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ABSTRACT 
A computer package for the IBM PC has been 

developed to compute estimates of population 
means, proportions and totals and the 
associated variance-covariance matrix for a 
variety of estimators and designs for both 
single and multistage surveys. The 
underlying computer algorithm for the 
package involves an endorder traversal of a 
tree structure in which each stage of the 
tree corresponds to a stage in the sampling 
design and the nodes correspond to the 
sampling units from the previous stage. This 
type of algorithm is used to save disk space 
and to minimize computing time while 
obtaining exact estimates of the population 
variances and covar iances. 

~ O N  

Bellhouse (1980, 1985) has provided 
computer algorithms for the estimation of the 
sampling variances of means, totals and 
proportions in complex surveys. These 
algorithms have been programmed and are now 
available in an interactive package program 
called TREES. The program runs on an IBM PC 
or compatible with or without a math co- 
processor. 

Several computer programs are available 
for variance estimation in complex surveys. 
The most notable among them for the purposes 
of this paper is SUPERCARP, now available on 
a PC under the name of PC CARP. In some of 
the programs, for example CLUSTERS or 
SUPERCARP which are both described in Francis 
(1981) , estimated standard errors or 
variances may be obtained for some specific 
sampling designs. In other programs, for 
example HES VAR X-TAB, described in Francis 
(1981) , or subprograms in OSIRIS IV, 
described in Vinter (1980), the estimated 
variances for complex surveys are obtained 
by balanced repeated replication techniques. 
Thus, a survey researcher, when designing a 
survey in conjunction with these programs, is 
faced with one of two choices: choose a 
design which fits into one of the programs to 
obtain exact variance estimates, or choose a 
more general design and obtain approximate 
variance estimates. The computer program 
described in this paper is a generalization 
of the researcher's first choice. It 
provides a method to compute exact variance 
estimates for general complex sampling 
designs based on the associated finite 
population sampling theory. The program can 
also be easily used to calculate estimated 
variance components at each stage of a 
multistage survey so that the results can be 
used for planning purposes in subsequent 
surveys. 

The program was originally developed by 
Bellhouse in 1979-80 on a PRIME mainframe. 
It contained variance estimation techniques 
for the estimation of totals in multistage 
designs using simple random sampling or pps 
sampling under Sampford's (1967) or 
randomized pps systematic sampling (see, for 
example, Hidiroglou and Gray, 1975). The 
code was poorly documented and the program 
was not user friendly. As an undergraduate 
computing project Briggs (1983), under the 
direction of Bellhouse, provided some 
documentation for the program. Rylett 
(1986), in a master's degree project done 
under the direction of Bellhouse, provided 
complete documentation to the program and a 
manual, expanded the program to include 
post-stratification through methods describe 
in Bellhouse (1985), and fixed the original 
code so that variance estimates for means 
and proportions would be available 
automatically. Currently, Rylett has 
transformed the program into a user- 
friendly package available interactively on 
an IBM PC or compatible personal computer. 

SAMPLING THEORY 

Consider a survey population consisting 
of N clusters from which a sample of n 
clusters is chosen. In the j-th cluster, 
totals on two covariables, xj and yj, may 
be obtained if the j-th cluster is Chosen 
for the sample. A linear estimator of the 
population total Y, based on sample s, may 
be expressed as 

^ 7 
Y = jEs wjyj 

where wj, for j E s, are known weights fixed 
in advafice or determined from population and 
sampled auxiliary variables. An expression 
for X is similarly obtained. The estimated 
covariance between X and Y may be described 
in general terms as cov (X, Y) = g(x s, Ys), 
a function of the sampled cluster totals, 
where x s and Ys are the 1 X n vectors of 
sampled cluster totals, containing the 
elements x i for j E s and yj for j E s 
respectivelff. The estimated variance, 
var (Y) = (Ys, Ys), is usually a quadratic 
form in Ys. Rao and Vijayan (1977) have 
obtained the necessary form of the 
nonnegative quadratic unbiased estimate of 
the variance, var (Y). The covariance can 
be obtained using the standard technique of 
finding the variance of D = X - Y. 

Two-stage sampling variances and 
covariances can be obtained using the 
unistage sampling formulae. In two-stage 
sampling the sampled cluster totals xj and 
yj are unknown but estimated at the second 
s~age of sampling. On denoting the 
estimated cluster totals by xj and yj, for jE 
s, the 1 X n of estimated cluster totals may 
be denoted by x s and Ys respectively. The 
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estimated sampling covariance under two- 
stage sampling may be expressed as 

. . . .  7. vj c (i) COV (X, Y) = g (x s, YS) + jes j 

based on estimates 

= j~s Wj Xj 

and ( 2 ) 

where wj and vj are known constants and c ° 
is the-estimat@d covariance between xj an~ 
y. within the sampled primary j ~ s. The 3 
formula for stratified sampling is obtained 
upon setting g(.,.) = 0 in (I) and on taking 
the limit of summation in the remaining term 
in (i) as j = i,..., n. 

Formulae (i) and (2) may be extended to 
three-stage and higher stages of sampling. 
However, for the purposes of numerical 
calculations, this extension is unnecessary. 
For any given multistage sampling design, the 
formulae may be used recurs ively to obtain 
numerical values of the estimates and 
estimated variances and covariances. 
Consider, for example, three-stage sampling; 
the extension to four or more stages is 
straightforward. In this situation, a sample 
of primary units is obtained, then samples of 
secondary units within each primary, and 
finally samples of tertiary units within 
each secondary. Begin at the final stage of 
sampling. Using the cluster sampling 
subroutines on the tertiary units, obtain 
estimates of the secondary totals or means 
and the associated variance-covariance 
estimates. Then go to the next stage up. 
Using formulae (I) and (2) with the 
estimates Xs, Ys and c i calculated from the 
previous stage, obtain estimates of the 
primary totals or means and the associated 
within primary variance-covariance estimates. 
Again, go to the next stage and repeat the 
same procedure. In this instance in formulae 
(i) and (2) xs and Ys are the estimated 
primary totals and c i, i = I,..., n, are the 
estimated covariances within primaries. 

THREE ~ AND VARIANCE ESTIMATION 
For any multistage survey carried out at a 

single point in time, a tree structure may be 
imposed on the sampled elements. On 
combining the sampling theory of Section 2 
with tree traversal algorithmB from computer 
science, variance estimates may be obtained 
which follow the structure of the sampling 
design. 

The algorithm for the tree traversal 
follows the work of Bellhouse (1980). The 
method of picking the appropriate 
information to perform the necessary 
calculations is an endorder traversal. In 
this type of traversal, the subtrees are 
traversed from left to right with the root 
as the last node visited. Consider, for 
example, the tree presented in Figure i. 

Each letter correspond to a node on the 
tree. The traversal would start at A which 
is the leftmost node, and continue in the 
order ABCGDEFHI. A k-level tree can be 
imposed on a k-level sampling design. The k 
levels of sampling may include 
stratification and clustering. The sampling 
units at the (j - l) th stage of the design 
correspond to the nodes of the j level of 
the tree, j = 2,..., k. The root of the 
tree (level I) unifies the structure. The 
data level is the kth level of sampling 
while it is the (k+l) th level in the tree 
structure. Provided that the appropriate 
information is given at the nodes of the k th 
level of the tree¢ it is unnecessary to 
build the (k + i) th level for the data. 
However, the data file must be appropriately 
ordered. For example, the tree in Figure 1 
can be associated with a three-stage 
sampling design. The node labelled I 
unifies the tree; nodes G and H are 
associated with the primary sampling units; 
nodes A, B and C are associated with the 
secondary units within the primary "G", and 
nodes D, E and F are associated with the 
secondary units within the primary "H". To 
build the tertiary units, and hence the 
microdata or data file, into the tree 
structure, it is necessary only to store 
the number of s6~npled tertiary units at the 
nodes of the associated secondary units. In 
this case numbers nA, n B, ..., n F would be 
stored in the nodes A, B, . . . , F 
respectively. Since the traversal is 
endorder, the nodes will be visited in the 
given order. When node A is visited, the 
first n A items or lines are read from the 
data file and the within secondary 
estimates and variance-covariance estimates 
are calculated from these data. When node B 
is visited, the n B items at lines n A + 1 to 
n A + n B are read from the file and the 
appropriate estimates made. At node C the 
n C items from the file are at lines n A + n B 
+ 1 to n A + n B + n C, and so on. 

In general, when the tree is traversed, 
terminal and intermediate nodes can be 
reached. When a terminal node is reached, 
the data are picked out of the data file 
and are used to calculate the vector of 
estimates and the matrix of variance- 
covariance estimates. When an intermediate 
node is reached, the estimates from the 
subsample at that node are used to calculate 
the next level of estimates. When the root 
of the tree is attained, the overall survey 
estimates and variance-covariance estimates 
are calculated from the estimates of the 
previous stage. The endorder traversal 
works its way through each of the nodes of 
the stages to complete the calculations. 
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As an example of the calculations made at 
an intermediate node, consider again the tree 
in Figure I, and the intermediate node G 
associated with a primary unit. Because of 
endorder traversal of the tree the nodes A, 
B, and C will have been visited prior to G. 
The calculations made at nodes A, B and C 
provide the quantities x ,] yj and cj for 
j c s used in formulae (l) and (2) to obtain 
the estimates and variance-covariance 
estimates within the primary associated with 
G. In general for an intermediate node will 
contain not only the values of the x's, y's 
and c's but also the additional information 
necessary to complete the calculations of 
formulae (i) and (2). 

This necessary information to obtain 
estimates and variance-covariance estimates 
is input to the program during the 
construction of the tree. A node at level j 
(j = I,..., k) in the tree contains the value 
of the number of branches of the node's 
subtree. This is also the sample size at the 
jth level of sampling. In addition to the 
sample sizes the following information is 
stored in a node at the jth level (j = i,..., 
k): a keyword describing the sampling design 
at the j th stage used to obtain the subsample 
given by the nodes in the subtree at level 
j + I, a keyword to describe the estimator 
to be used, the size variables, if PPS 
sampling was used, and the population size of 
the subsample if finite population correction 
factors are to be employed. 

The program has been expanded to handle 
post-stratification in a multi-stage design. 
The method of calculating post-stratified 
variance estimates is based on the theory of 
Williams (1962). Suppose L post-strata are 
constructed. Let y denote the measurement on 
a sampling unit in the data file. Construct 
L new variables by setting Yh = Y if the 
sampling unit is in the hth post-stratum, 0 
otherwise, h = I,..., L. Make one pass 
through the tree structure which defines the 
sampling design. During this pass, calculate 
an estimate of the population mean for each 
of the L data sets defined by the variabl~s 
Yh, h = I,..., L. The resulting estimate Yh 
is the estimate of the mean in the post- 
stratum h, h^= i,..., L. The post-stratified 
estimate is YD = kZ_-I WhY h, where W h, 
h = I,..., ~L are known stratum weights 
provided in advance. Now transform the 
original data points y by setting x = y - Yh 
if the s~n]pling unit is the hth post-stratum, 
h = I,..., L. Then make a second pass 
through the tree structure. On this^ pass, 
calculate the estimated variance of X, the 
estimated total based on the data x. The 

^ ^ 

resulting estimate, var(X) will be var(YD), 
the post-stratified variance_ estimate of ~he 
estimated total Yp = NY D for the data y, 
where N is the total population sizex The 
esti^mated variance of Yp, var (Yp) = 
var(Yp)/N 2. This method requires the two 
passes through the data and the tree 
structure. However, only one set of 
operations by the program user is necessary: 
provide the stratum weights and the key words 

and numbers which describe the sampling 
design, the sample sizes, and other 
re levant information to perform the 
calculation. 

PC VERSION OF TREES 
The PC Version of TREES runs on an IBM 

or IBM compatible personal computer running 
on DOS 3.0 or later. It requires either a 
colour or monochrome monitor with 
CGA/EGA/VGA capabilites. TREES has been 
compiled so that it will utilize a math 
coprocessor if it is present but it is not 
necessary. The program can be run on a 
hard disk, a 360 Kb 5 1/4 inch floppy 
diskette or a 720 Kb 3 1/2 inch diskette. 
The executable code requires less than 200 
K of disk space. The source code of the 
program consists of approximately 170 
subroutines that were compiled using the 
Microsoft FORTRAN Optimizing Compiler 
Verison 4.01. When converting from the 
PRIME mainframe version to the PC, several 
subroutines were rewritten to produce 
smaller more efficient code. An emphasis 
was placed on writing modular code which 
would accomodate modification of the 
existing source code in later revisions. 
For example, if another probability 
proportional to size (PPS) sampling design 
were to be added to TREES the user would 
have to first write a FORTRAN subroutine 
which calculates the proper joint inclusion 
probabilites. Then, the subroutine which 
determines the PPS design to be used in the 
existing TREES source code must be changed 
to reflect the new option. Finally, the new 
and old source code must be recompiled and 
linked together to produce the required 
program. The ~nain modification for the PC 
version of TREES is the improved input 
capability of the program. TREES now has 
interactive screens which prompt the user 
for the necessary information to built the 
sampling design (ie. number of stages, 
estimators, population and sample sizes, 
etc.), get the data and determine the 
appropriate calculations for the population 
estimates. TREES creates a command file 
from these responses which can be directly 
read into the program on subsequent runs. 
This command file can also be created by 
using a text editor and following a 
prearranged syntax. When post-stratifying a 
survey, the post-stratification variable now 
can be either continuous or discrete. For 
the continuous variable, the user must 
provide the cutpoints which define the post- 
stratum bounds. If required, the 
covariances between the population estimates 
can be calculated. The output of the 
program has been improved to include more 
information about the calculations that were 
performed. Also, the population estimates 
at all the stages in the survey can be 
produced if desired. Finally, an option 
also has been included to send the output 
from the program either to the screen or to 
a file on disk. This file then can be 
printed out and examined at at later time. 
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