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INTRODUCTION 

Surveys are now one of the main 
tools used by governmental agencies and 
private pollsters to collect information 
on a wide range of topics. For example, 
each month Statistics Canada turns to the 
population to evaluate the unemployment 
rate. In 1977-78, the Canada Health 
Survey (CHS) was done by Health and 
Welfare to study the health status of the 
Canadian population. (Health and Welfare 
Canada [1981]). 

Survey data must be handled with 
care, and an awareness of exactly how the 
data were collected is crucial before a 
proper analysis can be conducted. 

Most of the national and other large 
surveys use a complex sample design. This 
is mainly due to the large costs involved 
in using simpler sampling methods such as 
simple random sampling. Thus, a 
reasonable sampling design is often found 
to be a combination of stratification, 
clustering and simple random sampling. 

Different methods of variance 
estimation have been developed for 
complex survey designs. The purpose of 
this study is to compare some of the 
techniques suggested in the literature 
for the estimation of the variance of the 
regression coefficients in a multiple 
linear regression model. 

METHODS 

The multiple linear regression 
equation may be written as 

Y = x ~ +  e 

where Y is the n x 1 matrix of 
ob s e rv at ions (dependent 
variable); 
X is the n x p matrix of 
independent variables; 

is the p x 1 vector of 
regression parameters; 

is the n x 1 vector of error, 

Along with the equation, the following 
are defined: 

W is the n x n diagonal matrix 
of weights ; 

and Var(E) = Vu 2 . 

In the case of unweighted 
regression, the weight matrix and the 
variance matrix V are simply the identity 
matrix I. In the case of simple 

regression, p = 2 and the first variable 
of the X matrix is a column of "l's" for 
the intercept. 

Five different methods of estimating 
the variance of the estimator of ~ will 
be investigated in this study. 

The first formula considered is 
classical weighted least squares 
estimation (WLS i). This choice was made 
because of the popularity of the method 
in studies in which a more complex 
sampling scheme than simple random 
sampling was used. 

The WLS 1 estimate of the vector of 
coefficients is found in Draper and Smith 
[1981] to be 

= (x,wx)-1 x'~ 

and its variance is 

Var(~) = (X'WX)-I a2. 

This estimator of the variance is 
exact only in the situation where 

Var(Y) = w-la 2. 

The second formula is a modification 
to weighted least squares found in Nathan 
[1981] (WLS 2). In this case, the 
assumptions are that 

i) Var(Y) = Ia 2 
and ii) the diagonal matrix of sampling 

probabilities z is available. 
W, defined as W = ~-i, is the 
matrix of weights. 

Nathan proposed the same estimator 
of ~ as above 

A 

= (X'WX) -I X'WY 
with variance given by 

Var(~) = (X'WX) -I X'WWX (X'WX) -I a 2 

It is important to note here that 
s 2 the estimate of a 2 is the estimate 

, l 

of the variance of Y, and not of the 
weighted Y. So s 2 is not the mean square 
error term from weighted regression, but 
the mean sum of squares of the error of 
the unweighted regression of Y on X. 

We modified the above estimator 
(modification to Nathan' s formula WLS 3) 
and its variance for the situation in 
which 

i) Var(Y) = Vo 2 
ii) the diagonal matrix of the 

sampling probabilities ~ is 
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available (i.e. W = x -1 is the 
weights matrix). 

Then, 

= (X,WV-Ix)-i X,WV-iy 
and 
Var (~) = (X' wv-lx) -Ix' WV-iWX (X' wv-lx) -lo2. 

In this situation, the s 2 estimate 
of o 2 is the mean square error term from 
the regression in which the W matrix does 
not appear. That is, the s 2 estimate one 
gets from the regression of ¥ on X where 
U = V -I is the only weight matrix 
considered. 

Another approach to the calculation 
of the variance involves expanding the 
function of the regression vector using 
Taylor's theorem (Taylor's expansion 
TEX). For that purpose, it is found in 
Binder [1983] that one can write 

is 

T(~) = (X'WX)~ - X ' W Y  = O. 

Its Taylor approximation around ~ = 

T(~) = T(~) + T(B) (~ - ~) = 0 

Isolating ~ and taking the variance 
conditional on Xi, one finds that 

Var(~[Xi) = (X,WX)-Ivar(T(@)IX i) (X'WX) -I. 

In this approach, the problem is how 
to estimate Var(T(~) ]X i). 

T(~) = (X'WX)~ - X'WY 

= - (x'w) E 

and so Var(T(@) IX i) can be estimated as 
the variance-covariance matrix found 
among the xiwie i's. Variance matrices can 
be calculated following the survey design 
i.e. in each cluster or strata, 
Var (T (~)[Xi) is estimates from the 

xiwie i ' s. The combination of these 
different variance estimates is the 
overall estimate of Var(T(~) [ X i) used in 
the formula of Var(~Ixi) . 

The final method studied is the 
bootstrap (Efron [1982]) . This consists 
of sampling, with replacement, B 
"resampl es" from the sample under 
investigation. All of the resamples are 
of the same size as the original sample. 
An estimate of @ is then obtained from 
each of the B resamples. Finally, the 
estimator of the variance of ~ is 
evaluated using 

Var(~) = 7 /~ - B,J 2 
B - 1 

where ~I is the estimator of 
obtained in the i th resample 

and ~* is the mean of the B ~l's. 

It is possible to incorporate the 
features of the sampling design used in 
this resampling process. This would 
involve sampling n i elements from the n.i 
original observations within cluster 1 
etc. In this manner, not only can the 
probabilities of selection be preserved, 
but the different cluster sizes can be 
kept as well. 

The bootstrap technique was examined 
using two approaches to resampling. The 
first one (bootstrap no design BND) only 
considered the sampling weights. The 

second (bootstrap with design BD) 
reproduces the cluster structure of the 
sample in each resample as well as the 
selection probabilities. In both 
situations, B was taken to be equal to 
200. 

In summary, the five methods that 
are to be investigated are given in Table 
I. 

, T 

TABLE 1 

SUMMARY OF FORMULAE 

ESTIMATOR OF VAR(~) HYPOIHESES 

~TLS 1 W=~-I 
v~(~ = v o' 

~LS2 W=~-I 
Vat(Y) = I 02 

WIS3 W=Tr -I 
Vat(Y) = V o ~ 

T(~)=(x,~)~-x'~ 

HND Sampling does not 
follow sample design 

Sampling does 
follow sample design 

ESTIMATOR OF 

(X'~ -I X'WY 

(X'~DQ -I X'WY 

(X,WV-iX) -i X,WV-iy 

(X'WX9 -I X'WY 

(X'WX) -I X'WY 

(x'wx) -I x'wY 

(X'~ -I s' 

(X'~DO -I X'W~X (X'~ -I s" 

(x,wv-iD -I x,w~x (x,w~iD -I s' 

(X'9~Q -I G (X'~IX) -I 

299 

299 

where X is the independent matrix; 

Y is the dependent matrix; 

w is the diagonal matrix of the inverse of the probabilities of 
selection; 

V and s' are the diagonal matrix and the constant that conloose 
the estimated variance of Y; such that Var(Y) = V s' ; 

G is a matrix that estimates the vari~ of X'W~ [ X i 

~ and ~i are the estimates of ~ obtained from the ith resample. 

and @* and ~' are the average value of the respective 300 ~i's 

,, 
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SIMULATED POPULATIONS 

The creation of populations with 
definite characteristics and the repeated 
random sampling from them is a powerful 
tool in the comparison of different 
methods of estimation of parameters and 
their variances. Since all the 
characteristics of the simulated 
populations are known, it is possible to 
assess under which circumstances each of 
the approaches is most effective and 
robust. 

The model used in the simulation was 
a linear model that related blood 
pressure to age and body fatness. The 
regression parameters used in the model 
were chosen to approximate the actual 
values found in studies using the results 
of the Canada Health Survey. 

In a large population like that of 
Canada, the variability in blood pressure 
may be due to many different factors. An 
important factor is due to intra- 
individual variation, that is, the 
variation in response at different times 
in the same person. This variability is 
referred to as "person error". A second 
important factor is the inter-individual 
variability. This is observed in that, 
under the same conditions, people from 
the east coast of Canada may be very 
different than people from the Prairies 
but not so different than other people 
from the Maritimes. This is referred to 
as "cluster error". Another way of 
understanding cluster error is to 
consider how members of a family tend to 
have more similarities than do unrelated 
people. 

Four combinations of person error 

u TABLE 2 

I DIFFERENT COMBINATIONS OF ERROR (CLUSTER 
AND PERSON) USED TO DEFINE THE 

i FOUR POPULATIONS STRUCTURES 

Homogeneous 
person error 

A 

Small cluster error 

Heterogeneous 
person error 

B 

C " N(0,20) 

P " N(0,80) 

C ~ N(0,20) 

P N(0,v i ) 

vi=59.5+0.5*Age 

5i = 80 

Homogeneous 
person error 

C 

Large cluster error 

Heterogeneous 
person error 

D 

C " N(0,80) 

P " N(0,20) 

C " N(0,80) 

p - N(0,vi ) 

vi=-0.5+0.5*Age 

~i = 20 

~here C stands for cluster error and P 

Stands for person error 

I The equation of v i reproduces the slope 
found in the Canada Health Survey for the 

i variance of blood pressure on age. The 
[coefficient for body fatness was non 
~ significantly different then zero in the 
~Canadian poPulation. .... 

and cluster error are created. Table 2 
summarizes the combinations of error used 
to define the four population structures. 

Each of these combinations of error 
are added to a basic diastolic blood 
pressure value. The basic blood pressure 
regression is 

Blood Pressure = 58.5 + 0.19 x Age + 
0.38 x Body Fatness 

where Age follows a normal distribution 
with mean 41 and variance 3 16 (- 
N(41,316)) and Body Fatness ~ N(25,19.9). 
So a woman aged 30 and with body fatness 
25 would have a basic blood pressure of 
73.7. Values of cluster and pure error 
would be simulated for her following the 
definitions found in Table 2. Finally, 
her observation on population A would be 
73.7 + the cluster error simulated 
following a N ( 0,20 ) + the pure error 
simulated following a N(0,80) . In 
population B, her observation would be 
73.7 + the same cluster error as 
simulated in population A + the pure 
error simulated following a N(0,74.5). 
Etc. 

Variations in the variance of the 
pure error are introduced to allow a 
comparison of the methods in regards to 
h e t e r o g e n e o u s v a r i a n c e among 
observations. The distribution of age and 
body fatness are those found in women in 
the Canada Health Survey. For both age 
and body fatness, a minimal value is 
fixed at 15 in the simulations. 

Each of the four populations was 
used to create samples of size 50, made 
up of i0 clusters of 5 individuals. In 
order to study the effect of sample size 
on the methods, the same population 
structures were also used to simulate 
samples of size I00. In that situation, a 
sample was made up of i0 clusters of i0 
individuals. 

From each of the population 
structures, 300 samples of size 50 and 
300 samples of size i00 were simulated. 

RESULTS 

To compare the different values of 
variance estimates of a given population, 

11 a "gold standard is needed. The value 
should be as close as possible to the 
"true" value. 

For each population, 300 estimates 
of the regression coefficients of blood 
pressure with age and body fatness as 
well as the intercept were obtained. The 
calculated variance among them was used 
as the gold standard. For populations B 
and D, there were, in fact, an extra 300 
estimators of the slopes and intercept 
obtained from the modification to 
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Nathan's formula (WLS 3). So, for these 
two populations, two gold standards were 
calculated. The first one was used to 
compare the methods that consider the 
variance of blood pressure as constant 
over all values of age in their 
estimation, while the second one was used 
to compare WLS 3. The values of the gold 
standards for the variance of the age 
coefficients are found in Table 3 along 
with their mean value and coefficient of 
variation. No significant differences 
were found between estimates of the 
coefficients obtained from WLS 3 and from 
other methods. 

TABLE 3 

GOLD STANDARDS 

MEAN, VARIANCE AND COEFFICIENT OF 
VARIATION OF THE ESTIMATES OF THE 

REGRESSION 

COEFFICIENT FOR AGE.* 

A B C D 

N = 50 

.1919 .1925 .1910 .1916 
o 2 .009108 .009359 .007835 .007941 
CV .50 .50 .46 .47 

** .1907 .1887 
** 

a' .009228 .007827 
CV** .50 .47 

N = i00 

.1904 .1909 .1866 .1876 
G' .004545 .004688 .004523 .004726 
CV .35 .36 .36 .37 

** .1890 . 1 8 7 3  
** 

~' .004636 .004727 
CV** .36 .37 

I ! 

, for the formula i 

Blood Pressure = 58.5 + 0.19 * Age + 0.381 
Body Fatness i 

~** statistics of the estimates obtained 
using WLS 3 (Modification to Nathan's 
formula) 

T o summa r iz e t h e results, 
coefficients of variation and "ratio 
tables" are presented for the estimation 
of the variance of the age coefficient. 
The coefficient of variation (CV) is 
defined as the ratio of the standard 
deviation to the mean value of an 
estimator. These are presented in Tables 
4 and 5. For Tables 6 and 7 (the ratio 
tables), each entry is obtained as the 
ratio of the mean value of the estimator 
over its gold standard. 

TABLE 4 

COEFFICIENTS OF VARIATION OF VARIANCE 
ESTIMATORS FOR AGE 

300 SAMPLES OF SIZE 50 

GOLD .50 

WLS 2 .31 
WLS 1 .34 

BND .51 
TEX 64 
BD .67 

GOLD .50 

WLS 2 .31 
WLS 1 .34 
WLS 3 .33 
BND .54 
TEX .64 
BD .67 

GOLD .46 

WLS 2 .53 
WLS 1 .58 

BND .72 
TEX .96 
BD .97 

GOLD .47 

WLS 2 .53 
WLS 1 .58 
WLS 3 .55 
BND .71 
TEX .92 
BD .95 

TABLE 5 

COEFFICIENTS OF VARIATION OF VARIANCE 
ESTIMATORS FOR AGE 

300 SAMPLES OF SIZE i00 

A 

GOLD .35 

WLS 2 .23 

WLS 1 .24 
BND 42 
BD .44 
TEX 68 

GOLD .36 

WLS 2 .23 
WLS 1 24 
WLS 3 .25 
BND .43 
BD .44 
TEX 66 

GOLD .36 

WLS 2 .42 

WLS 1 .45 
BD .60 
BND .63 
TEX 80 

GOLD 37 

WLS 2 .41 
WLS 3 .44 
WLS 1 .45 
BND .63 
BD .63 
TEX .79 

In order to compare the different 
results within themselves and to the gold 
standards, a number of statistics were 
used. First, ANOVA was performed to test 
the null hypothesis 

H 0 : WLSI = WLS2 = WLS3 = TEX = BND = BD 
for each of the variance components. In 
all cases the null hypothesis was 
rejected. Scheffe's multiple comparisons 
of the means was used to determine which 
pairs of means are significantly 
different. Lastly, t-tests were performed 
to compare each of the estimates to the 
gold standards. 

Taking a closer look at the tables, 
the following observations were made. 

WLS 2, WLS 3 and WLS 1 displayed the 
smallest variation between estimates of 
variance. (Tables 4 and 5) 

The order in which the different 
ratios appeared was almost always the 
same with WLS 2, followed by WLS 3 (where 
appropriate) and BND. When the sample 
sizes were 50 WLS 1 performed better 
than TEX and BD. Alternatively, when 
sample sizes were i00, BD performed 
better than TEX and WLS I. (Tables 6 and 
7) 
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I 'RA . . . . . . . . .  ~- . . . . . . . . . . . . . . . . . .  ~TABLE 6 . . . . .  

TIO OF VARIANCE OF ESTIMATOR TO "TRUE" 
VARIANCE 

300 SAMPLES OF SIZE 50 

GOLD . 009108 

WLS 2 .99* 
BND .91 
WLS 1 .86 
TEX .85 
BD .80 

GOLD .009359 

WLS 2 .97* 
WLS 3 .96 
BND .89 
TEX .84 
WLS 1 .83 
BD .78 

GOLD . 007835 

WLS 2 I. 09 
BND .97 
WLS 1 .94 
BD .89 
TEX .86 

GOLD .007941 

WLS 2 1.08" 
WLS 3 1 07* 
BND .97* 
WLS 1 .92* 

BD .88* 
TEX .85 

* non significantly different then the 

Gold Standard 

TABLE 7 

RATIO OF VARIANCE OF ESTIMATOR TO "TRUE" 
VARIANCE 

300 SAMPLES OF SIZE i00 

A B C 

GOLD .004545 GOLD .004688 GOLD .004523 

WLS 2 .94 

BND .87 

BD .82 
TEX .82 
WLS 1 .80 

WLS 2 .92 
WLS 3 87 

BND .86 
TEX .81 
BD 80 

WLS 1 .78 

WLS 2 .88 

BND 78 

BD .78 
WLS 1 75 
TEX .70 

D 

GOLD . 004726 

WLS 2 .85 
WLS 3 80 

BND .76 
BD 75 
WLS 1 72 

TEX .69 

Few significant differences appeared 
when comparing the means of the estimates 
among themselves. In all cases, when 
differences were detected, WLS 2 and/or 
WLS 3 were involved. Although most of 
the estimates were significantly 
different from their gold standard, it 
appeared that WLS 2 constituted the 
majority among those who showed no 
differences when the sample sizes are 50. 
For samples of size i00, no differences 
were found. 

Looking at the effect of homogeneous 
variance of blood pressure (populations A 
and C) by comparison to heterogeneity 
over age (populations B and D), one found 
only negligeable effects. The ratios of 
the estimates to the gold standards 
showed a slight increase with sample 
sizes of 50, while they showed a 
decrease with samples of size I00. In the 
great majority of the cases, the 
fluctuations were in the magnitude of 
±3%. 

Another issue is that of changes in 
cluster and person error. The gold CVs 
did not change as a function of person or 
cluster error while the estimates CVs are 
larger for large cluster error. In the 

ratio tables of size 50 (Table 6), most 
estimates increased, getting closer to 
the gold standard or over-estimating it 
with large cluster error. When sample 
size was I00, (Table 7) most estimates 
decreased with important cluster error. 

When the sample size was doubled, 
the estimated variances were, as 
expected, smaller. That is, the gold 
standards and its estimates were smaller. 
The ranking of the different ratios did 
not change much except for BD, which 
improved over WLS 1 with increasing 
sample size. (Tables 6 and 7) 

DISCUSSION 

The order in which the different 
ratios appear is fairly consistent 
throughout the study. One of the main 
features is the improvement of BD by 
comparison to WLS 1 when passing from 
samples of size 50 to i00. This seems to 
indicate that, in the simulated 
populations, WLS 1 is adversely affected 
by increasing sample size while BD is 
not. 

The homogeneity/heterogeneity of the 
person error term has very little effect 
on the results, even when person error 
has the greatest influence on the total 
variance of blood pressure. The gold 
standards do not change with the presence 
or absence of homogeneity. All the 
methods seem to react in the same way to 
this situation. It is interesting to note 
that WLS 3 - created especially for this 
situation - does not perform any better 
than WLS 2 from which it is not 
significantly different. This might be 
because the variability (heterogeneity) 
of the variance of blood pressure was not 
large enough. Another explanation can 
simply be that the methods are robust for 
this change. 

The effect of increasing cluster 
error over person error is a bit puzzling 
to evaluate. While it is clear that the 
CVs are larger for large cluster error, 
the results from the ratio tables are not 
consistent over samples of size 50 and 
i00. Even if it seemed after examination 
of the results for size 50 that some 
trend could be found, it does not hold 
when applied to samples of size I00. One 
also notes that the gold standards 
decrease with growing cluster effect. 
This suggests that, with important 
cluster effect, there is less variability 
in the estimation of the slopes than with 
important person error. This lowering of 
the gold standards and of the estimates 
of the variance is observed in the CVs 
where the average of the estimates of the 
variances are used in the denominator. 

Increasing the sample size from 50 
to i00, one observes, as expected, that 
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the variance of the estimators of the 
coefficients are diminished. When 
comparing the ratios in population A of 
size 50 to population A of size i00 etc, 
no trend is apparent, although in most 
cases, ratios increase with increasing 
sample size. The effect of sample size is 
also found in the CV tables where the 
coefficients decrease with large sample 
sizes. This means that the estimation of 
the variance of the regression 
coefficients is done with more precision 
- or less variability - when more 
observations are present. 

CONCLUSION 

Considerations for the estimation of 
the variance of regression coefficients 
are given to different methods. From the 
simulations of size 50, WLS 2 - followed 
by WLS 3 - performs best, having the 
ratio closest to the gold standard and 
being, most often, significantly 
different from the other methods. When 
the samples are of size i00, one 
witnesses an improvement of BD, bringing 
the WLS 2-WLS 3-BND-BD group closer 
together, with TEX an WLS 1 following 
behind. From these results it seems that 
WLS 2-WLS 3 and/or BND-BD evaluate the 
most reliable estimates of the variance 
when the sample size is relatively small 
and survey design is not too complex. 

Further work needs to be done to 
properly make a distinction between WLS 
2-WLS 3 and BND-BD and assess what are 
the conditions that bring about 
significant differences between them. In 
order to achieve this, more simulations 
can be done where more conditions are 
imposed on the populations - such as 
fixed correlations between age and body 
fatness, or varying cluster size within a 
sample etc. Just as important is the 
question of what happens when the design 
is of increasing complexity. TEX very 
well could perform better in a more 
complex setting. One would also hope to 
see WLS 1 show its limitations in such 
circumstances. To begin to answer this 
question, simulations can be done with 
increasing complexity in their sampling 
design and also greater sample size. 
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