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I. INTRODUCTION 

The development of a comprehensive software 
package for survey data analysis is currently 
underway at the Research Triangle Institute 
under contract to the National Center for Health 
Statistics and the Public Health Service. As 
part of this effort, significant enhancements 
are being made to RTI's existing software 
system. These include the estimation of 
quantiles, such as the median, and their 
variances for data arising from complex sample 
surveys. RTI's existing procedures SESUDAAN, 
RTIFREQS, and SURREGR use Taylor series 
linearization for estimating the variance of 
statist ics such as means, proportions, and 
regression coefficients that are obtained from 
complex sample surveys. The World Fer t i l i ty  
Survey's CLUSTERS and Iowa State University's 
SUPERCARP and PCCARP are examples of other 
survey data analysis software packages that use 
Taylor series linearizations. 

The linearized value of a quantile includes a 
term for the probability density function of the 
variable of interest. Francisco and Fuller 
(1986) presented a method for variance 
estimation based on the Woodruff (1952) 
confidence interval, and Rao and Wu (1987) have 
also done work with this estimator. This 
estimator that does not involve numerical 
estimation of the density. As part of i ts 
software development project, RTI conducted a 
Monte Car lo simulation that compared the 
variance obtained using this estimator with that 
when a histogram of the data was used to 
estimate the density. 

In addition to assessing these two variance 
estimates, two methods for estimating the 
quantiles themselves were also compared as part 
of the simulation study. Both quantile 
estimation methods are based on a histogram 
estimator of the population distribution 
function. The f i r s t  consists of a two point 
linear interpolation formula while the second 
uses a least squares quadratic f i t  to four 
points with the f i t ted equation constrained to 
be monotone nondecreasing. Histograms based on 
20 bins and on 100 bins were considered for both 
methods. 

2. METHODS 

Consider a universe il of N identifiable units. 
A probability sample s of size n is a collection 
of n members of O. I f  Yk denotes a survey 
outcome variable that is observable without 
error, then the f in i te population cumulative 
distribution function for the variate Y is 

Fn(x) = I: I (Yk~x) + N (I) 
kEQ 

where I(Yk~X) is the one-zero indicator function 
for the event (Yk~X). The quantile Xp 
associated with p in the interval (0,1) is 

Xp : qQ(p) : inf {Yk:FQ(Yk)~p, p~(O,1)} (2) 
Q 

An unbiased sample estimator for FQ(x) is the 
Horvitz-Thompson estimator, based on unbiased 
sample weights Wsk, defined such th'at Wsk = 0 i f  
unit k ~ s, 

F s(x) : [ £ Wsk l(Yk~;X)]-[ £ Wsk]. 
k~s k~s 

A sample estimator for the p-th quantile is 

Xp = qs(P) = inf {Yk:Fs(YR) ~ p, pE(O,l)}. (3) 
s 

The quantile corresponding to p can be 
estimated from the ordered x's by finding j 

A A A 

such that F(xj) ~ p < F(Xj+l). Then Xp = xj. 

2.1 Taylor Series Linearization for a quantile 

Fuller and Francisco (1986) give this 
following linear approximation for the estimated 

A 

quantile Xp= qs(p) 

= qfl (P) - [fll (Xp) ]-I [Fs (Xp) - Fil (Xp) ] 

+ Op (n -I/2) (4) 

where Ffl(x p) is the population distribution 

function and fi~(Xp) is the derivative of 

FQ(Xp) evaluated at X=Xp. 

Since Fs(X p) is an unbiased estimator of 

Fil (Xp), Var(qs (P)-qll (P)) 

= [fi~(Xp)] -2 Var[Fs(xp) ] + op(n-1/4). (5) 

The variance of F s(xp) is estimated by 

substituting the linearized value for the 
A A 

kth sample unit for Fs(Xp), Tk(Fs(Xp)) into a 
variance formula for a total estimator from the 
sample design. Hence, one could write the 
linearized value for Xp as 

= fll (Xp)-ITk(Fs (Xp)) (6) Tk(X p) 

Using the formula for the l inearized value for a 

^ w k ^ 

ratio, T k (F s (Xp)) : S~ i [l(Xk~ Xp) - p]. (7) 
1 
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2.2 Estimation of the Density 

An estimate of the density function is needed 
in order to estimate the variance of the 
estimated quantile. Various methods such as 
kernel estimation, splines, or historams 
could be used. Francisco and Fuller (1986) 
show that the following estimator, which 
comes from Woodruff's (1952) confidence 
interval on Rp, is consistent for ffl(~p)-l. 

•p = [qs(Up) - qs(Lp)] / (Up-Lp) (8) 

where UD and Lp. denote the upper and lower 
100(1-a) confidence interval endpoints for 

Fs(Xp), with Xp viewed as a f ixed value of x, 

A 

Up = p + ta/2 SE[Fs(Xp) ] 
A 

Lp = p - ta/2 SE[Fs(Xp)], 

A 

and where SE[Fs(Xp) ] denotes the Taylor series 

s tandard e r r o r  e s t ima to r  for  Fs(Xp). 

Then, {)p = [qs(Up) -qs(Lp)]/2ta/2 
A A A A 

and Var(Xp) -- 8~ Var[Fs(Xp)l. 

(9) 

(lO) 

(11) 

UD and LD are the upper and lower endpoints for 
the Woodruff method's (l-a) level confidence 

interval on x . The ta/2. cr i t ical  value is the 
standard normal value sucn that 
Pr{IZl>ta[2} ng a- 

The followi sections describe two methods 
based on a histogram for estimating quantiles 
and the density function. A Monte Carlo 
simulation was performed to evaluate these 
quantile estimates and to compare the variance 
estimates given in (11) with that obtained using 
a histogram to estimate the density. 

3. ESTIMATION OF THE DISTRIBUTION FUNCTION 

Ideally quantiles would be estimated using the 
cumulative distribution function as described in 
Section 2. Th i s  requires sorting the data by 
the variable whose quantile is to be estimated. 
Sorting is not practical for estimating the 
quantiles for a large number of data items or 
for many domains since sample surveys typically 
consist of a large number of observations. In 
addition, algorithms for Taylor series variance 
estimation typically require that the data f i le  
be sorted by the sample design variables (for 
example, stratum, primary sampling unit, 
secondary sampling unit, etc.). 

Alternatives for estimating the distribution 
function are kernel density methods, splines, 
and histogram estimators. The histogram 
estimator with equal width bins was used in this 
study because of i ts simplicity. Histograms, 
like other density estimators, are sensitive to 
the number of bins. Scott (1979) derives a 
formula for the optimal histogram bin width for 
density estimation. 

4. ESTIMATION OF QUANTILES 

Given the histogram estimate, ~ of the 
distribution function, two methods were 
considered for the estimation of quantiles. One 
method was a two point, linear interpolation 
formula and the other was a least squares f i t  of 
a quadratic to four points with the additional 
restriction of of enforcing a monotonically 
increasing function. Suppose there are m bins 
in the histogram, ,and denote the endpoints of 
the bins by x0, Xl, . . . ,  x~ where x 0' and x m' 
are the maximum and minimum values of the data. 

4.1 Linear Interpolation 

For linear interpolation, the quantile for a 
given percentage point, p,was estimating by 
finding j such that ~(xj ') ~ p < ~(X~+l). Then, 
the pth quantile was estimated by the linear 
interpolation formula 

A I I I 

Xp : Xj + b(Xj+l - xj ) where 

A I A I A I 

b = [p F(xj )] / [F(xj+I) - F ( x j ) ] .  

The estimate of the derivative used in equation 
(5) is the slope 

I I I I 

4.2 Quadratic Fit to Four Points, Enforcing 
Monotonicity 

A least squares f i ts  of the equation 
F(x) = ax 2 + bx + c was made to the four points 
surrounding p. First, j such that 
A l A l 

F(xj) ~ p < F(xj+I) was was found. I f  j=0, then 

the four lower bins of the histogram were used; 
i f  j=m-1 the four upper most bins of the 
histogram were used. 0therwise the four points 
used were 

I A I A I 

(xj_ I, F(Xj_l)), (xj, F(xj)), 

I A I I A I 

(xj+ I, F(Xj+l)), and (xj+2, F(xj+2) ). 

The f i t ted quadratic equation need not be 
monotonic nondecreasing, particularly i f  some o~ 

the F's are the same. I t  is monotonically 
nondecreasing on the interval, however, i f  the 
intercept, -b/2a, is outside the range 
[min(x'), max(x')] where min(x') and max(x') are 
the minimum and maximum values of the four x' 
points. In this case, the pth percentile was 
estimated by the root 

A 

Xp = 2a 
-b + ~b2 -4a (c-p) 

that fel l  in the interval [min(x'), max(x')]. 
The estimate of the derivative in Equation (5) 
was (2aRo+b)-I 

When the intercept was within the range 
[min(x'), max(x)], then the intercept was forced 
to fal l  at one of the endpoints, That is, 
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-b/2a = min(x') or -b/2a = max(x'). Least 
squares solutions to F(x) = ax z - 2a mi'n(x)x + c 
and F(x) = ax 2 - 2a max(x')x + c were found. 
The solution with the smallest residual sums of 
squares was used to estimate Xp. Then, 

F 

^ 2min(x') + J(2min(x') 2 - 4a (c-p) 
Xp = 2a ' 

or the similar result obtained by substituting 
max(x') for min(x'). The estimate of the 
derivative in Equation Io5~ was 

{2a(~p - min(x')) _I 
{2a (Xp max(x')))}- . 

5. SIMULATION AND RESULTS 

Two Monte Carlo simulations were performed to 
compare and evaluate estimates of quantiles and 
estimates of their variances. The f i r s t  
simulation was performed on a population of 
10,000 random numbers from a normal 
distribution with zero mean and variance equal 
to unity. The second was performed on a 
population of 1,000 log normal random numbers 
with mean 4.65 and variance 1.99. Rao and Wu 
(1987) concluded that a = 0.05 was a reasonable 
choice, so t a = 1.96 was used in equation (9). 

5.1 Normal Population 

From the population of 10,000 N(O,1) random 
numbers, 10,000 simple random samples of size 
500 were selected. For each sample of 500, a 
histogram with equisized bins was used to 
estimate the distribution function. Using 
Scott's formula the optimal bin width for 
estimating a density function was approximately 
0.44, or about 16 bins. For this simulation we 
used histograms with 20 bins and 100 bins. 

Quantiles were estimated for p=O.10, 0.25, 
0 50, 0.75,  and 0 .90  using the two point 
(linear) interpolation formula and the four 
point (least squares f i t  enforcing monotonicity) 
formula. Variance estimates were obtained for 
each quantile estimate using a histogram density 
estimate and the inverted confidence interval 
formula. The linearized values were substituted 
into the formula for the variance of a total 
from a simple random sample, 

n 
n 2 E (xi-x)2 /(n- l)  with n=500. 

i=I 

Table 1 presents the true quantile estimates 
for the population of size 10,000. Also given 
are the means of the quantile estimates obtained 
from the linear interpolation and the quadratic 
least square f i t  for the 20 and 100 bin 
histograms. The bias is small in all four 
cases. The biases are generally smaller for the 
100 bin histogram, and the estimates are 
vir tual ly identical regardless of whether the 
linear or quadratic f i t  is used. The 20 bin 
histogram with a quadratic f i t  performs almost 
as well. 

Eight estimates of the variance were obtained 
from the combinations of the linear and 
quadratic formulas, the 20 and 100 bin 
histograms, and the histogram and confidence 
interval methods. Table 2 presents these 

variance estimates along with the computed 
variance of 10,000 quantile estimates. In the 
tables, V H denotes variances based on the 
histogram density and V W variances based on 
inverting Woodruff's confidence interval. 
Except for the tai ls of the distribution 
function (p = 0.10 and p = 0.90), the estimates 
based on Woodruff's symmetric confidence 
interval are roughly equal with respect to the 
f i r s t  two significant digits; this is to be 
expected since their method depends on quantile 
estimation and the bias was found to be small 
regardless of whether the linear or quadratic 
method, or 20 or 100 bins, were used. Note also 
that the variance estimates are almost equal (in 
the f i r s t  two significant digits) to each other 
for all except the 100 bin, linear interpolation 
fo rmu I a. 

Correlations between the variance estimates 
obtained from the two methods for the linear and 
quadratic formulas, and the 20 and 100 bin 
histograms were also calculated For the 20 bin 
histogram the correlations were all above 0.70; 
those obtained from the quadratic least squares 
f i t  are all above 0.90. The correlations 
obtained from the 100 bin histogram were not as 
high; the quadratic least squares f i t  gave 
values of about 0.4 in the tai ls of the 
distribution and about 0.7 elsewhere; the linear 
formula gave values in the range 0.2 to 0.4. 

Table 3 presents coverage probabilities 
obtained when 95%, confidence intervals were 
computed using the estimated quantiles and 
variances. These coverage probabilities are the 
percentage of 10,000 confidence intervals that 
contain the true population quantile (given in 
Table I) .  The confidence intervals obtained 
using the 100 bin histogram to estimate the 
density (with b o t h  linear and quadratic 
interpolation formulas) contained the true 
values less often than the 95 advertised for the 
confidence interval. These same confidence 
intervals with the symmetric confidence interval 
method also contained the true value generally 
less often than 95%, but were much closer than 
those using the histogram. The coverage 
probabilities from the 20 bin histogram were all 
close to 95% for both methods. 

5.2 Lognormal Popul ati on 

From the population of 1,000 lognormal random 
numbers, 10,000 samples of size 300 were 
selected without replacement. Histograms with 
20 and 100 bins were used; Scott's formula gives 
16 bins as the optimal number. The same 
statist ics produced for the normal data were 
produced for this population as well. The 
f in i te  population correction factor was used 
when calculating the variances. Tables 4, 5 and 
6 present the summaries. The same observations 
made for the normal population are seen here as 
well. The bias in the quantile estimates (Table 
4) is small, regardless of the number of bins 
used. With 20 bins (nearly optimal), the 
histogram and Woodruff interval give similar 
estimates, and the correlations between the 
variance estimates were high - above 0.8. For 
this skewed distribution, however, the coverage 
probabilities were not as close to 95% as they 
were for the normally distributed data. 
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Table I. Comparison of Quantile Estimates 
Normal Data 

Popu I at i on 
Value 
of the 

Percentage Quanti le 

20 Bins 10 
25 
50 
75 
90 

100 Bins 10 
25 
50 
75 
90 

Quadratic Least 
Linear Formula Squares Fit 

Monte Carlo B ias Monte Carlo Bias 
Estimate Estimate 

- I .  282 -1.289 O. 007 - 1 . 2 8 0  -0.002 
-0.691 -0.695 0 . 0 0 4  - 0 . 6 9 2  0.001 
-0.006 -0.003 - 0 . 0 0 3  - 0 . 0 0 3  -0.003 
0.668 0.670 -0.002 0.665 0.003 
1.262 1.273 -0.011 1.266 -0.004 

-1.282 -1.281 0 . 0 0 1  - 1 . 2 8 1  -0.001 
-0.691 -0.689 - 0 . 0 0 2  - 0 . 6 8 9  -0.002 
-0.006 -0.002 - 0 . 0 0 4  - 0 . 0 0 2  -0.004 
O. 668 O. 666 O. 002 O. 666 O. 002 
1.262 1.263 -0.001 1.263 -0.001 

Table 2. Comparison of Variance Estimates 
Normal Data 

Percentage VH 

Linear Interpolation 
Monte Carl o 

V W Estimate 

quadratic Least Squares Fit 
Monte Carlo 

V H V W Estimate 

20 Bins 
10 
25 
50 
75 
90 

100 Bins 
10 
25 
50 
75 
90 

O. 005494 O. 005385 O. 004886 
0.003732 0.003754 0.003326 
O. 003283 O. 003279 O. 002936 
O. 004059 O. 004011 O. 003634 
0.005768 0.005834 0.005072 

0.006193 0.005648 0.004813 
0.004110 0.003772 0.003488 
0.003488 0.003215 0.003056 
0.004784 0.004191 0.004059 
0.007522 0.005874 0.005434 

0.005698 0.005733 0.004913 
0.003807 0.003703 0.003286 
O. 003357 O. 003254 O. 002989 
0.003841 0.003882 0.003529 
0.005421 0.005759 0.004968 

0.005403 0.005645 0.004813 
0.003762 0.003771 0.003499 
0.003210 0.003213 0.003055 
0.004266 0.004193 0.004080 
O. 006021 O. 005877 O. 005426 
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Table 3. Coverage Probabilities for 95% 
Confidence Intervals Normal Data 

20 bins 100 bins 
L inea r quad ra t  i c L inea r Quad rat  i c 

Percentage V H V W V H VW VH VW VH VW 

10 94.36 95.78 95.42 95.76 90.63 95.29 93.95 95.23 

25 94.89 95.50 96.25 95.74 91.58 94.47 93.77 94.62 

50 95.50 95.78 96.01 95.48 92.43 94.88 94.04 94.81 

75 94.34 94.81 95.29 94.99 90.69 93.36 92.02 93.42 

90 94.18 95.38 95.43 95.56 88.28 94.72 92.44 94.62 

Table 4. Comparison of Quantile Estimates 
Lognormal Data 

Percentage 
Popu I at i on V a I ue 
of  the Quant i le 

Linear Formula 
Monte Carlo 

Estimate Bias 

Quadratic Least 
Squares F i t  

Monte Carlo 
Estimate Bias 

20 Bins 
10 
25 
50 
75 
90 

100 Bins 
10 
25 
50 
75 
90 

3.025 
3.656 
4.426 
5.443 
6.541 

3.025 
3.656 
4.426 
5.443 
6.541 

3.008 
3.609 
4.442 
5.398 
6.406 

3.021 
3.613 
4.444 
5.386 
6.390 

-0.017 
-0.047 

0.016 
-0.045 
-0.135 

-0.004 
-0.043 
0.018 

-0.057 
-0.151 

3.021 
3.608 
4.437 
5.398 
6.395 

3.022 
3.614 
4.444 
5.386 
6.392 

-0.004 
-0.048 
0.011 

-0.043 
-0.011 

-0.003 
-0.001 

0.018 
-0.057 
-0.149 
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Table 5. Comparison of Variance Estimates 
Lognormal Data 

Percentage VH 

Linear Interpolation L quadratic Least Squares Fit 
Monte Carlo Monte Carlo 

V W Esti mate V H V W Esti mate 

20 Bins 
10 
25 
50 
75 
90 

100 Bins 

O. 005363 O. 005439 O. 004689 O. 005627 O. 005733 O. 005020 
0.004990 0.004965 0.004645 0.053150 0.004839 0.004584 
0.007813 0.007791 0.007326 0.007550 0.007912 0.007811 
O. 009524 O. 009529 O. 008629 O. 009288 O. 009046 O. 008064 
0.028641 0.026616 0.025620 0.022929 0.026193 0.024564 

10 0.004697 0.004881 0.003822 0.004455 0.004872 0.003842 
25 0.005372 0.004893 0.004682 0.004890 0.004891 0.004718 
50 0.009740 0.007633 0.008108 0.007914 0.007627 0.008005 
75 0.012278 0.009924 0.009796 0.010206 0.009936 0.009839 
90 0.030066 0.028619 0.028752 0.042568 0.028662 0.029038 

Table 6. Coverage Probabilities for 95% Confidence Intervals 
Lognormal Data 

20 bins 100 bins 
Linear quadratic Linear Quadratic 

Percentage V H V w V H V w V H V W V H V W 

10 94.25 94.73 95.72 95.38 93.99 96.37 96.04 96.32 

25 90.18 90.38 91.39 88.20 86.73 88.56 87.49 88.74 

50 94.18 94.55 93.80 94.01 83.72 94.15 90.82 93.77 

75 89.00 91.19 92.51 91.88 81.87 86.12 86.39 86.32 

90 77.64 83.56 77.53 81.91 64.99 79.59 71.38 79.55 
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