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ABSTRACT 

Exact upper confidence limits for small proportions In 
stratified samples are derived. An algorithm for their 
computation whlch employs a new normal approximation for the 
case of large strata and a finite number of defectives is proposed. 
Using selected examples it ls shown that the usual confidence 
intervals derived from the standard normal approximation can be 
highly misleading. The loss of efficiency of non-proportionate 
designs, vis-a-vis simple random sampling or proportionate 
designs for setting confidence limits on small proportions is 
studied in a variety of examples. 

Exact upper confidence ltmlts for small proportions are also 
derived for simple random samples of equal-size clusters, and a 
similar algorithm for their derivation ls presented. The loss in 
efficiency due to clustering is shown to be proportional to the 
cluster size when no defectives are found In the sample. In other 
cases the loss is slightly smaller. 

confidence limit that guarantees at least (I-=<)% coverage 
probability as an exact ( 1-=<)% confidence bound. We employ 
similarly loose terminology' in the cluster sample case. 

In section IV we briefly describe the setting of upper 
confidence limits for small proportions from cluster samples of 
equal size. The possible within-cluster homogeneity of element 
values is well recognized in survey sampling theory. Its positive 
presence (as measured by the intraclass correlation coefficient) 
in a population of clusters must be taken into account when 
inference is made within the context of cluster sampling. When 
the "worst case" approach is used, the defectives themselves are 
assumed to be clustered, and not distributed randomly in the 
population. 

Exact results are presented for defective-free samples only. 
A new normal approximation, and an algorithm for computing an 
exact upper confidence limit are presented in some detail. The 
exact procedure, the classical approximate normal limit, and a 
new normal confidence limit are compared via selected examples 
in section Y. 

i. T he problem. 
Applications which rely on probability sampling to estimate 

population proportions which are very small have gained 
prominence In recent years. Examples Include: estimation of the 
prevalence of a disease in a population in which it is known to be 
rare; quality ~essment, evaluation and control In highly 
reliable production processes; estimation of error rates, or" 
adjustments, in financial auditing. 

In this paper we present a preliminary report on some exact 
results and an ttaratlve algorithm for" computing upper 
confidence intervals for small proportions in stratified samples 
of elements. The approach we take is completely model-free: 
probabilities arise entirely from the sampling procedure. In 
fact, the approach taken here Is similar to that taken by ,Sadransk 
and Meyer (1978), and Smith and Sedrensk (1983) in their" 
work on the estimation of quantiles from stratified samples from 
finite populations. They present both a conservative confidence 
Interval, whlch requires a prodigious amount of computation to 
determine, and short-cut approximation methods which are 
demonstrated to be valid In a large number of examples. 

We present exact results pertaining to special types of 
stratified samples. The essentials of the proofs are Included In an 
appendix. Further" details will be included In a longer version of 
this paper. An algorithm for computing the desired upper 
confidence limit In the general case is developed. The algorithm 
Is initiated at a new normal approximation for the limit, that 
appears to yield quick conservative confidence limits that 
improve with sample size. These normal approximations are not 
to be confused with the classical ones (cochran (1977), page 
109 ). We show via examples, as Clapper and Pearson (193,1) 
have done for simple random sampling, that the classical normal 
confidence Ilmlt ls generally Inappropriate for stratified samples 
when the proportion being estimated is very small. The algorithm 
Is based on a highly time consuming tree search, which ls 
significantly speeded up by simple pruning procedures. The 
latter are not guaranteed to yield the exact limit, but have done so 
in a variety of simple cases tested so far. 

In section II we present the algorithm and its modification, 
and in section Iii we present selected examples that demonstrate 
both the need for an exact pr'ocedure for computing confidence 
bounds for small proportions, end the feasibility of the metlxxls 
we propose. We point out that, strtctty spewing, no exact 
confidence limits exist for population proportions from 
stratified samples because all the probabilities involved depend 
not only on the number of defectives (the parameter to be 
estimated) In the population, but also on their actual distribution 
among the strata (nuisance parameters) . We refer to a 

II. UDDer confiderlo~ bounds from strcltified samples. 
Assume that the population and sample consist of H strata of 

sizes N=N 1 . . . . .  N H and samples of sizes n=n I . . . . .  n H 

respectively. A (I-=<)% upper confidence bound for the 
population proportion p may be based on the unbiased estimate of 
the number of elements in the population D with the 
characteristic 

T = £-hXh / fh ( I )  
where x h represents the number of defective elements in a 

sample of size n h from stratum h, and fh = nh/N h is its 
sampling fraction. In the interest of clarity, we shall use the 
term "defectives" for elements with the characteristic of 
Interest. Here T represents the projected total number of 
defectives in the population. We denote by d=(d I , ... , d H) the 
array of defective counts actually observed in the stratified 
sample. The observed value of T in the sample is 

t=£ h d h / fh- (2) 
The standard approximate normal confidence bound for D, the 
total number of defectives in the population, Is given by d+ z=< s 

where the estimated standard deviation s of T is given by the 
square root of 

s2 = £h Nh2 (dh/nh)( 1- dh/nh)( 1- fh)/nh (3) 
The exact classical upper confidence bound for D is based on 
Po[T~;t], the probability the T does not exceed the observed 
number of defectives t. This probability depends not only on the 
total number of defectives in the population D, but on its exact 
distribution D=(D 1 ..... DH ) among the strata. The largest value 
this probability can assume, for a given D, is 

PD[T<=t] = MAX { PD[T~t] : Z: h D h = D }. (,t) 
This extremal probability PD [ T~;t] Is Increasing In D. The classic 

upper ( 1 -=<)% bound for D is given by 
D(t)= MIN { D: PD[T~;t] ~; =< }. (5) 

The use of this mex-mln procedure guarantees that P [D(t) >= 
D] is at least ( I-=<), regardless of the actual distribution D of 
defectives in the population. This procedure is a direct extension 
of the classical interval for proportions from simple random 
samples (see e.g. Lehmenn (1959), 173-180). Here too the 
procedure represents a "worst-case" approach: Even under the 
worst of circumstances, where the D defectives are distributed in 
a manner that would make them least likely to be detected by the 
stratified sample, the a priori probability is at least ( I-=<)% 

722 



that the interval wil l  actually include the true number of 
defectives D. Due to this interpretation, the distribution of 
defectives that achieves the maximum probability in (4) wil l  be 
referred to as the least favorable distribution of D defectives 
among the H strata. 

Except in two special cases, the least favorable distribution 
of defectives is hard to find. 
Proposition I. (Defective-free samples in non-woportionate designs) 

In non-proportionate stratified designs, when no defectives 
are found in the sample, the least favorable distribution of 
defectives to the strata assigns all D defectives to the least 
sampled stratum, i.e., to the stratum with smallest sampling 
fraction. The maximal probability ts given by: 

PD[T=O] = Cnl ,(NI_D) / Cnl ,Ni (6) 

provided D <= N I ( l - f l / f 2 ) .  Here Ci, k denotes the number of 
combinations of I elements from an unordered set of k elements, 
and stratum I possesses the smallest sampling fraction among the 
H strata. 
Proposition 2. (DefecLive -free samples in proporUonata designs) 

In proportionate stratified designs with a common sampling 
fraction f=n/N, when the sample is defective-free, the least 
favorable allocation of D defectives to the H strata I)* satisfies 

(D-H+ 1)(Nh/N) <= D* h <= (D-H+ I)(Nh/N)+ I (7) 
For" each h= 1 .. . . .  H, i.e., in proportionate designs and defective- 
free samples, the (non-unique) least favorable allocation is 
proportional to the strata sizes. 

The essentials of the proofs appear in the appendix. These 
propositions provide a simple way to determine the desired 
upper confidence Interval, by searching for the smallest 
number of defectives D, denoted by D*, to yield a probability not 
exceeding =< in (6) or (7), when no defectives are observed in 
the sample. A starting value D O for D, is provided in the proposition 
~3 below. It specifies the normal approximation to D* for the 
general case, when an array dof defectives is ~ i n t h e  sample. 
ProOosltlon 3. (Normal approxlmatlon In the general case) 

In stratified random samples, if stratum I has the smallest 
sampling fraction, and If 

A.~mplear~lstralaSiZEsarela~,wlth nh/N h --> fh forall I <= h<=H 
B.Tl'emmt~r o f~ Ives  In lJ'eslralacesmoll, IP.,, D h <<N h for'oll I <= h<=H 
then the normal approximation to the ( I-~)% confidence limit 
for O is given by 
Oo,.d+[((z ,</2X I-f 1)/f i)l/2+((z,</2)2(t-f I ) / f l  )+t) I /2}2] . (8)  

i.e., lira {PD[D< = DO]: nh/N h -> fh, Dh/Nh ->0 and Nh->® for" 
all I<= h<=H} >= 1-¢< 

The derivation of this approximation relies on the stan(brd 
normal approximation to the distribution of T, for a fixed number 
of strata H, when nh/N h can be replaced by fh, arid Dh/N h are 
considered negligible relative to I in the asymptotic variance. 
The latter is then maximized by replacing all sampling fractions 
by f I, and Jansen's inequality is applied to the cumulative 
distribution function of the standard normal distribution. 

Before we turn to the general case of stratified samples in 
which some defectives are found, we note greet simplification in 
the determination of the desired upper" confidence bound in 
proportionate designs. Unlike the defective-free case, this result 
is asymptotic. 
Proposition 4. (Binomial approximation for proportionate designs) 

In proportionate designs with sampling fraction f, under 
conditions A and B above, the probability PD[ T<=t] converges to 
the probability that a binomial random variable, with D trials 
and probability f of success does not exceed d, denoted by 
P[Bin(D,f)<=d]. In particular, when the sample and strata sizes 
are large, and the total number of defectives D in the sample is 
finite, the probability PD [ T<=t] does not depend on the specific 

distribution of the D defectives in the H strata. The upper ( I -  
=<)t confidence limit for D is glven by 

MIN[ D: D>=d and P [ Bln(D,f)<=t] <= =<] wlth f=n/N (9) 
In several examples of proportionate designs we tried, we found 
the exact product -~geometr ic  probability 

PD[T<=t] = If h {CDh<I h CNh_Dn,nh_dh / CNh,nh} ( I0 )  
to loa almost irdBpa'd~ ofthedistribution efthe Dd~kesan~thes l r~  

For non-proportionate designs, when some defectives are 
found in the sample, the binomial approximation is not as useful, 
and will not be presented here. The problem of determlnlng the 
desired upper confidence limit D*(t) depends on locating the 
least favorable allocation of D defectives to the H strata. Note that 
the least favorable distribution for a fixed D is obtained from 
( I0 )  as the array D, that sums to D, and maximizes the 
probability 

~- 1]h{CDh,xhCNh_ Dn,nh_xh/CNh,Xh} (11) 
x(V(t) 

among all such D arrays. All the H-tuplats x = (x 1, x2 . . . . .  

x H) satisfying 2hX h / fh <= t ,  ~:hXh = n, and x h <= n h make 
up the set permissible x's denoted here by Y(t). We also denote 
by H* the largest subscript <= H for which some XH,>O, and 
assume that the strata are ordered in order of increasing 
sampling fraction. The solution to the problem can now be 
described in three steps:. 
1. 6merate the set of all x's satlsfyinq: ~:hXh / fh <= t ,  ~:hXh = 
n, and x h <= n h 

The order in which the set Y(t) is generated is immaterial, 
but in order to speed up the search for D* in step i i i ,  Y(t) is 
generated as a tree structure. Let [y] denote the Integer part of 
y. At the root of the tree is the tuplet (x 1, x2 . . . . .  XH)=(x*,O, 
.... O) where x*=max{[t f l  ] ,n I } .  The root has x* offspring 
nodes:(x*-I, 1,0 .... ,0) ,  ( x * - 2 , 2 , 0  .... ,0)  etc. down to 
(0, It f2], 0 ..... 0),.  If [t f2]>n2 then the generation of second 
level nodes will stop with (x*-n2,  n2, 0 ..... 0). The offspring 
of a node (x i ,  x2, 0 ..... O) in the second level are similarly 
generated, except that now the total number of defectives to be 
divided among H- I strata 2 through H is t- x 1/f 1 and the total 
remaining sample size is n-x 1' Thus the offspring of a node in the 
second level share the same x I , their x 2 decreases monotonically 
from t- x I / f l  - I down to x2-n 3 if [t f3]>n3 or down to zero 
otherwise. Units removed from stratum 2 are added to stratum 3. 
Thus x 3 increases from 1 to at most n 3. Continuing in the same 
manner, the tree thus generated has H levels, and up to x* 
offspring per node. When the tree is traversed inorder', tuplets 
with high entries x h for strata with small sampling fractions are 
encountered first. This property of the tree will be useful In 
eliminating D values that are too small and lead to probabilities 
in ( 11 ) that are greater than ¢<. 
ii. Oe.nerate the set of allocations D that sum tq D, and satis~ D h 

>= d h for all h<=H. 
The set of all possible allocations that distribute D defectives 

among the H strata can be generated as a tree structure that 
eases the process of terminating the search for the least 
favorable distribution in fruitless directions on one hand, and 
exposes the D which is too small (yields a probability in ( 11 ) 
that exceeds ¢<) after computing the probability in ( 1 I ) for as 
small a number of allocations g as possible. Such a tree structure 
is a rootless tree, with up to D I (as given in (12) below) 
siblings at its first level, starting with the extreme allocation 
O = (D I ..... D H) with Dl=d+min(D-d,N-n) Dh=~forh>=2, (12) 
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and ending with DI= max(O, O-(N-n)+(Nl-n l ) ) ,  D2= d 2 
+(D-d-D 1 ) and Dh= d h for h>=2. The offspring of a level- I node 
is generated in the same way', except that they all share the same 
D I , and D 2 Is decreased within the permissible limits etc. The 
tree has H-1 levels, and when It is traversed lnorder, tuplets 
with large allocations for strata with small sampling fractions 
are encountered first. 
iii. Search far the larqest D for which the maximal probability 
(11) does not exceed ~. 

Determine the starting value D O using the normal 
approximation in (8). Starting with that value for D, provided It 
is permissible given the total size of the finite population N, 
devise a strategy' of first decreasing and then increasing D, or 
vice versa, until the l='gest D for which the maximum 
probability in (11)does not exceed =< is found. For each D 
considered, terminate the search for a least favorable 
distribution as soon as the probability in ( I I ) exceeds K. 

The search step in this procedure can be inordinately time 
consuming. Following a large number of examples, it was 
empirically determined, that when selecting the allocation of D' 
defectives between two strata with sampling fractions f l<f2 , 
starting from D' I=D', D'2=D'-D' 1 and ending with D' I =0 and 
D'2=D' (neglecting the d's for the time being, which simply bound 
the D's away from zero), the probabilities either increased to a 
maximum and then decreased monotonically, or simply decreased 
monotonically. This ~ h m n o t  ba~ pm~ara~imlly, ardn~r~ 
alw~betrue I t C e s ~  la%lt~m q~pmdmle procedure that speeds 
up the search in step iii considerably : 

For a node at level i in the D-tree, compute the probability 
sum (11) for the offspring subtree inorder. Stop the search 
among the leaves of the subtree as soon as a local maximum 
probability is found. Repeat the search for a local maximum for 
all levels from H-1 up to i+ I, replacing leaves by offspring 
subtrees in the pruning procedure described. A more detailed 
description of the algorithm will be given in the expanded version 
of this paper. 

This curtailed search is extremely effective in eliminating 
all D values below the desired D*(t). The validity of the D*(t) 
thus found can be ascertained via a complete search for the 
largest D for which the probability obtained by' this curtailed 
search does not exceed ~. 
III. ~x~rn~ examples ~d comments for stratified semplina~ 

We complete this section with a few examples that illustrate 
the performance of the normal approximation and the search 

algorithm in non-proportionate stratified designs. All 
examples in Table I below concern H=3 strata. 

Table 1 displays the upper 95Z confidence bounds 
obtained via the exact method, the new and the 
standard normal approximation based on the estimated 
standard deviation in (12).  The table includes 
examples of small populations and small samples 
(group I, examples 1-4) ,  moderate strata and 
moderate samples (group II, examples 5 -9 ) ,  
moderate strata with small samples (group II I ,  
examples 10-14)  and large strata with moderate 
samples (group IY, examples 15-17). The strength and 
limitations of the three methods are clearly evident in these 
examples. 

A quick perusal through the last two columns 
reveals the fact, to be expected from the derivation of 
the new normal approximation, that it requires 
larger strata and samples than does the standard 
normal approximation (based on the standard deviation 
corresponding to the variance in (3 ) )  when a 
substantial fraction of defectives is present (examples 
2 and 14). 

Table I. Examples of exact end normal approximation confidence 
intervals in the non-proportionate stratified case. 

,~emple ~ Sm~l)1~ee~95 rerrrel slard 
sizes sizes observed fractions bound bound normal 

(least favorable dtstribu.tion) (time in mtn.) bound 
1.20.15.10 2,2,2 0,0,0 .1,.133,.2 .422 .622 .000 

(11,6,2) (1.37) 
2. 20.15,10 2,2,2 1,0,0 .1,.133,.2 .600 .867 .467 

(15,9,3) (1.72) 
3.20,15.10 2,2,2 0,1,0 .1 ,.133,.2 .556 .800 .3,t7 

(I 1,11,3) (I.87) 
4,20.15,10 2,2,2 0,0,1 .I,,133,.2 ,511 .711 .227 

(11,5,7) (4.47) 
5.100.50.30 20.15.11 3,0,0 .2,.3,.367 .183 . 172 . 149 

(33,0,0) (.51) 
6,100,50.30 20.15.11 I,I,1 .2,.3,.367 .144 .139 .112 

(24,1,1} (.48) 
7.100.50.30 20.15.110,3,0 .2,.3,.367 .144 .133 .095 

(23,3,0) (.49) 
8.100.50.30 20,15,110,1,2 .2,.3,.367 .128 .122 .082 

(17,4,2) (.40) 
9.100,50.30 20,15,110,0,3 .2,.3,.367 . 122 • 1 17 .075 

( 19,0,3 ) (.41) 
10100.50.30 5,5,5 0,0,0 .05,. 1,. 167 .250 .322 .000 

(45,0,0) (.55) 
=1.100.50.30 5,5,5 0,0,2 .05,.1,.167 .283 .394 .122 

(44,0,7} (3.02) 
12.100.50.30 5,5,5 0,2,0 .05,.I ,. 167 .367 .467 .206 

(61,5,0) (3.43) 
13.100.50.30 5,5,5 1,1,0 .05,.I,.167 .422 .556 .344 

(54,22,0) (10.48) 
14. t00.50.30 5,5,5 2,0,0 .05,. 1 ,.167 .478 .639 .417 

(58,28,0) (18.94) 
IS.IOO0,SO0 5O,5O,5O 3,0,O .05,.I ,.167 .081 .079 .063 

,300 (146,0,0) (.77) 
16. 1000.500 50,50,50 2,1,0 .05,. 1,. 167 .069 .072 .054 

, 3 0 0  (111,13,0) (o.oe) 
~7. 1000.500 50,50,500,2,1.05,. 1 ,. 167 .050 .052 .027 

,300 (85,2,3) (1.58) 

If the proportion being estimaied is not small,' the n~v r~r'mal 
approximation will be very conservative. In all cases it appears 
to yield a conservative limit, whereas the standard approximation 
tends to yield an underestimate of the exact confidence limit, 
which in the extreme case of defective-free samples is null. 

Examples 1-4 also illustrate the fact that the least favorable 
distribution of defectives in the strata is not always the extreme 
allocation (liven in (12). We note that as a direct conse~nce of 
its construction, the new normal approximation will perform 
poorly whenever the least favorable allocation is very different 
from the extreme allocation. Thiswill ~ w h e n  thesemples~are 
stall and the sa~lino fr~ions ~ i a l l y  diffe~ me'g strala, singe in 
thato~e~tion4 isinv~id A s i m i l o r ~ ~ i n  e~-~le 14. 

The remaining examples in Table I portray the behavior of 
the exact algorithm. First, they show that the new algorithm is 
usable on desk-tap computers. Theneedfor the exact algorithm in 
problems that require accurate estimates of small proportions, is 
clearly demonstrated in these examples. The false sense of 
security (small upper confidence limit) conferred on the user by 
the usual normal approximation, when the proportions being 
estimated are small, is amply illustrated by examples I, 2, 
6, 11,12. The fact that the usual normal approximation 
represents a considerable underestimate of the 95% upper 
confidence limit in examples 16 and 17 shows that the mere 
existence of large strata with lerge semples is no guarantee that the 
usual rern~l appr~irretion will be adequate. In these lest two examples 
the new normal approximation performs remarkably well. 

Within each of the four example oroups, examples that 
demonstrate the dependence of the exact upper confidence limit 
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on the specific pattern of defectives encountered in the stratified 
sample are presented. The corresponding least favorable 
distributions of defectives in the three strata are neither the 
extreme dlstrlbutlon, nor the distribution proportional to the 
distribution of defectives in the sample. 

The loss of efficiency due to the use of non-proportionate 
stratified designs with widely diverging sampling fractions 
versus simple random sampling of equal total size, or 
proportionate sampling of equal total size, is apparent. It is 
easy to quantlfy in the extreme case when no defectives are found 
in the population. In that case the sample is also defective-free. 
The exact classical upper confidence Interval would still replace 
the actual strata fractions by the minimum sampling fraction , 
thereby increasing the Interval length unnecessarily. 

A simple example will convey the point more cogently. 
Consider a population consisting of H=2 strata, with strata sizes 
I000 and 2000 respectively. If a 20% proportional sample is 
taken and no defectives are found in the sample, the exact upper 
95% confidence bound for the proportion of defectives is 
1,t/3000=.0047. This Is also the confidence Ilmlt from the two 
strata separately, and from a simple 20% random sample (SR$) 
In which no defectives are found. Thus no loss of efficiency Is 
entailed by proportionate samples when the population 
proportion is null. It in the same population a non-proportionate 
sample of I O0 and 500 is taken and no defectives are found, the 
least favorable allocation is the extreme allocation that assigns 
all defectives to stratum I (minimum sampling fraction=. I ). The 
exact 95% conf l t~e bound for the population proportion Is now 
28/3000=.0093, representing a 50% loss in accuracy over 
simple random sampling for defective free populations. 

When the population proportion is not zero, and defectives 
are found in the sample, the theoretical loss of efficiency Is 
difficult to compute. It is however possible to estimate this loss 
in specific examples. E.g., In example 14 of Table 1, the 
estimated population proportion of defectives is 40/180. We can 
therefore compare the exact 95% confidence Ilmlt of .444 
with the one obtained from an SR$ of size 15 in which 
approximately the same proportion of defectives is found. This 
confidence bound is obtained simply as D*/180, where D* is the 
smallest Integer D for which the probablllty that a 
Hypergeemetric variable counting the number of defectives in a 
sample of n=15 from a population of size N=ISO with D 
defectives, does not exceed d, is not greater than. 05. 

The approximate number of defectives d for the comparable 
5R$ is 3.3333. If we take d=3 defectives in the sample, we 
obtaln an exact upper 95% confidence bound of .433. If Instead 
we take d=4 we obtain .506 for the bound. Although the situation 
is somewhat ambiguous, the loss of efficiency due to the non- 
proportionality of the d ~  is not d'amtic Similar comparisons in 
example 5 show a bound of .044 for ,~q$ to the exact. 183 of the 
stratified sample. In example 16 the SRS bound is .0589 to the 
exact bound of. 069. 

These examples demonstrate that when the estimated 
proportion is small but some defectives are found In the sample, 
the upper confidence intervals obtained from non-proportionate 
samples are In general less efficient than confidence bounds 
derived from comparable simple random samples. The loss of 
efficiency depends however on the number of strata involved and 
thesizaofthedisparity in sampling fractions in the different strata. 

The immediate practical recommendation that results from 
these considerations is to avoid, if no other overriding 
considerations exist, the use of non-proportionate designs when 
planning surveys that attempt to estimate very small 
proportions. 
IV. Upper confidence bounds for cluster samples of equal size. 

The problem of setting confidence limits for small 
proportions from cluster samples of equal size can be treated in a 
manner similar toll'atta~lfor stratified samples, when the sample 
of clusters is ~ i f ~ l l ~ t h a ~ o f  defectives in the sample. 

~ l J ~ t  thelx~l~n is pc t t t t ~  i n l o N c ~ o f  equal size, say' B, 

ardasimple rad]~ sa'nplaof n t m ~ l e t e c ~  is ld=R We (b't~ by' N i (n 1) 
t h a ~ o f ~  in the popuUtn (sample) o z ~ ~  e=ct~/i (i=o,1 ... 
5 ) d ~ a : t i v e e ~  Wea~lrlethat~lUnt~ o t ~  N= Zi Ni (but not 
the ~ ~  ~'s) ~ the popu~ttn t ~ ~ ,  ~ we ,U~ t o ~  an Upper 
ozatnoe ttu~ tot ire prim'tin ot d ~ t ~  • the popuUt~, or 
~ ~ / ,  t r  thetoU runU~otd~ect~aema~ ~ the popu~ton 

B 
O=T. iNi, (~3) 

I=I B 
forwhich T*= N~- i x l / n  

i=l 
provides a natural estimate. Here xi denotes the random number 
of clusters in the sample with exactly 1 detectives. Since the 
factor n/N = f is a constant, we refer instead to the statistic 

B 
T=~- ix l  (14) 

i=l 
in the sequel. In order to set an upper confidence limit on the 
number of defectives in the population, the smallest number of 
detectives D is sought, tot which the pr®ablllty of the event 
T<=t with B 

t = ~ i n  i (15) 
1=! 

does not to exceed =<. As in the case of stratified sampling, the 
probability of this event depends not only on D, but on the actual 
allocation of the D defective elements to clusters containing 
varying proportions of defectives. If one does not wish to 
postulate a priori any maximum number of defective elements 
per cluster, the possibility of "all defective" clusters cannot be 
ruled out. In order to obtain a confidence limit with at least ( I -  
=<) coverage probability under all possible distributions of 
defectives among the population of clusters, we define the set of 
all edmissible distributions of D defectives in the population as 

$(D) = {N; £i Ni = N, Ni>=n i ~;i i N i = D} (16) 
For a given allocation N in ~D)  the probability that T<=t is 
given by the multiple Hypergeometric distribution 

PN (t) = P[T<=t] = ~- 11Cxi,Ni / Cn, N (17) 

xcV(t) t=O 
where Y(t) = {x ; l ;  i i x  i <=t,T-ixi=nandOt=xi<=Ni} (18) 
end under the "worst case", it achieves its maximum 

PD(t) = MaX{PN( t); NcS(D)}. (19) 
The classical (1-=<) I00~ confidence limit is then given by the 
sm81 lest D for which (19) does not exceed =< or 

D(t) =Min {D; PD(t) • =< }. (20) 
We refer to the allocation D* which achieves the maximum In 
(19) as the "leest favorable" distribution as before. 
PROPO,51TiON 4. In simple ranOom sampling or complete clusters, 
when no defective elements are found In the sample, the least 
favoreble allocation is given by 

NB*=ID/BI. If d=D-B*NB'>O then Nd'=t. No'=N-NB'-I 
else N O* =N"N B*; 
All remaining Ni*'s vanish. ( 21 ) 

The proof is immediate. In order to determine a good initial value 
for D in the search for the confidence limit when some defectives 
are found in the sample (t>O), and help locate its "least 
favorable" allocation, thara'rml appra~m~ionmn be of some help. 
The normal aoaraximation. 

The asymptotic Normal approximation to the distribution of 
the total number of defectives T in the sample when n,N-->= 
but n/N-->f and the cluster size B stays fixed, has mean fD with 
D given by (13), and variance given in our notation by 
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K I - 0  Z N i ( i  - ~i i Ni/N)2 (22) 
O~ i~B 

(Cochran 1977, page 246). In the particular- circumstances we 
envisage the proportion of defectives in the population 
D/(NB)=£i= I iNI/(NB) is very small as N increases 
indefinitely. This requires that all N 1 for i>= I remain finite and 
only N O inc~-ease with N in such a way that ~.iiNI/N-->O and 
No/N--> 1.We formulate these requirements as follows: 
Proposition 5. (Normal approximation for cluster samples) 

For simple random samples of equal size clusters, if 
A. Sample and population sizes are large, with n/N -> f. 
B. The number of defectives in the population are small, i.e., 
D=£i= 1 iNi ranaim Fm~ as N->~ ~:iiNi/N->O and ~ >  I. then 

the normal approximation to the ( 1-=<)% confidence limit for D 
is given by 
o*(tX((]-r)/r)*((z =/2Ps=/2÷((z ot2)2*t) l /2)2] (23) 

i.e., lira {PN[D< = D*(t)]: n/N -> f ,  £1iN1/N->O and No/N->I 
and N->-} >= I-¢< 
Under the our assumptions, the asymptotic variance in (22) 

reduces to Z i= l i2*Nl* f * ( l - f ) .  Since t<<D, for' the probability of 

the event [ T<=t] not to exceed o<, regardless of the actual values of 
the Ni's, the maximum of the normal approximation to this 
probability, subject to Nl>=n i and ~:I iNI=D, is needed. It is 
achieved when the maximum possible number' of defectives is 
placed In "all defective clusters",l.e., NB is maximized. Thus the 
extreme el Iocat ion 
NB ~[o/e]+n B; It d = D ~ ' x ' > O  l:.henl~-r~ 1 (24)  

otherw i ~ N 4 - N  B*; 
for all remaining i>=I, Ni*=n i and No*=no+N-n-Zi=lNi * ,  
yields the desired maximum. Upon inserting this allocation into 
(22), the resulting Normal approximation foe the upper 
confidence limit is obtaine(L 

The search for the exact upper confidence bound proceeds in a 
manner similar to that of the stratified search described In 
section 2. The steps are: 
1 ) Determine the number of defectives D in the population from 
the improved Normal approximation given in (23). 
2) Oenerate the set Y'(t) of all admissible x-tuplets that satisfy 
the first two conditions in (18) but not the third, which depends 
on N, and store It In memory. The third condition In (18) Is 
checked with each use of this set in computing the cumulative 
Multiple I-lypergeometrlc probabilities in (17). The cardlnallty 
of V'(t) increases rapidly with t, thus rendering the approach 
feasible only for a small number of defectives In the cluster 
sample-the case foe which it was originally intended. 
3) Use the extreme allocations for any trial value D, given by 
(24), to adjust the choice of D made in step I. 

Since thls extreme distribution of D Is not the least favorable 
distribution of D, except for t=O, the exact upper confidence 
bound for the total number of defectives in the population is 
actually larger than the one determined in step 3. Starting with 
the D determined In step 3, a complete search for the least 
favorable distribution foe each D is carried out for successively 
larger values of D, until the first D to yield a probability of 
[T<=t] that does not exceed =< is found. A faster search results 
from the (experimental) realization that the trial value obtained 
in step I is always an upper bound, and the trial value obtained in 
step 3 is always a lower' bound on the desired oonfktmce limit. 
Therefore a blnary search between these two values speeds up the 
determination of D*. 

For each D the complete search Is described In steps 4 and 5. 
4) Oenerate the set $'(D) of all allocations N that satisfy ZiNi=N 

and ~-iiNi=D, in order of decreasing N I. 

5) Start computing the cumulative Multiple I-lypergeometric 
probability (17) for successive allocations in 5'(D). If the 
computed probability for an allocation exceeds 6, increase D by I 
~ lgo  to step 4. 

If the probabilities computed for all allocations in $'(D) do 
not exceed ¢< stop the search. The desired upper (1-  =<) 
confidence bound for the proportion of defectives in the 
population ls then D/(BN). 

The search involved in the last two steps of the algorithm can 
be drastically reduced when t ls small using considerations 
similar to those used in the stratified case. These will be 
explained fully In the e x ~  version of this paper. 

Note that no simple case, analogous to that of proportional 
allocation foe stratified sampling, exists for cluster sampling. 
One could say that the natural (post) stratification by number of 
defectives per cluster, stratifies the population of clusters into 
strata that are inherently unequal in the proportion of defectives 
they contain. For that reason there ls a loss of efficiency due to 
clustering which is roughly proportional to cluster size in 
defective-free populations, and which Is unavoidable. 
Table 2. Examples of exact and normal approximation confidence limits 
in clust~r'ed samples of clusters of size B= 10. N--500. n=50. I-~<=.95. 

Sample L~stfavor. 
arr~ Dis~t ion 

150,0.0.0,0 468.5.0.0.0 1 
0,0,0,0,0,0 0,0,0,0,0,27 

2 ~.1.0.0.0 ~7.6.0.0.0 2 
0,0,0,0,0,0 0,0,0,0,0,27 

~49.0.1.0.0 ~8.1.4.0.0 4 
0.0,0.0,0.0 0,0.0.0.0,27 

~,2.0,0.0. ~8.3.2.0,0 4 
0,0,0,0,0,0 0,0,0,0,0,27 

~,0.2.0,0 ~8,0.2.1.2 12 
0,0,0,0,0,0 0,0,0,0,0,27 

~.0.0.0,2. 464.0.0.0.2 67 8 
0.0,0,0,0,0 0,0.1,9,0,24 
Z ~,5.0,0,0. ~4,5,0,0,4 19 5 
0,0,0,0,0,0 0,0,0,0,0,27 

~.4.1.0.0. 463A.1.0.2 ~ 6 
0,0,0,0,0,0 3,0,0,0,0,27 
~I0,0,0,0,0 ~I,0,0,0.0 I 0 
0,0,0,0,0,0 0,0,0,0,1,138 

.U]9.1.0.Og ~9.2.0.0.0 2 1 
0,0,0,0,0,0 0,0,0,0,0,129 
~9.0,1.0.0 361.1.11.0.04 2 
0,0,0,0,0,0 0,0,0,0,0,127 
1~.2.0.0.0. ~1,3.9 ,0 .04 2 
0,0,0,0,0,0 0,0,0,0,0,127 
.!~8.0.2.0.0 468.0.2.1.2 12 4 
0,0,0,0,0,0 0,0,0,0,0,27 
ida.O.O.O.2. 464.0.0.0.2 67 8 
0,0,0,0,0,0 0,0,1,9,0,24 
~5,5,0,0,0, ~4,5,0,0,4 19 5 
0,0,0,0,0,0 0,0,0,0,0,27 
.155,4,1,0.0, ~3.4,1,0,2 50 6 
0.0.0,0.0,0 3,0,0.0,0,27 

Cv B* Exact Old New time 
limit limit limit (mi_.~ 

0 .0550 .0000.0512 0.29 

I .0552 .0051 .0550 0.69 

2 .0556 .0101.0586 3.83 

2 .0554 .0082.0586 1.69 

4 .0570 .0165.0654 3.41 

.0654 .032g .0786 NA 

.0582 .0163.0688 6.68 

.0601 .0200.0722 17.04 

2578 .0000.2128 0.33 

2584 .0050 2282 0.54 

2586 .0101.2430 0.98 

2582 .0082.2430 1.23 

.0570 .0165.0654 3.41 

.0654 .0329.0786 NA 

.0582 .0163.0688 6.68 

.0601 .0200.0722 17.04 

V. Some examples ~ comments foe cluster samplin~ 
In this final section we present some examples from a 

hypotheticol population of N=500 clusters of size b= 10, from 
which a simple random sample of n=50 clusters ls taken. In table 
2, the 95% 'exact' confidence limit, with its attendant least 
favorable distribution, t value (see (15)), number of x-tuplets 
which measures indirectly the complexity of the problem, and 
computation time, are presented. The standard normal 
approximate limit and the new approximate noemal confidence 
limit are also presented for comparison. 

The standard approximation foe the distribution of T is the 
Normal distribution with mean fD and standard deviation given by 
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the square root of (22) and estimated from the sample. In these 
examples f=. l ,  B= l O, and the Ni's are simply estimated to be 
ni/f. The upper 95~ confidence bound for the number of 
defectives is computed from the formula D=(z=<s+t)/f, with 

z=<= 1.645 and t given by (15). 

In Tebb 2 ~ve, The seraph n b ~ by an array representing 
(no,n 1 . . . . .  n 10), whose entries add up to n=50. The least 
favorable distribution ls similarly presented as an array whose 
entries add up to N=500. The columns Cv and B* represent the 
number of x-tuplets in Y'(t), and the highest index not exceeding 
B which has a non-zero entry for some element of V'(t) 
respectively. The ~ i n g  three columns provide the 'exact', 
old and new normal approximation confiderce limits. The last 
column provides the tlme In mlnutes (when available) to compute 
the 'exact' limit, 

Several important points are brought out by this table:. 
I. The inadequacy of the standard normal approximation (old 
limlt column) is evident in every instance. 
2. The new normal approximation (new limit column) generally 
overestimates the upper 95% confidence limit in this settir~ It 
does however provide a useful starting value for the search 
algorithm. The latter can be reasonably used on a desktop 
computer, judging from the execution time column. 
3. The least favorable distribution is not the extreme distribution 
when some defectives are found in the sample. No simple rule 
appears to explain the distributions we observe in the examples. 
4.The performance of the new normal approximation is again 
surprisingly good. In those cases where the alOorlthm Is very 
slow one may be satisfied with the upper confidence limit given 
by this normal approximation. It is a quick and dirty tool that can 
be readily used on a common calculator. 
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APPENDIX 

proof of proposition 1. 
When no defectives are found in the sample the probability in 

(Z6) redLO~tO H 

PD__ [ T = 0 ] = 11 C(Nh_Dh ),nh/CNh,n h (A. 1 ) 

h= 1 
We assume for the sake of simplicity that the strata are ordered 

by increasing sampling fractions, i.e. f l <=f2 <= ... <=fH. It seems 

intuitively clear that the maximum of (A. I) wil l be achieved 
when all D defectives are placed in stratum I. We shall in fact 
show that for all 0<= D <= N I[ l - f l / f  2] + 1, 

PD[ T=O ] <= C(NI_D),nl/CNI,n I =P[D] 

It suffices to prove the assertion for H=2 strata, since the 
distribution of D defective among H strata can be accomplished by 
successive dlstrtbutlon of D' defectives between two strata. For 
H=2 we shall show that 

CIN I'01), nl CIN24)2~n2 > =C INI'~DI-I))~ I CO~/E)2+ l))a2 (K2) 

for D 1 +D2=D and DI>= 1. It i s ~  that (A2)bolcls if, andorlly lf, 

n 2/(N2-D 2) >=nl/( N I -D I )- Since the I.h.s. of the last inequality 

is bounded below by f2. and the r.h.s, is bounded above by 

n l / (NI -D + I ), (A.2) wil l certainly hold if n I / ( N I - D .  1 )<=f2- 
The asserUon follows. 
Proof of proposition 2. 

In the two strata case, H=2 and the the r.h.s, of (A. 1) Is a 
function of D I alone when the total number of defectives D ls 
fixed; we denote it by P[ D I ]. Thus the ratio 

P[D I + 1 ]/P[D l ]= [IN l-Dl-nl )/(N 1 -D I )][ (N2-D2+ 1 )/(N2-D2-n2+ I )] 
for fixed D, and since f l  =f2 implies n I N2=n2 N I we have the 

equivalenceP[Dl+l]/P[D 1] > I if, andonlyif DI/N I < (D2-1)/N 2 
implying that the maximum over O<=DI<=D is achieved at 

D I =[ (NI/N)(D- I )] + I. The maximum may not be unique when 

(N I/N)(D- I ) is integer. We have shown Ixiwever that 

proposition 2 holds for H=2, and obtained a more specific 
solution for the two strata case. 

For H>2, for fixed D, if I is added to D i, than 1 must be 

subtracted from the number of defectives DJ placed in another 
stratum j not equal to i. Starting with a distribution D of the D 
defectives, the new distribution with Di+l and Dj- I  wil l be 

denoted by D_ i,j. We then have 
P[Di.,j ]/P[D_] > I if, and only if Di/N i < (Dj-  I) /Nj 

TI~ a distribution ofdaf~ives D is least favor'~le if for" ech pair" (i, j) 

Di/U i >= (D j - I ) /N j  
Using the weights Nj/(N-N i) for all j not equal to i and taking a 

convex combination of both sides we obtain 
H 

Di/N i >= ~- [ Nj/(N-Ni)] (Dj - l )/Nj 
j=i 

or D i >= (Ni/N)(D-H+I). Taking now a convex combination 

over 1 not equal to J with weights Ni/(N-Nj ) we obtain D i <= 

( Ni/N)(D- 1 )+ 1. This completes the proof of propasltlon 2. 
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