of the D*(ti
thus found can be sscertained via a complete search for the
largest D for which the probability obtsined by this curtailed
search does not exceed «.

1. g les and ts for stratified sempli

We complete this section with a few examples thst illustrate
the performance of the normal approximation and the search
slgorithm in  non-proportionate stratified designs. Al
examples in Table 1 below concern H=3 strats.

Table 1 displays the upper 39S confidence bounds
obtained via the exact method, the new and the
standard normal approximation based on the estimated
standard deviation in (12). The table includes
examples of small populations and small samples
(group 1, examples 1-4), moderate strats and
moderate samples (group I1, examples 5-9),
moderate strata with small samples (group {!1,
examples 10-14) and large strsta with moderate
samples (group IV, examples 15-17). The strength and
limitations of the three methods are clesrly evident in these
examples.

A quick perusal through the last two columns
reveals the fact, lo be expected from the derivation of
the new normal approximation, that it reguires
lerger strata and samples than does the standerd
normal approximation (based on the standard deviation
corresponding to the variance in (3)) when a
substantial fraction of defectives is present (examples
2 and 14).
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Tabie 1. Examples of exact and normal approximation confidence
intervals in the non-proportionate stratified case.

Strata Sanple  defectives  sampling exact95 normal  stand
{ leest favorable distribution)

(time in min.)  bound
1.20,15.10 2,2,2 0,00 .1,133,2 422 622 .000
(11,6,2) (137
2.201510 2,2,2 10,0 .1,.133,2 600 .867 .467
(15.9,3) (1.72)
3.20,15.10 2,22 01,0 .1,.133,2 556 .800 .347
(11,11,3) (1.87)
4.20,15.10 2,2,2 0,0,1 .1,.133,2 St1 711 227
(11,5,7) (4.47)
5.100,50,30 20,15,113,0,0 .2,.3,367 .183 .172 .149
(33,0,0) (S1)
6.100,50,30 20.15.111,1,1 .2,3,367 .144 139 .112
(24,1,1) (.46)
7.10050,30 20.15,110,3.0 .2,.3,367 .144 .133 095
(23,3,0) (.49)
8.100,50.30 20,15,110,1,2 .2,.3,.367 .128 .122 .082
(17.4,2) (.40)
9.100,50,30 20,15,110,0,3 .2,.3,.367 .122 .117 .075
(19,0,3) (41)
101005036 5,9,5 0,0,0 .05,.1,167 250 .322 .000
(45,0,0) (55)
11.100,50,30 5,5,5 0,0,2 .05,.1,167 283 394 .122
(44,0,7) (3.02)
121005030 5,5,5 0,2,0 .05,.1,167 367 .467 .206
61,5,0) (3.43)
13.100.50,30 5,5,5 1,1,0 .05,.1,167 422 556 .344
(54,22,0) (10.48)
14.100,50.30 5,5,5 2,0,0 .05,.1,.167 478 .639 .417
(58,26,0) (18.94)
15.1000,.500 50.50.50 3,00 .05,.1,167 .081 079 .063
,300 (146,0,0) 77
16. 1000,500 50,5050 2.1.0 .05.1,167 069 .072 .054
,300 (111,13,0) (6.06)
17.1000,500 50,50,500,2,1.05,.1,.167 .050 .052 .027
,300 (65,2,3) {158)

If the proportion being estimated is not small, the new normal
approximation will be very conservative. in all cases it appears
to yield a conservative limit, whereas the standard epproximation
tends to yield an underestimate of the exact confidence limit,
which in the extreme case of defective-free samples is null.
Examples 1-4 also illustrate the fact that the least favorable
distribution of defectives in the strata is nol alweys the extreme
allocation given in ( 12). We note that as a direct conseguence of
its construction, the new normal approximation will perform
poorly whenever the Jeast favorable allocation is very different
from the extreme allocation. This will heppen when the semple sizes are
sall and the sampling frections substantially different amaong strats, since in
thet case proposition 4 isinvalid Asimiler pheromenonooours in: example 14,
The remaining examples in Table 1 portray the behavior of
the exact algorithm. First, they show that the new algorithm is
usable on desk ~top computers. The need for the exact algorithm in
problems that require accurate estimates of small propertions, is
clearly demonstrated in these examples. The false sense of
security (small upper confidence limit) conferred on the user by
the usual normal approximation, when the proportions being
estimated are small, is amply illustrated by exemples 1, 2,
6, 11,12, The fact that the usual normal approximation
represents a considerable underestimate of the 95% upper
confidence limit in examples 16 and 17 shows thet the mere
existence of large strate with lenge samples is no guerantee thet the
usual normal eppraximation will be adequste. In these last two examples
the new normal epproximation performs remarkably well.
Within each of the four example groups, examples that
demonstrate the dependence of the exact upper confidence limit



on the specific pattern of defectives encountered in the stratified
sample are presented The corresponding lesst favorable
distributions of defectives in the three strata are neither the
extreme distribution, nor the distribution proportional to the
distribution of defectives in the sample.

The loss of efficiency due to the use of non-proportionate
stratified designs with widely diverging sampling fractions
versus simple random sampling of equal totsl size, or
proportionste sampling of equal total size, is apparent. it is
easy to quantify in the extreme case when no defectives are found
in the population. In thet case the semple is also defective-free.
The exact classical upper confidence fnterval would still replace
the actual strata fractions by the minimum sampling fraction ,
thereby increasing the interval length unnecessarily.

A simple example will convey the point more cogently.
Consider a population consisting of H=2 strata, with strata sizes
1000 and 2000 respectively. If a 208 proportional sample is
taken and no defectives are found in the sample, the exact upper
95% confidence bound for the proportion of defectives is
14/3000=.0047. This {s also the confidence limit from the two
strata separstely, and from a simple 20% random semple (SRS)
in which no defectives are found. Thus no loss of efficiency is
entailed by proportionate semples when the population
proportion is null. If in the same population a non—proportionate
sample of 100 and SO0 is taken and no defectives sre found, the
least favorable allocation is the extreme allocation that assigns
all defectives to stratum | { minimum sampling fraction=.1). The
exact 95% confidence bound for the population proportion Is now
28/3000=.0093, representing a SO% loss in accuracy over
simple random sampling for defective free populations.

When the population proportion is not zero, and defectives
are found in the semple, the theoretical loss of efficiency is
difficult to compute. It is however possible to estimate this loss
in specific exsmples. E.g., in example 14 of Table 1, the
estimated population proportion of defectives is 40/180. We can
therefore compare the exact 958 confidence limit of .444
with the one obtained from an SRS of size 1S in which
approximately the seme proportion of defectives is found. This
confidence bound is obtained simply as D*/180, where D¥ is the
smallest integer D for which the probability thet a
Hypergeometric variable counting the number of defectives in a
sample of n=15 from a populetion of size N=180 with D
defectives, does not exceed d, is not greater than .0S.

The approximate number of defectives d for the comparable
SRS is 3.3333 . if we teke d=3 defectives in the ssmple, we
obtain an exact upper 95% confidence bound of .433. If instead
we take d=4 we obtain .506 for the bound. Although the situation
is somewhat ambiguous, the less of efficiency due to the non-
proportionality of the design is not drematic. Similar comparisons in
example 5 show a bound of .044 for SRS to the exact .183 of the
stratified semple. In example 16 the SRS bound is .0589 to the
exact bound of .069.

These examples demonstrate thst when the estimated
proportion is small but some defectives are found in the semple,
the upper confidence intervals obtained from non-proportionate
samples are in general less efficient than confidence bounds
derived from comparsble simple rendom samples. The loss of
efficiency depends however on the number of strata involved and
thesizof thedisparity in sempling fractions in the different strata.

The immediate practical recommendation that results from
these considerations is lo avoid, if no other overriding
considerations exist, the use of non-proportionate designs when
planning surveys thet sttempt to estimate very small
proportions.
1¥. Upper confidence bounds for cluster ssmples of equal size.

The problem of setting confidence limits for smali
proportions from cluster samples of equal size can be treated in 8
manner similar tthet usedfor stratified samples, when the semple
of clusters is poststratifiedby the number of defectives in the sample.

Suppose thek the population is per-titioned into N clustersof equel size, say B,
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endasimplerendom sampleaf ncompleteclusters istaken. We cenoke by N (ny)
thenumber of clusters in the population (semple) containing exectly 1 (i=0,1 .
B)dfectiveelements Weassume thet thenumber of clusters N= £ N (but not
the individusl Ny's) in the population fs known, and we wish 0 set & upper

onficence bound for the proportion of defectives in the populdtion, or
equivalently, for the tots] number of defective elements in the population

B
D=ZiNj, (13
=1 B
for which T*=NZ ix{/n

i=1
provides a natural estimate. Here x; denotes the random number
of clusters in the semple with exactly { defectives. Since the
factor n/N = f is a constant, we refer instead to the statistic
B
T=Eixg (14)
i=t
in the sequel. In order to set an upper confidence limit on the
number of defectives in the population, the smatlest number of
defectives D is sought, for which the probability of the event
T¢=t with B
t=Zinj
=1
does not to exceed «. As in the case of stratified sampling, the
probability of this event depends not enly on D, but on the actual
allocation of the D defective elements to clusters containing
varying proportions of defectives. If one does not wish to
postulate s priori any maximum number of defective elements
per cluster, the possibility of “all defective” clusters cannot be
ruled out. In order to obtain a confidence limit with at least ( 1-
«) coverage probebility under all possible distributions of
defectives among the population of clusters, we define the set of
all admissible distributions of D defectives in the population 8s
S(D) = {N; £ Nj = N, Np=n; IjiN;=D} (16)
For & given allocation N in S(D) the probability that T«<=t is
given by the multiple Hypergeometric distribution
PN =P[Te=tl= = WG/ Con (7
xevV(t) =0
where Y(t) = {x;Ejixj<=t,Ljxj=nand 0¢c=xi<=N;} (18)
and under the “worst case”, it achieves its meximum
Pp(t) = Max{Py(t); NeS(D)}. (19)
The classical { 1-«) 100% confidence limit is then given by the
smallest D for which { 19) does not exceed « or
D() =Min {D;Pp(t) s x }. (20)
We refer to the allocation D* which achieves the maximum in
( 19) as the "least favorable” distribution as before.
PROPOSITION 4, In simple random sampling of complete clusters,
when no defective elements are found in the sample, the least
favorable allocation is given by
Ng*=(D/B). If d=D-B*Ng*>0 then Ng*=1, No*=N-Ng*-1
else No*=N-Ng*;
All remaining N;*'s vanish. (21)

The proof is immediate. In order to determine a good initial value
for D in the search for the confidence limit when some defectives
sre found in the sample (1>0), and help locate its “least
favorable” allocation, thenormal appraximetioncan be of some help.

(15)

The asymptotic Normal approximation to the distribution of
the total number of defectives T in the sample when nN-->e

but n/N-->f and the cluster size B stays fixed, has mean 1D with
D given by { 13), and variance given in our notation by



f(1-0 N (i - jiNy/N)2
O<cisB

(Cochren 1977, page 246). In the particular circumstances we
envisage the proportion of defectives in the population
D/(NB)=Eij=1iN{/(NB) is very small as N increases
indefinitely. This requires that all Nj for i>=1 remain finite and
only N incresss with N in such & way that I;iNj/N-->0 and
Ng/N-->1.We formulate these requirements as follows:
Proposition S. (Normal approximation for cluster samples)

For simpie random samples of equal size clusters, if
A. Sample and population sizes are lorge, withn/N ->f
B. The number of defectives in the population are small, ie.,
D=Ei=1iNj remains finite & N->e ZiiNi/N->0 and No/N->1. then
the normel approximation to the ( 1-«)® confidence limit for D
is given by
DXE{O-TVI(z o /2781/2+((z «2)2¢1)1/2)2) (23)
i.e., lim {Py[D<= D*()): /N > f » LiNp/N->0 and Np/N->1
and N->eo}>=T-e

Under the our assumptions, the asymptotic veriance in (22)
reduces o 2,=,i2*N;*f*( 1-£). Since t¢«<D, for the probability of
the event [ T¢<=t] not to exceed «, regardless of the actual values of
the Ni's, the maximum of the normal approximation to this
probability, subject to Np=nj and I; iNy=D, is needed. It is
achieved when the maximum possible number of defectives is
placed in “all defective clusters”™,i.e., Ng is maximized. Thus the
extreme allocation
Ng*<[D/Bl+n g, if ¢=D-B*Ng*0 thenheng1 (24

otherwigeeN-N g*;
for all remaining i>=1, Ni*=n; and Ng*=np+N-n-Zi=1N;*,
yields the desired maximum. Upon inserting this allocation into
(22), the resulting Normal approximation for the upper
confidence Timit is obtained.

The search for the exact upper confidence bound proceeds in a
manner similar to that of the stratified search described in
section 2. The steps are:

1) Determine the number of defectives D in the population from
the improved Normal approximation given in (23).

2) Generate the set ¥'(t) of all admissible x~tuplets that satisfy
the first two conditions in ( 18) but not the third, which

on N, and store it in memory. The third condition in (18) is
checked with each use of this set in computing the cumulative
Multiple Hypergeometric probabilities in (17). The cardinality
of V'(1) increases rapidly with {, thus rendering the approach
feasible only for a small number of defectives in the cluster
sample-the case for which it was originally intended.

3) Use the extreme allocations for any trial value D, given by
(24), to adjust the choice of D mads in step 1.

Since this extreme distribution of D fs not the least faverable
distribution of D, except for t=0, the exact upper confidence
bound for the tolal number of defectives in the population is
actually larger than the one determined in step 3. Starting with
the D determined in step 3, & complete search for the least
favorable distribution for each D is cerried out for successively
larger values of D, until the first D to yield a probability of
[T<=t] that does not exceed « is found. A faster search results
from the (experimental) reslizetion thst the trial value obtained
instep 1 is always an upper bound, end the trial value cbtained in
step 3 is slways 8 lower bound on the desired confidence limit.
Therefore a binary search between these two values speeds up the
determinstion of D¥,

For each D the complete search 1s described in steps 4 and 5.
4) Generate the set S'(D) of all allocations N that satisfy Z;N;=N

and Z{iNj=D, in order of decressingN|.

(22)
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S) Start computing the cumulative Multiple Hypergeometric
probability (17) for successive allocations in S'(D). If the
computed probebility for an allocation exceeds 8, increase D by |
and go to step 4.

if the probabilities computed for all allocations in S'(D) do
not exceed « stop the search. The desired upper (1- )
confidence bound for the proporiion of defectives in the
population is then D/(BN).

The search involved in the last two steps of the algorithm can
be drestically reduced when t is small using considerations
similer to those used in the stratified case. These will be
explained fully in the expanded version of this paper.

Note that no simple case , analogous to thet of proportional
allocation for stratified sampling, exists for cluster sampling.
One could say that the natural ( post) stratification by number of
defectives per cluster, stratifies the population of clusters into
strata that are inherently unequal in the proportion of defectives
they contain. For that reason there is a loss of efficiency due to
clustering which is roughly proportional to cluster size in
defective-Tree populations, and which is unavoidable.

Table 2. Examples of exact and normal approximation confidence limits
in clustered samples of clusters of size B=10.N=500. n=50.1-«=.95.

Sample least favor. Cv B* Exact Old New time
array Distribution Jlimit  limit limit (min)
150.,0.0.0.0 4685000 1t 0 0550 .0000.0512 0.29
0,0,0,0,0,0 0,0,0,0,0,27
249.1,000 4676000 2 1t .0852 .005t 0550 0.69
0,0,0,0,0,0 0,0,0,0,0,27
3 49.0.1,0.0 468,1400 4 2 0558 .0101.0586 3.83
0,0,0,0,0,0 0,0,0,0,0,27
4482000, 4683200 4 2 0554 .0082.0586 169
0,0,0,0,0,0 0,0,0,0,0,27
S 48,0,2,0,0 468,0,2,1,2 12 4 .0570 .0165 .0654 3.41
0.0.0,0,0,0 0,0,0,0,0,27
6 48,0.00.2, 4640002 67 B8 0654 .0329.0786 NA
0,0,0,0,0,0 0,0,1,9,0,24
7455000, 4645004 19 5 0582 .0163.0688 6.68
0,0,0,0,0,0 0,0,0,0,0,27
8 45.4,1,00, 4634102 30 6 0601 .0200.072217.04
0,0,0,0,0,0 3,0,0,0,0,27
9 10,0,0.00 3610000 t 0 2578 .0000.21280.33
0,0,0,0,0,0 0,0,0,0,1,138
109.1.000 3692000 2 1 2584 0050 .2282 0.54
0,0,0,0,0,0 0,0,0,0,0,129
119.0,1.0,0 361.1,11.004 2 2586 .0101.2430 098
0,0,0,0,0,0 0,0.0,0,0,127
128,2,0.0.0, 361.3.9004 2 2582 .0082.2430 1.23
0,0,0,0,0,0 0,0,0,0,0,127
136.0.2,0,0 468.0,.2,1,2 12 4 0570 .0165 .0654 3.41
0,0,0,0,0,0 0,0,0,0,0,27
148.0.0.0.2. 4640.0.0.2 67 8 .0654 .0320.0786 NA
0,0,0,0,0,0 0,0,1,9,0,24
155.5,0,0,0, 4645004 19 S 0582 .0163 0688 668
0,0,0,0,0,0 0,0,0.0,0,27
165.4,1,0,0, 463.4,1,02 30 6 .0601 .0200.0722 17.04
0,0,0,0.0,0 3,0,0,0,0,27

Y. Some examples and comments for cluster sampling.

In this final section we present some examples from a
hypothetical population of N=500 clusters of size b=10, from
which a simple random sample of n=50 clusters is taken. In table
2, the 95% ‘exact' confidence limit, with its attendant least
favorable distribution, t value (see (15)), number of x-tuplets
which messures indirectly the complexity of the problem, and
computation time, are presented. The standard normal
approximate limil and the new approximate normal confidence
Timit are also presented for comparison.

The standard approximation for the distribution of T is the
Normal distribution with mean fD and standard deviation given by



the square root of (22) and estimated from the sample. In these
examples f=.1, B=10, and the Ni's are simply estimated to be

ni/f. The upper 95% confidence bound for the number of
defectives is computed from the formuta D=(z,s+1)/f, with

2,=1.645 and t given by ( 15).

In Teble 2 above, The sample n is given by an array representing
(ng.ny, ... , o), whose entries add up to n=50. The least

favorable distribution is similarly presented as an array whose
entries add up to N=S00. The columns Cv and B¥* represent the
number of x—tuplets in Y'(1), and the highest index not exceeding
B which has a non-zero entry for some element of V(1)
respectively. The succeeding three columns provide the ‘exact’,
old and new normal approximation confidencs limits. The last
column provides the time in minutes (when available) to compute
the ‘exact’ limit.

Several important points are brought out by this table:
1. The inadequacy of the standard normal approximation (old
limit column) is evident in every instance.
2. The new normal approximation (new limit column) generally
overestimates the upper 95% confidence limit in this setting. it
doss however provide a useful starting value for the search
algorithm. The latter can be reasonably used on a desktop
computer, judging from the execution time column.
3. The least favorable distribution is not the extreme distribution
when some defectives are found in the sample. No simple rule
appears to explain the distributions we observe in the examples.
4.The performance of the new normal approximation is again
surprisingly good. In those cases where the algorithm 1S very
slow one may be satisfied with the uppsr confidence limit given
by this normal approximation. It is a quick and dirty tool that can
be readily used on a common calculator.
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APPENDIX

Proof of proposition 1,
When no defectives are found in the sampie the probability in

(26)redpesto  H

PplT=01=m C(Ny-Dp).np/ONp.np
h=1

We assume for the sake of simplicity that the strata are ordered

(A1)
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by increesing sampling fractions, i.e. fy <=fp<¢= ... ¢<=fy. It seems
intuitively clear that the maximum of (A.1) will be achieved
when all D defectives are placed in stratum 1. We shall in fact
show thet for a1l 0¢<=D <= N[ 1-fy/f2] + 1,

P_Q[ T=0]¢= C(N|-D),n1’CN|,n1 =P{D]
It suffices to prove the assertion for H=2 strata, since the
distribution of D defective among H strata can be accomplished by

successive distribution of D' defectives between two strata. For
H=2 we shall show that

CoNy-D1) iy 202 “C N0 -1 § 0z D iny (A2)
for Dy+D,=D and Dy>=1. Itisimmedisle thet (A2)holds if, andonly if,
n /A(Ng-D2) >=ny/{Ny-Dy) . Since the Lh.s. of the last ineguality
is bounded below by f and the r.hs. is bounded ebove by
n/{Ny-D +1), (A.2) will certainly hoid if ny/(Ny-D +1)¢<=fp.
The assertion follows.

Proof of proposition 2.

In the two strata case, H=2 and the the r.h.s. of (A.1) is &
function of D1 alone when the total number of defectives D is
fixed; we denote it by P{D1]. Thus the ratio

PID 4+ 11/PID 1 3= [0Ny-Dyn AN 1D M(N3-Do+ 1)/ (No-Dp-mp+ 1)]
for fixed D, and since fy=f> implies nyN=npN{ we have the
equivalence P{D1+1]/P[D¢] > 1 if, andonly if Dy/Nj < (D-1)/N2
implying that the maximum over 0<=D<=D is achieved at
Dy=[(Ny/NXD-1)]+1. The maximum may not be unique when
(N{/N)(D-1) is integer. We have shown however that
proposition 2 holds for H=2, snd oblained & more specific
solution for the two strata case.

For H>2, for fixed D, if 1 is added to Dy, then | must be
subtracted from the number of defectives Dj placed in another
stratum § not eguel to i. Starting with a distribution D of the D
defectives, the new distribution with Dj+1 and Dj-1 will be
denoted by D; ;. We then have

PID;j1/PIDI > 1 if,andonly if Dy/Nj < (Dj-1)/N;

This & distribution of defectives D is leest favoreble if for each pair (i, )
Di/Nj >= (Dj-l)/Nj
Using the weights Nj/(N-Ni) for all j not equal to i and teking &
convex combination of both sides we obtain

H

Di/Nj >= & [Nj/(N-Np)J (Dy-1)/Ny

j=i
or Dj >= (Ni/N)(D-H+1). Taking now a convex combination
over 1 not equal to § with weights Ni/(N-Nj) we obtain D <=
{Nj/N)(D-1)+1. This completes the proof of proposition 2.



