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1. INTRODUCTION 
Ratio and regression estimation in conjunction with 

stratification are familiar and well-studied methods in the 
survey sampling literature. Design-based variance 
estimators are summarized by Cochran (1977). Wu (1985) 
introduced a class of estimators, which included the 
standard ones, for the combined ratio estimator and 
obtained the member of the class optimal in terms of 
design mean squared error (mse). In the unstratified case, 
design-based studies of the ratio estimator have been done 
by Rao and Rao (1971), Wu (1982), and Wu and Deng 
(1983). Deng and Wu (1987) also studied design-based 
properties of variance estimators for the unstratified 
regression estimator. Conditional model-based studies 
have been done by Royall and Eberhardt (1975) and Royall 
and Cumberland (1981a, 1981b) and have been extended to 
stratification by Valliant (1987a). 

Most previous studies have been done in the context of 
simple random sampling (srs) or stratified simple random 
sampling (stsrs) with relatively little attention given to 
stratified systematic sampling (stsys) in the ratio estimation 
problem. Much of the literature on variance estimation in 
systematic sampling deals only with the simple sample 
mean (e.g. Heilbron 1978, Wolter 1984). Iachan (1982) 
gives an extensive review of studies on systematic sampling 
and notes that there is a need for work on more complex 
estimators. This paper contrasts the effects of stsrs and 
stsys on properties of variance estimators for ratio and 
regression estimators. Kott (1986) noted that systematic 
sampling is one method of protecting against certain kinds 
of model biases when estimating a mean. As illustrated 
here, systematic sampling can also have important effects 
on variance estimators. 

The population is divided into H, a fixed number, of 
strata and within stratum h a sample of nh units is selected 
from the total of Nh units. The sampling fraction in 
stratum h is fh = nh/Nh and the set of sample units from 
stratum h is denoted as Sh. The total population size is N = 

h Nh and the total sample size is n = Y. h nh. The 
proportion of the population in stratum h is Wh = NhfN. 
Associated with unit (hi) is a random variable Yhi and an 
auxiliary Xhi with the latter known and positive for every 
unit in the population. Assume that there are bounds B1 
and B 2 such that 0 < B1 < Xhi <-- B2 < ~ for each h and i. As 
in Valliant (1987a,b), for model-based analyses we will 
consider a situation in which Nh, nh ---* % fh ~ 0, and nh/n 
and Wh converge to constants in all strata. 

The finite population means of y and x are y = 

) - ' , H ~ N h y h i ] ~  a n d  g = ~'~Hhy~Nhxhi/N and the stratum 
N h Nh 

means are 'Yh = )-'~i Y h i / N h  and ~h = ~ i  X h i / N h  • The 
separate and combined ratio estimators are defined as 

"YRs = y H Wh.~hs~h/~hs and 

YRC "- "YsR]Xs 

where Yhs = ~ s h Y h i / n h ,  Xhs -" ~ s h X h i / n h ,  Ys is the 

stratified expansion estimator defined as .Vs = Z n Wh.Yhs, 

and Xs = 2 n  W h N h s  . The separate and combined 
regression estimators are 

-YEs = y'Hh Wh[-Yhs + bhs(X'h -- Xhs)] 

YLC = Ys + b(~- Xs) 

where bhs = S~yhs/Sxxhs and b = )-'-h KlhSxyhs/]~h KlhSxxhs 

with Klh = Wh(1--fh)/{nh(nh--1)}, Sxyhs = ]~sh(Xhi--Y'hs)Yhi 
2 

, and Sxxhs = Y-sh(Xhi - Xhs) • 

We will study these estimators under some special 
cases of the model 

Yhi = tIh + ~hXhi + Ehi 
E~(EhO = 0, (1) 

var~(ehO = Vhi 

with the ehi'S uncorrelated. This model is often reasonable 
when strata are formed based on the size of x and a more 
complicated relationship between y and x may be 
approximated linearly within strata. Such populations are 
often encountered in surveys of business establishments or 
institutions such as hospitals conducted by national 
governments. 

2. PROPERTIES OF THE RATIO AND 
REGRESSION ESTIMATORS 

Theoretical properties of the ratio and regression 
estimators are sketched in this section. In order to make 
comparisons we employ both model and design-based 
calculations. Two results are useful in this regard. First, 

under appropriate conditions, x/-n--~(~hs--~h) converges in 
distribution under simple random sampling without 
replacement as nh---~oo (Scott and Wu 1981), i.e. 

(~,las- gh) = Od(nh -5) where Od denotes probabilistic order 

with respect to the sample design. The second result is due 
to Kott (1986) and states that when a systematic sample is 
selected from a list ordered by x and x is bounded as in 

Section 1, then (~hs--~h)= O(n~l) with the order being 

nonprobabilistic. Assuming that nn/n converges to a 

constant in each stratum, we have ~n/~ns = 1 + Od(n -5) 

under stsrs but ~n/Y, ns = 1 + O(n-1) under stsys. It follows 

that under s t s r s  -YRs = .Ys + Od(n--5) while 'YRs = 'Ys + 

O(n-a) under stsys. These same relationships to the 

stratified expansion estimator Y s also hold for .9RC, YES' and 

YLC" Thus, the differences among the four estimators are of 

small consequence in large systematic samples. 

Turning to the model bias and variance of YRS under 

(1), Valliant (1987a) noted that 

E~(.YRS -- .~) = )-'~hWh~h(Xh --  Xhs)/Xhs (2) 
2 2 

var~(Y/R S --.~) = ZhWhDxhghs/nh + 

O(n-1) (3) 

where Dxh = ~h/~hs and 9hs = ~sh Vhi/nh. The model 

variance has order n-l, assuming 9hs converges to a 
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constant as n h -~ ~. The model bias (2) is a random variable 

with respect to the sample design. Since, under stsrs (~'hs- 

~h) = Od(n-5), the square of the bias (2) has order n-1 under 
stsrs which is the same order as the model variance (3). On 
the other hand, under stsys the square of the bias is order 
n-2. The results of Kott (1986) on systematic sampling also 
can be applied more generally when, for example, E{(Yhi ) 

is a polynomial in Xhi. 
Thus, when an stsys is selected, the dominant term of 

the model mean squared error is the leading term of (3) 
with the square of the model bias being asymptotically 
much less important than under stsrs. Similar arguments 
lead to the same conclusions for the combined ratio and 
combined regression estimators. The separate regression 
estimator is model unbiased under (1) as is well known. 

The above results on the size of the model bias have 
important implications for mean squared error estimation. 
Earlier research on robust model variance estimation, such 
as Royall and Cumberland (1978), have concentrated on 
cases in which E{(yh. ~ is correctly specified. Variance 

estimators were then developed which were robust under 
the general variance specification given in model (1). The 
fact that systematic sampling can reduce the importance of 
the model biases of the ratio estimators and the combined 
regression estimator under (1) and under more general 
models means that there may be hope of successfully 
estimating their model mse's under that sampling plan. 

3. VARIANCE ESTIMATORS 
The fact that estimating repeated sampling variances 

from systematic samples may present special problems not 
encountered with random samples has long been recognized 
(e.g. Osborne 1942, Cochran 1946, Wolter 1984). These 
special problems are often not accounted for in practice. 
Wolter (1985 ch. 7) notes that common practice in applied 
survey work is to regard a systematic sample as random 
and estimate design variances using random sampling 
formulae. In a population with linear trend, computed 
variances are often considered to be overestimates because 
the random sampling formulae do not appropriately reflect 
the effect of the trend which is picked up by systematic 
selection (see e.g. Hansen, Hurwitz, and Madow 1953, 
§ 11.8, Wolter 1984). 

A variety of variance estimators have been studied for 

-YRC and YRS" This paper examines a number of the choices 

that have been proposed for use under stsrs plans with 
emphasis on contrasting the properties that obtain under 
stratified simple random and stratified systematic sampling 

plans. For -VRS we include 
g 2 

VRsg = ~h  KlhDxh~sh rlhi and 

2 }2 [ rlh i 
VRS J -- Y~h KlhDxh (nh--1)/nh Y'sh 1 -k lh  i -- 

1 - rlhj ]2 
~hh ~'~sh 1 -k lh j J  

where rlh i = Yh i -  Xhi.Yhs/:~hs and klh i = Xhi/(nhxhs). For 
the combined ratio estimator we consider 

g H 2 
vRCg = Dx~ h KlhY~sh r2h i and 

2 H [ r2h i 
VRC J = Dx~h )-'~ sh Klh L 1 - k2h  i - -  

r2hj 2 

h ~sh 1 - k2h j 

where Dx = ~Xs, r2hi = (Yh i -  Yhs) -- (ys/Xs)(Xhi- X, hs), 

k2hi = Nh(Xhi-- X, hs)/{ (nh--1)Nx, s} • 

The estimators VRsg and VRcg define classes studied by 

Wu (1985) who found values of g that were optimal in the 
sense of minimizing the approximate design mse's of the 
variance estimators. For the separate estimators we treat 
the case of the same value of g in all strata although Wu 
proposed that g be allowed to vary among strata. Cases of 
special interest are g = 0,1,2 which have been studied by a 
number of authors. The estimators vRS J and vRC J are 

computational forms for the stratified delete-one jackknife 
estimator whose general form was defined by Jones (1974). 

For some estimator t} the general form is v j = 

~h(1--fh){(nh--1)/nh}~sh{t}(hi) --1}( h ) }2 where t}(hi) has 

the same form as t} but omits the (hi)th sample unit and 

= Y~t~ hi /nh- Since all are bounded, klh i and k2h i 
()( h ~oth o( ( 1 ) Xhi are ) and it is clear from the computational forms 
above that vRS J is asymptotically equivalent to vRS 2 , and 

VRcJ is asymptotically equivalent to Vk¢ 2. Wu (1985) 

earlier showed that under stsrs VR¢ 2 is the closest 

approximation to VR¢ J within the class vRcg. Royall and 

Cumberland (1978 §6) also showed that the general 
jackknife v j is asymptotically equivalent to a variance 

estimator, denoted as G1 by them, which was derived to be 
robust against failure of the variance specification in a 
linear model. 

Variance estimators we consider for the separate 
regression estimator are in the class 

2 
VLsg = ~ h  K2hDgxh~ sh dlhi 

2 
where K2h = Wh(1 -- fh)/[nh(nh -- 2)] and dlh i = (Yhi- .Yhs) - 

bhs(Xhi - X, hs). For the combined regression estimator 
consider 

g H 2 
VLcg = Dx~ h Klh~sh dEhi 

where d2h i = (Yhi-- Yhs) -- b(xhi-- Xhs). The classes defined 
by VLsg and VLcg were studied by Deng and Wu (1987) for 

the unstratified case and by Wu (1985). In the empirical 
study we additionally include the jackknife variance 

estimators for-YES and -YLC" 

In the case of the sample mean Wolter (1984) has 
studied a number of estimators involving contrasts and 
other functions of the sample y's which are designed to 
address the peculiarities produced by systematic samples. 
The focus here will not be to develop new variance 
estimators but to study the consequences of the common 
practice of using random sampling estimators when the 
sample is actually systematic. 

4. PROPERTIES OF VARIANCE ESTIMATORS 
First, consider variance estimators for the separate ratio 

estimator. Since, for a fixed value of g, Dgxh = 1 + Od(n--5) 

under stsrs, we have VRsg = vRS 0 + Od(n- 1-5) under that 
g 

plan. However, under systematic sampling Dxh = 1 + 
O(n-1) and VRsg = vRS 0 + Or(n-2). Thus, the choice of g is 

of less consequence when an stsys plan is used. Under 
model (1) SXX h l 

E{(vRS g) = E h w ~¢hs + tXh (4) 
nhR 
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where = denotes "asymptotically equivalent". Recalling (3), 
vRS 2 is approximately model unbiased when % = 0 while 

other choices of g lead to a bias. When t~h ~ 0, all VRsg are 

biased estimators of the model mse. The bias may be 
substantial and positive under stsys because systematic 
sampling from a list sorted by x prevents small values of 
Sxxhs but reduces the importance of the bias (2). This 
observation is similar to the findings of Royall and 
Cumberland (1978, §5.2) on the overestimation by certain 
variance estimators for the unstratified (H=I) ratio 

estimator in balanced samples (~hs = ~h). On the other 

hand, if y is extremely variable for a given x so that ~¢hs >) 
2 2 

ahSxxhs/(nh~hs), then the model bias of VRsg can be 

negligible under stsys. 
Similar theory can be worked out for v Rcg. An 

approximation to E~(VRcg) is given by the righthand side of 

(4) with ~hs replaced by ~s- Consequently, the same 
remarks given above on the model bias of VRsg under stsys 

also apply to VRcg. 

Next, consider the regression estimators. Using the 
g 

approximation Dxh = 1 -- g(~hs-  ~h)/~h and results from 
Valliant (1987a, §3.3), the approximate model bias of VLsg 

is 

bias~(VLsg) = ~h Wn~h Xhs -- Xh) g cobs_ + 
Xhs 

Esh(Xh i - X'hs)Vhi 
2 

Sxxhs 

which has order n -1"5 under stsrs but only n -2 under stsys. 
Similar findings apply to VLcg if ~h = [3 in all strata. 

However, if the slope parameter is not the same in all 
strata, vLcg has a model bias of order n-1 as do VRsg and 

vRcg" 

5. SIMULATION RESULTS 
The earlier theory was tested in a simulation study 

using six artificial populations. Use of generated rather 
than real populations has some advantages in allowing 
certain population parameters to be systematically varied in 
order to study their effect on estimator performance. In 
particular, we controlled (1) curvature of the regression of y 
on x and (2) the conditional variance of y given x. In each 
of the six populations 2000 (x,y) pairs were generated. 
Each x was generated as x = 150 + 600w where w was a 
standardized chi square random variable with six degrees of 

freedom (df), i.e. w = (Z26-6)/~fl-2. Given x, y was 

generated as 

y = a + bx + cx 2 + dxgz 

where a, b, c, and d were constants and z was a 
standardized chi square random variable with six df. 
Values of x were constrained to be in the interval [1, 1500] 
while y was restricted to [50, 2500]. Table 1 lists the 
parameter values used for each population and Figure 1 
shows scatterplots of samples of 200 units from each 
population. Populations 1 and 2 both have the same 
specification for E~(y) with population 1 having the 

variance of y proportional to x 1"5 while population 2 has 

vary(y) ~ x 2. The remaining populations are similarly 

paired. 
Each population was divided into five strata with N h = 

400 (h=l . . . . .  5). From each population four sets of 1000 
samples were selected: (1) 1000 stratified simple random 
samples of size n=25 (nh=5 for all h), (2) 1000 stsrs's of 
n=100 (nh=20), (3) 1000 stsys's of n=25 (nh=5), and (4) 
1000 stsys's of n-100 (nh-20). All simple random samples 
were selected without replacement and all systematic 
samples were selected with random starts after sorting units 
in ascending order on x within each stratum. 

Table 1. Parameters used in generating study populations. 

Pop'n b c g 

1 1.5 0 .75 
2 1.5 0 1.00 
3 1.8 -0 .0008 .75 
4 1.8 - 0.0008 1.00 
5 - 0 . 3  0.0009 .75 
6 - 0 . 3  0.0009 1.00 

Note: In all six populations a=100 and d=.5. 

Tables 2 and 3 give root mean square errors (rmse's) 
for the separate ratio and regression estimators and square 
roots of the averages of their variance estimators over the 
sets of 1000 samples. Results for the combined estimators 
are omitted to conserve space. We emphasize 
unconditional comparisons, i.e. ones over all 1000 samples, 
because conditional properties under stsrs have been 
examined elsewhere (Valliant 1987a) and because 
systematic sampling virtually eliminates conditional 
differences in the estimators studied here. 

First, we examine the precision of the estimators of the 
mean. In the lower variance populations (populations 
1,3,5) the separate ratio estimator has a considerably lower 
rmse at either sample size under systematic sampling than 
under random sampling, while in the higher variance 
populations (2,4,6) differences in the rmse's are small under 
the two sampling plans. When n=25, the separate 
regression estimator is generally more precise for all 
populations under stsys than under stsrs. When n=100, the 

rinse's of YES are similar under random and systematic 

sampling with the exception of population 4 where stsrs is 
actually more precise. Comparing Tables 2 and 3, there are 

noticeable differences between the rinse's of-VRS and YES 

under random sampling, particularly for n=25 in the higher 

variance populations where -VRS is more precise. However, 

in the systematic samples the rmse's of the separate ratio 
and regression estimates are little different, especially at the 
larger sample size. This is in accord with the theoretical 

observation in {}2 that YRS and 9L s differ from each other 

only by a term of order n -1 under stsys. 
Square roots of average variance estimates are also 

presented in Tables 2 and 3. In random sampling each of 
the choices of VRsg (g=0,1,2) are generally moderate to 

small underestimates at either sample size. The jackknife 
is somewhat of an overestimate in stsrs. For the vRS j 

regression estimator YLS' all VLsg (g=0,1,2) are severe 
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underestimates in stsrs at n=25 with the problem being less 
severe but still present at n=100. At n=25 with stsrs the 
jackknife vLS J has especially wild behavior, overestimating 

in all populations with some of the worst cases being the 
high variance populations 2, 4, and 6. When n=100 the 

jackknife for -~LS is the best performer in stsrs being a 

slight overestimate in all populations while the other 
choices tend to be underestimates. 

With systematic sampling the picture changes. 
Differences in performance of the variance estimators are 
considerably reduced. In Table 2 VRsg (g=0,1,2) have 

virtually the same means in each population as do VLsg 

(g=0,1,2) in Table 3. In the low variance populations 1, 3, 
and 5 all VRsg are overestimates in stsys at both sample 

sizes as predicted earlier on the basis of expression (4). On 
the other hand, in the high variance populations 2, 4, and 6 
the pattern of consistent overestimation does not hold. The 
performance of the VLsg'S is substantially better under stsys 

than stsrs. Their degree of underestimation is reduced or 
eliminated at n=25 and at n=100 is relatively minor where 
present. When n=100, the best performer under stsys in 
terms of bias is vLS j .  

Table 4 gives empirical standard deviations (s.d.'s) of 
the variance estimates. In either random or systematic 
sampling there are differences in precision among the VRsg 

and among the VLsg but the differences are of no great 

consequence. The most dramatic numbers in Table 4 are 
for the jackknife for separate regression estimator which 
has enormous s.d.'s under stsrs with n=25, a finding similar 
to that of Andersson, Forsman, and Wretman (1987) in the 
context of price index estimation. The potential for high 
variability of the jackknife was also noted by Wu (1986) in 
linear model analysis. The extreme variability of the 
jackknife is reduced by using systematic sampling, 
particularly for n=100. 

6. CONCLUSION 
In populations where there is a reasonably smooth 

relationship between a target variable y and an auxiliary x, 
systematic sampling is a defensive strategy. Systematic 
sampling within strata protects stratified ratio and 
regression estimators against certain kinds of model biases 
by producing samples which are more likely to be balanced 
on moments of x than are simple random samples. 
However, that bias protection does not always extend to 
variance estimators. In some types of populations variance 
estimators for the separate ratio estimator are subject to 
severe overestimation in systematic samples which persists 
even in large samples. In cases in which strata are formed 
based on the size of x and the regression of y on x can be 
approximated as a straight line within each stratum, the 
separate regression estimator is a good choice for 
controlling model bias. Additionally, in the types of 
populations studied here, standard variance estimators for 
the separate ratio estimator perform well in systematic 
samples as long as stratum sample sizes are moderately 
large. 

NOTE 
Any opinions expressed are those of the author and do 

not reflect policy of the Bureau of Labor Statistics. 
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Figure 1. Scatterplots of 200 units from each of the 6 simulation study populations. 
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Table 2. Root mean square errors and square roots of average variance estimates for 
the separate ratio estimator in sets of 1000 stratified simple random and systematic 
samples from 6 populations. 

Square roots of avg. var. ests. 
in 1000 samples 

Sample 
Pop'n Type n rinse VRs0 VRS 1 vRS2 vRS J 

1 ran 25 1.4.7 13.3 13.6 14.2. 15.3. 
100 6.6 6.4* 6.5* 6.5* 6.5* 

sys 25 11.0 13.7 13.8 13.9 14.0 
100 5.2 6.5 6.5 6.5 6.5 

2 ran 25 48.8 48.9* 49.1. 49.4* 50.2* 
100 24.3 24.2* 24.2* 24.3* 24.3* 

sys 25 51.8 48.3 48.3 48.4 48.8 
100 22.9 24.2 24.2 24.2 24.2 

3 ran 25 22.5 21.7. 21.8. 22.2* 23.6* 
100 10.6 10.7. 10.7. 10.7. 10.8. 

sys 25 13.7 22.9 22.9 22.9 23.5 
100 5.8 10.9 10.9 10.9 10.9 

4 ran 25 60.6 59.2* 59.2* 59.4* 60.3* 
100 29.0 29.3* 29.3* 29.3* 29.4* 

sys 25 59.3 59.7. 59.7. 59.7. 60.3* 
100 34.2 29.1 29.1 29.1 29.1 

5 ran 25 20.1 19.9. 20.1. 20.4* 21.8 
100 9.9 9.9* 9.9* 9.9* 9.9* 

sys 25 14.2 21.3 21.3 21.3 21.7 
100 6.7 10.0 10.0 10.0 10.0 

6 ran 25 57.9 56.6* 56.6* 56.8* 57.5* 
100 27.2 27.9* 27.9* 27.9* 28.0* 

sys 25 60.9 55.7 55.7 55.8 56.2 
100 28.4 27.9* 27.9* 27.9* 27.9* 

*Cases in which the statistic t = 

[ ~ _  ~ s  (-YRSi- y)2/S ]'{ [~S ( [ v i - ( ' R S i -  y)2] _ [re _ ~S (-YRSi--Y'2]]2/[S(S-1)]} "5 

is less than 1.96 in absolute value; S = 1000 samples. 



O 

Table 3. Root mean square, errors and square roots of average variance estimates for 
the separate linear regression estimator in sets of 1000 stratified simple random and 
systematic samples from 6 populations. 

Square roots of avg. var. ests. 
in 1000 samples 

Sample 
Pop'n Type n rmse vLS 0 vLS 1 VLS2 VLS J 

1 ran 25 14.4 11.7 11.7 11.7 24.3 
100 6.0 5.7 5.7 5.7 6.1. 

sys 25 10.8 12.0 12.0 12.0 14.7 
100 5.0 5.7 5.7 5.7 5.9 

2 ran 25 61.1 48.1 48.2 48.3 116.2 
100 24.8 23.7* 23.7* 23.7* 25.3* 

sys 25 53.3 48.5 48.5 48.6 61.2 
100 22.7 23.8 23.8 23.8 24.3 

3 ran 25 13.7 10.8 10.7 10.7 23.6 
100 5.5 5.3* 5.3* 5.3* 5.7* 

sys 25 10.9 10.4. 10.4. 10.4. 13.1 
100 5.6 5.3 5.3 5.3 5.5* 

4 ran 25 74.1 55.9 55.8 55.9 122.3 
100 28.3 27.6* 27.6* 27.6* 29.6* 

sys 25 59.9 55.5 55.6 55.6 69.9 
100 34.4 27.0 27.0 27.0 27.9 

5 ran 25 17.2 12.1 12.1 12.1 25.3 
100 6.0 6.0* 6.0* 6.0* 6.4 

sys 25 11.9 12.3. 12.3. 12.3. 15.1 
100 6.1 5.9* 5.9* 5.9* 6.0* 

6 ran 25 77.0 56.1 56.0 56.1 136.3 
100 27.7 27.4* 27.4* 27.4* 29.3 

sys 25 62.0 54.7 54.7 54.7 65.9 
100 28.3 27.3* 27.3* 27.3* 28.2* 

*Cases in which the statistic t = 

[ v -  ~Sl (-YLSi- ',2/S ]/{ [~S ([v i -- (-qLSi '-- ')2] -- [9 -- ~S (-YLsi- "Y)2]] 2'[S(S-1)]} "5 

is less than 1.96 in absolute value; S = 1000 samples. 

Table 4. Standard deviations of variance estimates for the separate ratio and separate 
linear regression estimators in sets of 1000 stratified simple random and systematic 
samples from 6 populations. 

Standard deviations in 1000 samples 
Sample 

Pop'n Type n vRS0 vRS 1 v R S 2  VRS.J VLS0 vLS 1 vLS2 vLS J 

1 ran 25 82.7 89.8 122 231 85.2 85.9 88.0 1387 
100 9.2 9.4 10.0 10.1 8.8 8.8 8.8 12.9 

sys 25 85.2 86.0 87.4 88.7 89.8 89.9 90.4 161 
100 9.0 9.1 9.1 9.1 8.9 9.0 9.0 9.7 

2 ran 25 1028 1033 1060 1169 1165 1173 1202 41971 
100 114 114 115 115 109 109 111 152 

sys 25 1033 1026 1023 1034 1182 1182 1185 2081 
100 126 127 128 128 119 120 121 122 

3 ran 25 224 223 240 345 70.9 67.7 66.1 1675 
100 24.8 24.5 24.9 25.5 7.3 7.1 7.1 10.8 

sys 25 173 169 167 176 53.3 53.3 53.5 115 
100 17.7 17.7 17.8 18.0 7.4 7.4 7.5 8.2 

4 ran 25 1725 1708 1725 1789 1691 1675 1691 31915 
100 181 178 178 179 151 149 149 241 

sys 25 1799 1783 1775 1831 1837 1833 1836 3746 
100 174 174 173 174 156 155 155 161 

5 ran 25 193 196 223 621 93.6 92.9 94.0 1330 
100 22.7 22.4 22.4 22.8 11.5 11.5 11.5 17.6 

sys 25 186 178 172 180 108 105 101 137 
100 21.2 21.0 20.7 20.9 9.4 9.4 9.4 9.4 

6 ran 25 1548 1543 1562 1627 1748 1743 1761 66736 
100 163 162 163 163 163 162 163 256 

sys 25 1503 1506 1514 1546 1595 1603 1615 2592 
100 157 157 157 157 157 156 156 160 


