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1. INTRODUCTION

The development of a comprehensive software
package for survey data analysis is currently
underway at the Research Triangle Institute
under contract to the National Center for Health
Statistics and the Public Health Service. As
part of this effort, significant enhancements

are being made to RTI's existing software
system. These include the estimation of
quantiles, such as the median, and their

variances for data arising from complex sample
surveys. RTI's existing procedures SESUDAAN,
RTIFREQS, and SURREGR use Taylor series
linearization for estimating the variance of
statistics such as means, proportions, and
regression coefficients that are obtained from
complex sample surveys. The World Fertility
Survey's CLUSTERS and Iowa State University's
SUPERCARP and PCCARP are examples of other
survey data analysis software packages that use
Taylor series linearizations.

The linearized value of a quantile includes a
term for the probability density function of the

variable of interest. Francisco and Fuller
(1986) presented a method for variance
estimation based on the Woodruff (1952)

confidence interval, and Rao and Wu (1987) have
also done work with this estimator. This
estimator that does not involve numerical
estimation of the density. As part of its
software development project, RTI conducted a
Monte Carlo simulation that compared the
variance obtained using this estimator with that
when a histogram of the data was used to
estimate the density.

In addition to assessing these two variance
estimates, two methods for estimating the
quantiles themselves were also compared as part
of the simulation study. Both quantile
estimation methods are based on a histogram
estimator of the population distribution
function, The first consists of a two point
linear interpolation formula while the second
uses a least squares quadratic fit to four
points with the fitted equation constrained to
be monotone nondecreasing. Histograms based on
20 bins and on 100 bins were considered for both
methods.

2. METHODS

Consider a universe fl of N identifiable units.
A probability sample s of size n is a collection
of n members of 1. If Yg denotes a survey
outcome variable that is observable without
error, then the finite population cumulative
distribution function for the variate Y is

Fa(x) = L I (Ygsx) = N (1)
kel
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where I(YKs$x) is the one-zero indicator function
for the event  (Yisx). The quantile xp
associated with p in the interval (0,1) is

xp = da(p) = iaf {Vk:Fa(Yi)2p, pe(0,1)}  (2)

An unbiased sample estimator for Fg(x) is the
Horvitz-Thompson estimator, baseq on unbiased
sample weights wgk, defined such that wgy = 0 if
unit k € s,

Fs(x) = [T wgk I(YR$x)1+[ L wskl.
kes kes

A sample estimator for the p-th quantile is

%p = as(p) = inf {Yi:Fs(¥) 2 p, Pe(0,1)}. (3)
S

The quantile corresponding to p can pe .
estimated from the ordered x's by f1n§1ng J

such that F(xj) <p< F(xj+1). Then Xy = Xy

2.1 Taylor Series Linearization for a Quantile

Fuller and Francisco (1986) give this
following linear approximation for the estimated

quantile Xp® qs(p)

- () - [ IF(x) - Folxp)]

+ o (n71%) (@)
p

where Fn(x ) is the population distribution
function and fn(x ) is the derivative of
Fn(x ) evaluated at x=x_.

Since Fs(xp) is an unbijased estimator of
Fa(xp). Var(as(p)-aq(p))
= [fa(xp)172 Var[Fs(xp)] + op(n-1/4). (5)

The variance of Fs(xp) is estimated by
substituting the linearized value for the
kth sample unit for Fs(xp), Tk(Fs(xp)) into a

variance formula for a total estima?or from the
sample design. Hence, one could write the
linearized value for xp as

~ -1 ~ 6
Txp) = falxp) T (Fg(xp)) (6)
Using the formula for the linearized value for a

~ w ~
ratio, T (Fg (x))) = ﬁ [1(x& %) - 1. (7)
1



2.2 Estimation of the Density

An estimate of the density function is needed
in order to estimate the variance of the
estimated quantile. Various methods such as
kernel estimation, splines, or historams
could be used. Francisco and Fuller (1986)
show that the following estimator, which
comes from Woodruff's (1952) confidence
interval on Rp, is consistent for fn(xp)'l:

8y = [ag(Uy) - ag(L))1 / (U-L) (8)
where U,y and Lp denote the upper and lower
100(1-a? confidence interval endpoints for
Fs(xp), with xp viewed as a fixed value of x,

Uy = P + tyyp SELFG(x))] (9)
Lp =p -ty SE[FS(xp)],

and where SE[FS(;D)] denotes the Taylor series
standard error estimator for Fs(xp).

Then, Sp = lag(uy) - agL)1/2t,, (10)

"~ "~ - A2 ~
and Var(xp) 83 Var[Fs(xp)]. (11)

U, and Lp are the upper and lower endpoints for
tRe Woodruff method's (1-a) level confidence

interval on x . The t,/2 critical value is the
standard normal value such that
PrilZIDt,/2} = a.
The fo?{owing sections describe two methods
based on a histogram for estimating quantiles
and the density function. A Monte Carlo
simulation was performed to evaluate these
quantile estimates and to compare the variance
estimates given in (11) with that obtained using
a histogram to estimate the density.

3. ESTIMATION OF THE DISTRIBUTION FUNCTION

Ideally gquantiles would be estimated using the
cumulative distribution function as described in
Section 2. This requires sorting the data by
the variable whose quantiie is to be estimated.
Sorting is not practical for estimating the
quantiles for a large number of data items or
for many domains since sample surveys typically
consist of a large number of cbservations. 1In
addition, algorithms for Taylor series variance
estimation typically require that the data file
be sorted by the sample design variables (for
example, stratum, primary sampling unit,
secondary sampling unit, etc.).

Alternatives for estimating the distribution
function are kernel density methods, splines,
and histogram estimators. The histogram
estimator with equal width bins was used in this
study because of its simplicity. Histograms,
1ike other density estimators, are sensitive to
the number of bins. Scott (1979) derives a
formula for the optimal histogram bin width for
density estimation.
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4., ESTIMATION OF QUANTILES

Given the histogram estimate, F of the
distribution  function, two methods were
considered for the estimation of quantiles. One
method was a two point, linear interpolation
formula and the other was a least squares fit of
a quadratic to four points with the additional
restriction of of enforcing a monotonically
increasing function. Suppose there are m bins
in the histogram, ,and denote the endpoints of
the bins by xg, xi, Xm where xg' and xp'
are the maximum and minimum values of the data.

4,1 Linear Interpolation

For linear interpolation, the quantile for a
given percentage pgint, p,was estimating by
finding j such that F(xj') < 'p < (xj+1). _Then,
the pth quantile was “estimated by the linear
interpolation formula

~

X
p

Xj + b(xj+1 - X ) where

b

The estimate of the derivative used in equation
(5) is the slope
(x501- %) 7 Foxpen-Fox)
4.2 Quadratic Fit to Four Points, Enforcing
Monotonicity

A least squares fits of the equation
F(x) = ax2 + bx + ¢ was made to the four points
surrounding p. First, j such that

1 ~ )
F(xj) $p< F(xj+1) was was found. If j=0, then

the four lower bins of the histogram were used;
if j=m-1 the four upper most bins of the
histogram were used. Otherwise the four points
used were

(xé_l. ?(xj_l)), (x;, ?(Xj))-

(xj410 Flxg40)0 and (xg,50 Fx5,5))-

The fitted quadratic equation need not be
monotonic nondecreasing, particularly if some oi

the F's are the same. It is monotonically
nondecreasing on the interval, however, if the
intercept, -b/2a, is outside the range

[min(x'g, max(x')] where min(x') and max(x') are
the minimum and maximum values of the four x'
points. In this case, the pth percentile was
estimated by the root

~ -b * Ibz -4a(c-p)
Xp = 2a
that fell in the interval [min(x'), max(x')].
The estimate of the derivative in Equation (5)
was (2aXg+b)-1.
When %he intercept was within the range

[min(x'), max(x)], then the intercept was forced
to fall at one of the endpoints. That is,




-b/2a = min(x') or -b/2a = max(x'). Least
squares solutigns to F(x) = axZ - 2a min(x)x + ¢
and F(x) = ax2 - 2a max(x')x + ¢ were found.
The solution with the smallest residual sums of
squares was used to estimate Xp» Then,

~ 2min(x') + J(Zmin(x')2 - 4a (c-p)
Xp = 2a '
or the similar result obtained by substituting
max{x') for min(x'). The estimate of the
derivative in Equation (5) was

{2a(%p - min(x'))}-1 or

{2a (% - max(x')))}-L.

5. SIMULATION AND RESULTS

Two Monte Carlo simulations were performed to
compare and evaluate estimates of quantiles and

estimates of their variances. The first
simulation was performed on a population of
10,000 random numbers from a normal

distribution with zero mean and variance equal
to unity. The second was performed on a
population of 1,000 Tlog normal random numbers
with mean 4.65 and variance 1.99. Rao and Wu
(1987) concluded that a = 0.05 was a reasonable
choice, so tp = 1.96 was used in equation (9).

5.1 Normal Population

From the population of 10,000 N(0,1) random
numbers, 10,000 simpie random samples of size
500 were selected. For each sample of 500, a
histogram with equisized bins was used to
estimate the distribution function. Using
Scott's formula the optimal bin width for
estimating a density function was approximately
0.44, or about 16 bins. For this simulation we
used histograms with 20 bins and 100 bins.

Quantiles were estimated for p=0.10, 0.25,
0.50, 0.75, and 0.90 using the two point
(linear) interpolation formula and the four

point (least squares fit enforcing monotonicity)
formula. Variance estimates were obtained for
each quantile estimate using a histogram density
estimate and the inverted confidence interval
formula. The linearized values were substituted
into the formula for the variance of a total
from a simple random sample,
n
n? £ (x;-%)% /(n-1) with n=500.
i=1

Table 1 presents the true quantile estimates
for the population of size 10,000. Also given
are the means of the quantile estimates obtained
from the Tinear interpolation and the quadratic
least square fit for the 20 and 100 bin
histograms. The bias is small in all four
cases. The biases are generally smaller for the
100 bin histogram, and the estimates are
virtually identical regardless of whether the
linear or quadratic fit is used. The 20 bin
histogram with a quadratic fit performs almost
as well,

Eight estimates of the variance were obtained

from the combinations of the Tlinear and
quadratic formulas, the 20 and 100 bin
histograms, and the histogram and confidence
interval methods. Table 2 presents these
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variance estimates along
variance of 10,000 quantile estimates. In the
tables, Vy denotes variances based on the
histogram density and Vy variances based on
inverting Woodruff's confidence interval.
Except for the tails of the distribution
function (p = 0.10 and p = 0.90), the estimates
based on Woodruff's symmetric confidence
interval are roughly equal with respect to the
first two significant digits; this is to be
expected since their method depends on quantile
estimation and the bias was found to be small
regardless of whether the Tlinear or quadratic
method, or 20 or 100 bins, were used. Note also
that the variance estimates are almost equal (in
the first two significant digits) to each other
for all except the 100 bin, linear interpolation
formula.

Correlations between the variance estimates
obtained from the two methods for the linear and
quadratic formulas, and the 20 and 100 bin
histograms were also calculated For the 20 bin
histogram the correlations were all above 0.70;
those obtained from the quadratic least squares
fit are all above 0.90. The correlations
obtained from the 100 bin histogram were not as
high; the quadratic 1least squares fit gave
values of about 0.4 in the tails of the
distribution and about 0.7 elsewhere; the linear
formula gave values in the range 0.2 to 0.4.

Table 3 presents coverage probabilities
obtained when 95%, confidence intervals were
computed using the estimated quantiles and
variances., These coverage probabilities are the
percentage of 10,000 confidence intervals that
contain the true population quantile (given in
Table 1). The confidence intervals obtained
using the 100 bin histogram to estimate the
density (with both linear and quadratic
interpolation formulas) contained the true
values less often than the 95 advertised for the
confidence interval. These same confidence
intervals with the symmetric confidence interval
method also contained the true value generally
less often than 95%, but were much closer than
those using the histogram. The coverage
probabilities from the 20 bin histogram were all
close to 95% for both methods.

with the computed

5.2 Lognormal Population

From the population of 1,000 lognormal random
numbers, 10,000 samples of size 300 were
selected without replacement. Histograms with
20 and 100 bins were used; Scott's formula gives

16 bins as the optimal number. The same
statistics produced for the normal data were
produced for this population as well. The

finite population correction factor was used
when calculating the variances. Tables 4, 5 and
6 present the summaries. The same observations
made for the normal population are seen here as

well. The bias in the quantile estimates (Table
4) is small, regardless of the number of bins
used. With 20 bins (nearly optimal), the

histogram and Woodruff interval give similar
estimates, and the correlations between the
variance estimates were high - above 0.8. For
this skewed distribution, however, the coverage
probabilities were not as close to 95% as they
were for the normally distributed data.
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Table 1. Comparison of Quantile Estimates
Normal Data
Population Quadratic Least
Value Linear Formula Squares Fit
of the Monte Carlo Bias Monte Carlo Bias
Percentage Quantile Estimate Estimate
20 Bins 10 -1,282 -1.289 0.007 -1.280 -0.002
25 -0.691 -0.695 0.004 -0.692 0.001
50 -0.006 -0.003 -0.003 -0.003  -0.003
75 0.668 0.670 -0.002 0.665 0.003
90 1.262 1.273 -0.011 1.266 -0.004
100 Bins 10 -1.282 -1.281 0.001 -1.281 -0,001
25 -0.691 -0.689 -0.002 -0.689 -0.002
50 -0.006 -0.002 -0.004 -0.002 -0.004
75 0.668 0.666 0.002 0.666 0.002
90 1.262 1.263 -0.001 1.263 -0.001
Table 2. Comparison of Variance Estimates
Normal Data
Linear Interpolation Quadratic Least Squares Fit
Monte Carlo Monte Carlo
Percentage VH Vi Estimate VH Vi Estimate
20 Bins
10 0.005494 0.005385 0.004886 0.005698 0.005733  0.004913
25 0.003732 0.003754 0.003326 0.003807 0.003703 0.003286
50 0.003283 0.003279 0.002936 0.003357 0.003254 0.002989
75 0.004059 0.004011 0.003634 0.003841 0.003882 0.003529
90 0.005768 0.005834 0.005072 0.005421 0.005759  0.004968
100 Bins
10 0.006193 0.005648 0,004813 0.005403 0.005645 0.004813
25 0.004110 0.003772 0.003488 0.003762 0.003771  0.003499
50 0.003488 0.003215 0.003056 0.003210 0.003213  0.003055
75 0.004784 0.004191 0.004059 0.004266 0.004193  0.004080
90 0.007522 0.005874 0.005434 0.006021 0.005877 0.005426
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Tabl

e 3.

Coverage Probabilities for 95%
Confidence Intervals Normal Data

20 bins 100 bins
Linear Quadratic Linear Quadratic

Percentage VH Vy VH Vy VH Vy VH Yy

10 94.36 95.78 95,42 95.76 90.63 95.29 93.95 95.23

25 94.89 95.50 96.25 95.74 91.58 94.47 93.77 94,62

50 95.50 95,78 96.01 95.48 92.43 94.88 94.04 94,81

75 94.34 94,81 95.29 94.99 90.69 93.36 92.02 93.42

90 94.18 95.38 95.43 95,56 88.28 94.72 92.44 94.62

Table 4. Comparison of Quantile Estimates
Lognormal Data
Quadratic Least
Linear Formula Squares Fit
Population Value Monte Carlo Monte Carlo

Percentage of the Quantile Estimate Bias Estimate Bias
20 Bins

10 3.025 3.008 -0.017 3.021 -0.004

25 3.656 3.609 -0.047 3.608 -0.048

50 4,426 4,442 0.016 4,437 0.011

75 5.443 5.398 -0.045 5.398 -0.043

90 6.541 6.406 -0.135 6.395 -0.011
100 Bins

10 3.025 3.021 -0.004 3.022 -0.003

25 3.656 3.613 -0.043 3.614 -0.001

50 4,426 4,444 0.018 4,444 0.018

75 5.443 5.386 -0.057 5.386 -0.057

90 6.541 6.390 -0.151 6.392 -0.149
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Table 5.

Comparison of Variance Estimates
Lognormal Data

Linear Interpolation

Quadratic Least Squares Fit

Monte Carlo Monte Carlo

Percentage VH VW Estimate VH Vy Estimate
20 Bins

10 0.005363 0.005439 0.004689 0.005627 0.005733  0.005020

25 0.004990 0.004965 0.004645 0.053150 0.004839  0.004584

50 0.007813 0.007791 0.007326 0.007550 0.007912 0.007811

75 0.009524 0.009529 0.008629 0.009288 0.009046  0.008064

90 0.028641 0.026616 0.025620 0.022929 0.026193  0.024564
100 Bins

10 0.004697 0.004881 0.003822 0.004455 0.004872 0.003842

25 0.005372 0.004893 0.004682 0.004890 0.004891 0.004718

50 0.009740 0.007633 0.008108 0.007914 0.007627  0.008005

75 0.012278 0.009924 0.009796 0.010206 0.009936  0.009839

90 0.030066 0.028619 0.028752 0.042568 0.028662 0.029038

Table 6. Coverage Probabilities for 95% Confidence Intervals
Lognormal Data
20 bins 100 bins
Linear Quadratic Linear Quadratic

Percentage VH Vi VH Vi VH Vy Vy Vy

10 94,25 94.73 95.72 95.38 93.99 96.37 96.04 96.32

25 90.18 90.38 91.39 88.20 86.73 88.56 87.49 88.74

50 94.18 94,55 93.80 94,01 83.72 94.15 90.82 93.77

75 89.00 91.19 92.51 91.88 81.87 86.12 86.39 86.32

90 77.64 83.56 77.53 81.91 64.99 79.59 71.38 79.55
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