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A B S T R A C T  

In this paper the method of log-l inear  imputation or 
LLI (Singh 1988) for the problem of s ta t i s t ica l  matching 
is briefly described by means of a simple example taken 
from Rodgers (1984). A simulation experiment  for 
evaluating LLI in comparison to some other  methods of 
s ta t i s t ica l  matching is also described. It involves use of 
synthet ic  data  generated from mult ivariate  normal 
distributions. Some preliminary empirical  results 
indicate the potential  advantage of LLI in controlling 
the sensitivity of s ta t is t ica l  matching to departures  
from the usual assumption of conditional independence. 

1. THE PROBLEM OF S T A T I S T I C A L  M A T C H I N G  

The problem of s ta t is t ical  matching arises when one 
is interested in merging two (or more) data  files in the 
absence of unique identifying information at the micro 
level. This contrasts  with the problem of exact  
matching for file merging via techniques such as record 
linkage because the set of units in the two files for 
s ta t is t ica l  matching may be completely disjoint or have 
only a small unknown overlap. Some useful references  
for s ta t i s t ica l  matching are Kadane (1978), Sims (1978), 
U.S. Depar tment  of Commerce  (1980), Rodgers (1984) 
and Rubin (1986), among others. The two files may 
have been col lected in two separate  surveys using 
different  samples or one file could correspond to an 
administrat ive data  source. For example, at Stat is t ics  
Canada, a microeconomic database te rmed SPSD or 
Social Policy Simulation Database (Wolfson et al. 1987) 
was constructed for use in economic policy analysis. It 
was built in part  by s ta t is t ica l  matching of information 
from Revenue Canada with the Survey of Consumer 
Finance. The present investigation was motivated in 
part by considerations of evaluating SPSD. 

In s ta t is t ica l  matching, the problem can be 
formulated as follows. Consider two microdata files 
denoted by A and B. The file A contains information on 
the vectors  of variables X and Y, the file B contains 
information on vectors  X and 7 and for the purposes of 
analysis at the microlevel we are interested in 
construct ing file C that  contains for each micro-unit  on 
the original file A, information about X,Y and Z. 

The process of s ta t is t ical  matching for file merging 
can be viewed (see Rubin 1986) as a process of imputing 
Z values for the candidate records (X,Y) in file A using 
(X,Z) records from file B as donors in a single super file 
obtained by combining files A and B. As usual, we 
assume that  the Z values are missing at random in the 
combined file. However, it differs from the usual 
imputation procedures because there are no donor 
records containing the complete  set of values (×,Y,Z).  
Therefore some additional assumptions/techniques are 
required to es t imate  the conditional distribution 
f (Zl×,Y)  from donor records which in turn could be 
used for drawing imputed values. Two situations arise. 

Case I Y Ignorable This corresponds to the 
assumption of conditional independence of Y and Z given 
X i.e. f(ZIX,Y) : f (ZlX).  Thus the information in Y 
can be ignored and the problem of completing records 

with missing Z values in file A reduces to the usual 
imputation problem in a single file. Commonly used 
methods of imputation include class mean, hot deck 
(random, distance and sequential) and regression, see 
e.g. Li t t le  and Rubin (1987). A general  approach to 
s ta t i s t ica l  matching that  has often been used in 
pract ice  is equivalent to distance hot deck imputation 
(HDI - distance) in the combined file when Y 
information is ignored. More specifically, cohorts (or 
imputation classes) are first formed using × variables 
i.e. divide files A and B into subfiles such that  within 
each subfile all records have the same value for all 
cohort variables. Next to complete  a file A record, one 
looks in the subfile from file B corresponding to the 
same cohort and minimizes the value of a distance 
function defined using × in order to choose a Z value. 

The above HDI approach to s ta t i s t ica l  matching 
could cause distortion in the marginal distribution of Z 
in the matched file. This is a minor problem and can be 
resolved using constrained matching techniques.  There 
is, however, a more serious problem result ing from the 
assumption of conditional independence. The 
relationship between Y and imputed Z values in file A 
may differ substantially from the true relationship 
between Y and Z; see Rubin (1986) for i l lustrations of 
the sensitivity of s ta t i s t ica l  matching results to 
departures  from the conditional independence 
assumption. This is a major problem since matching 
was conducted in first place to analyse the Y,Z 
relationship. This leads to the following more realist ic  
situation: 

Case II Y Non-ignorable In this case, the Y 
information is not ignored in the process of s ta t i s t ica l  
matching. The method of log-l inear imputation for 
multiple files (LLI-M as defined in Singh 1988) can be 
used for this purpose. The use of the term log-l inear  
ref lects  the use of log-l inear  modelling for es t imat ing 
the conditional distribution for imputation in the 
categor ical  framework. The basic idea of LLI-M 
approach is to transform the s ta t i s t ica l  matching 
problem to one involving categorical  variables X*,Y*,Z* 
so that  the unavoidable assumption of conditional 
independence holds approximately in the t ransformed 
framework.  This of course cannot be checked directly 
because there  is no information on the joint distribution 
of X*,Y* and Z*. However, an important advantage of 
the categorical approach is that a suitable criterion can 
be constructed to control possible violation of the 
conditional independence assumption. This criterion is 
used to choose categories for (X*,Y*,Z*) and thus Y 
information is indeed used in the process. After a 
suitable partition of (X,Y,Z) space into categories for 
(X*,Y*,Z*) is selected, the LLI method is used to first 
impute Z up to a Z* category using the conditional 
categorical distribution f (Z*I X*) within the imputation 
class (X*,Y*) and then a value of Z within the Z* 
category is chosen appropriately. 

Section 3 contains a brief description of log-linear 
imputation for the usual imputation problem in a single 
file (i.e. Case I) by means of a simple example of 
Rodgers (1984) given in Section 2. This is then used to 
motivate LLI for statistical matching (i.e. Case II) in 
Section 4 for the same example. The log-linear 
imputation methods for the two cases (corresponding to 
single and multiple files) are denoted respectively by 
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LLI-S and LLI-M. We omit t heo re t i ca l  deta i ls  which 
can be found in Singh (1988). In Sect ion 5, a s imulat ion 
method for eva lua t ing  LLI is described and some resul ts  
from a pre l iminary  phase are repor ted .  Some remarks  
and di rect ions  of fu r ther  research  are  outl ined in 
Sect ion 6. 

2. RODGERS' EXAMPLE 

The following miniature example of Rodgers (1984) 
on statistical matching will be convenient to describe 
LLI-S and LLI-M in later sections. The example 
involves eight records from file A and six records from 
file B. There are two X variables --  sex (X I) and age 
(X2). Y contains one variable, log(personal earnings), 
and Z contains one variable, log(property income). For 
both files, the data (see Table i) are simple random 
samples drawn from populations of 24 units. The 
weight assigned to each record is the reciprocal of the 
probability of selection. 

Table 1: Data on File A and Fi le  B 

Case Xl X2 Y Wt Case Xl X2 Z Wt 
(A) (A) (B) (B) 

A1 M 42 9.156 3 B1 F 33 6.932 4 
A2 M 35 9.149 3 B2 M 52 5.524 4 
A3 F 63 9.287 3 B3 M 28 4.223 4 
A4 M 55 9.512 3 B4 F 59 6.147 4 
A5 F 28 8.494 3 B5 M 41 7.243 4 
A6 F 53 8.891 3 B6 F 45 3.230 4 
A7 F 22 8.425 3 
A8 M 25 8.867 3 

Mean 8.97 5.55 
SD 0.38 1.57 

Assuming that Y information is ignorable (i.e. case I 
of Section I), Rodgers (1984) obtained the matched file 
C (see Table 2) both under unconstrained and 
constrained matching using HDI - distance method for 
statistical matching. The sex variable XI, was used as 
cohort (or imputation class) and the age variable X2 was 
used for the distance function IX2(A)-X2(B)I. The 
constrained matching restricted on the first and second 
moments of the distribution of imputed Z-values to be 
the same as the moments of the distribution of donor 
values. 

Table 2: Statist ical  Matching by HDI-Distance 

Sex Age Imputed Values of Z 
Unconstrained HDI Constrained HDI I 

M 42 7.243 5.524 (1) 
7.243 (2) 

M 35 7.243 4.223 (I) 
7.243 (2) 

F 63 6.147 6.147 
M 55 5.524 5.524 
F 28 6.932 6.932 
F 53 6.147 6.147 (1) 

3.230 (2) 
F 22 6.932 6.932 (1) 

3.230 (2) 
F 25 4.223 4.223 

Mean 6 .3  5.55 
SD 1.06 1.572 

1 Numbers in paren theses  denote  sample weights  
2 Bas.ed on 5 degrees  of f reedom 

3. LLI-S FOR STATISTICAL MATCHING 
0f IGNORABLE) 

This is the usual imputation problem in a single 
super file as mentioned earlier in Section 1. We are 
interested in completing the data set (i.e. the single 
combined file containing 14 records for the Rodgers' 
example). There are two types of records 
corresponding to two patterns of response by units in 
the survey. One type of record contains complete 
information i.e. response for all variables in vector X 
and Z. There are six such donor records. The other 
type of records contains responses for X but Z is 
missing. There are eight such candidate records. The Y 
values are totally ignored. 

The main ideas of the LLI-S method are: 
(i) transform both X and Z to categorical variables 

X* and Z* to obtain a subset of X as suitable 
predictors and to get optimal imputation classes 
as defined by an instability measure related to 
coarseness of the categorical partition, 

(ii) smooth the conditional categorical distribution 
f (Z*I X*) using log-linear modelling, 

(iii) usef(Z*IX*) to impute Z up to a Z* category 
according to proportional allocation within X* 
categories, and 

(iv) determine Z values within Z* categories in order 
to complete missing records. 

By contrast, in HDI methods, only X is categorized 
in forming imputation classes and the conditional 
distribution f(Z]X*) is used for imputation. Choice of 
imputation classes is not based on some optimality 
criterion but on subject matter considerations. It is 
easily seen that LLI-S would be equivalent to HDI when 
the imputation classes are not required to be optimal, a 
saturated log-linear model is employed (i.e. no 
smoothing to the empirical distribution) and the 
condition of proportional allocation is not applied. 

For Rodgers' example, the LLI-S method can be 
described in the following five steps. First define an 
initial partition P0 that provides a fairly fine grid of the 
three dimentional space of (X,Z) values from donor 
records. Let X 0,Z0 denote the corresponding 
categorized X,Z variable. The three dimensional table 
of weighted counts based on an initial partition, P0, is 
given in Table 3. 

Table 3: Weighted Counts for  Pa r t i t ion  P o 
(donor records) 

Z<4.5 4.5<Z<6.5 Z>6.5 Row Total 

M Age < 45 4 0 4 8 
M Age >_ 45 0 4 0 4 
F Age < 45 0 0 4 4 
F Age > 45 4 4 0 8 

Column Total 8 8 8 24 

Step I Choice of X Variables - We need to 
inves t iga te  the  s t rength  of the re la t ionship be tween  Xo 
and Z 0 and determine whether or not both X variables 
should be retained. We use I-divergence under 
pseudo-multinomial assumptions to define a X 2 type 
measure of association (IA) between Xo and Z 0. Let 
HI : Zo ± Xo denote the hypothesis of independence of 
X o andZo. Then I A(Z o ! Xo) = (¼) zt Pt(0) log 
(Pt(0)/pt(1)) where p(0), p(1) denote respectively 
the observed and expected proportion vectors. The I A 
metric is asymptotically equivalent to Hellinger 
distance and is therefore approximately bounded above 
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by 1. It provides a convenient  d is tance  met r ic  tha t  
could be used for survey da ta  as well as adminis t ra t ive  
data .  We use ~0 = .05 as a working threshold value in 
order  to decide when I A is large  enough i.e. when 
IA >. a0. 

Using the  defini t ion (0)log(O)=O, one can ca lcu la te  
IA(Z0 ± X0) = 0 .1591 ,  which is g r ea t e r  than the  
working threshold value of 0 .05.  Similarly, using a 
table  combined over sex ca tegor ies  and a table  
combined over  age ca tegor ies ,  we can ca lcu la te ,  
respect ive ly ,  IA(Z 0 ! X02) = 0.1155 (associat ion due 
to age) and IA(Z 0 ]. X01 ) = 0 .0  (associat ion due to 
sex). By taking the d i f fe rence  ( .1591 - . 1155) ,  one 
can de te rmine  tha t  IA(Z 0 ± X0~ I X02) (associat ion 
due to sex lage)  is 0 .0436 .  Although the condit ional  
associat ion due to sex is less than our working value of 
0 . 0 5 ,  it is close to the threshold,  so we decide to keep 
both age and sex as predic tor  variables.  Consequent ly ,  
we have P I=P0 where P~ denotes  the par t i t ion  tha t  
would have been obtained corresponding to the chosen 
subset X1 of X0. In this case X 0 is not reduced.  So 
XI=X0. Also set  Zl=Z0 for nota t ional  convenience.  

Step II Choice of Opt imal  Par t i t ion  P* - Let  G 
denote  a class of par t i t ions  P1,P2 . . . .  such tha t  for 
each P i the  associat ion be tween  the corresponding 
ca tegor ica l  var iables  Xi and Zi is high. The P i ' s  
represen t  modified versions of P1 which may be coarser  
or have d i f fe ren t  cell  boundaries.  We then define an 
instabil i ty measure  R(e) r e l a t ed  to the coarseness  of a 
par t i t ion  tha t  will allow us to choose the opt imal  
par t i t ion  P* from the  class G. We have R(~) = n(~) /T ,  
where n(E) is the  number  of cells with proport ions less 
than or equal to e, a small  p rede te rmined  posit ive 
constant .  Note  tha t  cells with zero counts  will 
cont r ibute  to R(~). Now, the  opt imal  par t i t ion  P* is 
the par t i t ion  in G for which R(E) is smal les t .  The use of 
R(e) has an heur is t ic  just i f icat ion.  For a par t icu la r  
choice of X1 and Z~, modif icat ion of a par t i t ion  to make 
it f iner will general ly  increase  associat ion be tween  the  
corresponding ca tegor ica l  variables.  Use of R(E) 
mi l i ta tes  against  se lec t ion  of fine par t i t ions  containing 
many cells with small  proport ions.  

Suppose the class G consists  of two par t i t ions  - -  P1, 
given by Table 3, and P 2, given by Table 4. Note  tha t  
IA(Z2 [_ X2)=0.0577,  which is g r ea t e r  than our working 
threshold.  Therefore ,  the par t i t ion  P2 does qualify to 
belong to class G. To de te rmine  the  opt imal  par t i t ion,  
P*, within G we compute  the  instabil i ty measure  R(e) 
for P~ and P2 with E=0.01. We have R(c )=0 .5  for P1 
and R(E)=0.25 for P2. Consequent ly,  the  opt imal  
par t i t ion  is P*=P 2 for this par t icu la r  i l lustrat ion.  

Table 4: Weighted Counts for Partition P2 
(donor records) 

7<6 Z>6.5 Row Total 

M Age < 45 4 4 8 
M Age _> 45 4 0 4 
F Age < 45 0 4 4 
F Age _> 45 4 4 8 

Column Tota l  12 12 24 

Step Ill Log-linear Model Selection- For the joint 
ca tegor ica l  dis tr ibut ion f (X*,Z*)  corresponding to P*, 
se lec t  a log- l inear  model using the  donor da t a  set .  
While a parsimonious model is desirable,  the  sa tu ra t ed  
model can be re ta ined  if it is not feasible  to  reduce  it. 
Using Table 4, one can tes t  the independence of age and 

sex, condit ional  on Z. The I - measure  corresponding 
to this hypothesis  is 0 .0435 ,  which al though smal le r  
than our working threshold value, is close to it. 
Consequent ly ,  we decide to re ta in  age - sex  in te rac t ion  
t e rms  in the  model. One could also, of course,  compare  
the  sa tu ra t ed  model to a model with no t h r e e - f a c t o r  
in terac t ion .  For i l lus t ra t ive  purposes,  we decide to 
re ta in  the s a tu ra t ed  model. 

Step IV Est imat ion  of the Condit ional  Ca tegor i ca l  
Distr ibut ion f (Z ' IX*)  - Expected  counts corresponding 
to the  sa tu ra t ed  model are, of course,  equal to observed 
counts.  The distr ibut ion of Z* for each X* ca tegory ,  
given in Table 5, can be easily obtained from the 
weighted counts  in Table 4. 

Table 5: Estimate of f (Z* I X*) 
(from donor records)  

Z<6 Z>6 Row Total 
B 

M Age < 45 1/2 1/2 1 
M Age > 45 1 0 1 
F Age <45 0 1 1 
F Age >_ 45 1/2 1/2 1 

Step V Imputat ion of Missing Z V a l u e s -  We a l loca te  
the set  of candida te  records  within each imputa t ion  
class proport ional ly  according to f (Z*l  X*) as shown in 
Table 6. Hot deck dis tance  over  age is used within each 
imputa t ion  class to assign records  with missing values 
to the two Z* categories (Zi<6 and Zz>_6 ) as well as to 
determine Z values to impute within each Z* category. 
The only fractional counts occur for the imputation 
class defined by sex=M, age<45. In this case the 
imputed value is determined as an average of "closest" 
values from each Z* category, weighted according to 
the non-integral portions of the counts. Since there is 
only one donor record in each Z* category, our imputed 
value is the average of 4.223 (only value of Z for 
sex=M, age<45, Z<6) and 7.243 (only value of Z for 
sex=M, age<45, Z>6). 

Table 6: Proportional Allocation in LLI-S 

Number  Observed Ages 
Z<6 Z>6 Missing for Candida te  

Records  

M Age < 45 1.5 1.5 3 25,35,42 
MAge>_.45 1 0 1 55 
F Age < 45 0 2 2 22,28 
F Age >_. 45 1 1 2 53,63 

The imputed values using LLI-S are given in Table 9 
along with those for LLI-M (to be descr ibed in the  next  
section).  

4. LLI-M FOR STATISTICAL MATCHING 
(Y NON-IGNORABLE) 

In this sec t ion  we consider  the same example ,  
e x c e p t  tha t  we do not ignore Y in the  fo rmat ion  of 
imputa t ion  classes  and the  computa t ion  of imputed 
values.  The main ideas of the  LLI-M method can be 
summar ized  as follows. 
(i) We t rans form X,Y,Z to ca t egor i ca l  var iables  

X*,Y*,Z* in order  to find a sui table  subset  of X 
to predic t  Y and Z, and to obtain opt imal  
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imputation classes as defined by a sensitivity 
measure re la ted  to departures  from the 
conditional independence assumption in the 
ca tegor ica l  framework.  

(ii) As in LLI-S, smooth the conditional ca tegor ical  
distribution f (Z* I X*,Y*) using log-l inear  
modelling for the donor data  set.  Here it is 
assumed that  f(Z*{X*,Y*) is the same as 
f (7'* { ×*) i.e. categorical ly,  the conditional 
independence assumption is valid. In terms of 
log-l inear  modelling, it implies that  the 
parameters  involving (Y*,Z*) factor  ef feets  and 
(X*,Y*,Z*) factor  ef fects  are set equal to zero. 
In the final Section 6, we suggest ways in which 
this condition can be weakened. 

(iii) Use f(Z*{ ×*,Y*) to impute Z up to a Z* eategory 
according to proportional allocation within 
(X*,Y*) categories,  and 

(iv) specify a suitable imputation scheme for 
determining Z values within i5" categories.  

For Rodgers' example, we can describe LLI-M in 
five steps. Suppose the initial part i t ion P0 for the 
multiple file method corresponds to the (Xo,Y0) counts 
given in Table 7 and the (X0,Z0) counts given in Table 
3. Note that  Y0 involves two categories,  defined by Y<9 
and Y>9. 

9 

Table 7: Weighted Counts for Partition P o 
(candidate records from file A) 

Y<9 Y>9 Row Total 

M Age < 45 3 6 9 
M Age > 45 0 3 3 
F Age < 45 6 0 6 
F Age >_ 45 3 3 9 

Column Total 12 12 24 

Step I Choice of X V a r i a b l e s -  The measure of 
association between X 0 and Yo corresponding to P o is 
IA=0.0703, a value grea te r  than the working threshold 
of 0 .05 .  Thus, the chosen Y parti t ion does provide high 
association with X o. In Section 3, we already 
considered the effects  of dropping variables on the 
association between X 0 and 70 and concluded that  it 
was not possible to drop X 0 variables in the prediction 
of 70. Consequently, we set P ~ =P0. 

.Step II Choice of Optimal Partition P* - We need 
to check departures from the conditional independence 
assumption of Y* and Z* given X*. There is of course no 
information on the joint distribution of (X*,Y*,Z*). 
However, under pseudo-multinomial assumptions, we 
can estimate the expected proportion vector q 
corresponding to the conditional independence 
hypothesis. This allows us to construct an upper bound 
on the X ~ distance corresponding to the hypothesis of 
conditional independence which is defined by 
n = t r (d iag (q)-~). 

The measure n is termed as the sensit ivity measure 
and a good choice of grid or part i t ion is one that  tends 
to make n small. However, use of n exclusively leads to 
a very coarse grid and a tr ivial ization of the problem. 
For this reason, we introduce a balancing fac tor  that  
requires high association between X* and Y*, as well as 
between X* and Z*. Note that  the requirement  of high 
association favours use of fine grids. Thus there  is a 
t radeoff  between low sensitivity and high association. 
We first genera te  a class of grids by defining categories  
in various ways. Next we res t r ic t  a t tent ion to the class 
G of grids for which association measures are above a 

threshold value. Finally, the optimal partition P* is the 
grid in the class G for which n is minimized. It should 
be noted that in practice, some elements of q may be 
zero, leading to computational difficulties. In such 
cases, zero elements of q can be replaced by some 
small positive constant, say T, and all entries rescaled 
such that their total is unity. 

In the present example, consider the simple case of 
two partitions --  P l, defined above, and P 2, which 
involves X2=X~, Y2:Y~, and two Z2 categories (Z<6 and 
Z>_6) as in Table 4. The significance of associations of 
X with Y and X with Z have already been established for 
these two partitions. Using x:0.005 for zero cell 
proportions the values of the sensitivity measure n are 
24,452.5 for P~ and 14,828.5 for P2. Hence, we choose 
P2 as the optimal partition P* in the class G. 

Step .... III Log-linear Model Selection- This step 
involves modelling the joint distribution f(X*,Z*) using 
data from file B and was already considered in Section 
3. As before, the saturated model is used. 

Step IV Estimation of the Conditional Distribution 
f (Z*l X*,Y*) - Since we assume independence of Y* and 
Z* given X*, the estimate of f (Z*I X*) can be used as an 
estimate of F(Z*[X*,Y*) for all categories of Y*. 
Estimation of f(Z*l X*) in this case is identical to the 
corresponding situation in Section 3. 

Ste p V Imputatipn of Missing Z Values- Initially, we 
allocate the set of candidate records within each 
(X*,Y*) category according to the conditional 
distribution F(Z*I ×*,Y*) determined in the previous 
step. The counts are shown in Table 8 and imputed 
values, obtained using the distance metric over age to 
assign incomplete records to Z* categories and to 
impute values corresponding to both integral and 
fractional counts, are given in Table 9. Table 9 also 
gives the values imputed using the LLI-S method of the 
previous section. 

Table 8: Proportional Alloeation in LLI-M 

Y<9 Number Y>_9 Number 
l<6 l>_6 Missing l<6 7>_6 Missing 

MAge < 45 .5 .5 1 1 1 2 
M Age >_ 45 0 0 0 1 0 I 
F Age < 45 0 2 2 0 0 0 
F Age >_ 45 .5 .5 1 .5 .5 1 

Table 9: Statistical Matching by LLI-S and LLI-M 

Sex Age Y Imputed Values of Z 

LLI-S LLI-M 

M 42 9.156 7.243 7.243 
M 35 9.149 5.733 4.223 
F 63 9.287 6.147 4.688 
M 55 9.512 5.524 5.524 
F 28 8.494 6.932 6.932 
F 53 8.891 3.23 4.688 
F 22 8.425 6.932 6.932 
M 25 8.867 4.223 5.743 

Mean 5.745 5.746 
SD 1.41 1.18 
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5. A SIMULATION EXPERIMENT FOR 
LLI EVALUATION 

In this sect ion we present  some empir ical  resul ts  
from a prel iminary phase of the LLI evaluat ion study 
based on synthet ic  data.  The data  files were c rea ted  by 
drawing a random sample of size 1000 from the 
distr ibution 

(XI,X2,Y,Z)' - N(O,z) 

I 
where the elements o i j  s of z were prescribed as 
o11=o,2=o33=o~=i, o12=.40, o~3=.50, o~=.60, 
023=.25, o2~=.40, and o24=-.3, -.2, -.1, O, .3. 
Only o~, or Cov(Y,Z) was allowed to take five different 
values. The Cholesky decomposition (z=FF') was 
employed to transform a vector U of four independent 
N(0,1) variables to obtain (X1,X2,Y,Z)' via FU. 
Therefore, only Z values are affected when Cov(Y,Z) 
varies. For each choice of Cov(Y,Z), we create two 
data files A and B by dividing 1000 sample observations 
into two equal parts. For data file A, Z values are 
suppressed and for B, Y values are suppressed. Thus we 
have five sets of files A and B obtained from the same 
set of N (0,1) random numbers. 

For statistical matching purpose, file B is used to 
impute Z values (denoted by ZI) for file A. Since true Z 
(denoted by Z T) values are known for our experiment, 
we can easily compute RMSE(ZI) as the square root of 
the sum of squared (ZI-Zl). Some other evaluation 
measures can be obtained by comparing the conditional 
variance (Z) and Cov(Y,Z) given X for Z I andZ T values 
in file A. For instance one can use the relationship 
Cov(Y,ZlX)=Cov(Y,Z) - Cov(Y,X) V(X) -1 Cov(X,Z) 
where each term is computed using the data in file A. 

In the preliminary evaluation study, the LLI-M 
method was compared with the HDI method for 
statistical matching. The Euclidean distance over X 
was used in HDI as well as in the Hot Deck imputation 
step of LLI-M. For LLI-M, a proper full scale search 
for an optimal partition P* using I A and n measures was 
not done due to time-constraints. A 4x3x3x4 partition 
of (XI,X2,Y,Z) space was chosen with cut-off points 
(-.78, -.24, .24) for Xl, (-.33, .23) for X2, 
(-.18, .24) forY, and (-.80, -.26, .28) for Z when 
C0V(Y,Z)=-.30. The cut-off points define cells for the 
partition e.g. (-.33, .23) defines three cells namely, 
(-~, - .33],  (-.33, .23] and (.23, - ) .  These  
cut-off points were chosen as functions of sample mean 
and variance such that they correspond to ranges of 
approximately equal probability under normality. Only 
the boundary points for Z are affected when Cov(Y,Z) 
varies. Furthermore, the saturated log-linear model 
was used in LLI-M and finally, the imputation classes 
for HDI were chosen to coincide with the X categories 
in LLI-M partition. Thus, the differences between HDI 
and LLI-M are expected to be due to the impact of 
proportional allocation only. 

Table 10 shows the results of the above evaluation 
study. Both LLI and HDI are marked by (x) to indicate 
that they were performed under certain limitations, 
namely, 
(i) the partitioning was not optimal, 
(ii) no smoothing was done, and 
(iii) the hot deck imputat ion classes were formed 

from the par t i t ion chosen for LLI-M. 
Results  from this l imited study given in Table 10 

indicate tha t  the e f fec t  of LLI-M is in the right 
direct ion in comparison to HDI. Methods for detai led 
invest igat ion for LLI evaluat ion are current ly  being 
considered. 

Table  10: Eva luat ion  Measures  for  LLI x and HDI x 

Data Set 
(file A) 

RMSE COV (Y,ZIXI,X2) V(ZIXI,X2) 

LLI x HDI x TRUE LLI x HDI x TRUE LLI x HDI x 

1.11 1.17 -.61 -.015 .036 .60 .66 .73 
1.13 1.16 -.50 -.007 .054 .58 .68 .72 
1.13 1.16 -.39 .025 .065 .58 .67 .71 
1.15 1.15 -.28 .025 .072 .59 .67 .70 
1.10 1.13 .04 .043 .081 .62 .61 .65 

Notes: 1. Data set numbers for file A correspond respectively to five 
values chosen for Coy (Y, Z). 

2. For the particular 4x3x3x4 partition used in LLI x, the 
measures IA(X,Y ), IA(×,Z) and n turned out to be around 
0.21, .045, and 43,000 respectively for all the five data sets. 

3. The superscript 'x' indicates the limitations imposed upon LLI 
and HDI methods used in the reported empirical results. 

6. C O N C L U D I N G  REMARKS 

In this paper we have described two types of 
log-linear imputation for the problem of statistical 
matching: one for the Y ignorable case (or equivalently, 
a single combined file situation) denoted by LLI-S; and 
the other for the Y non-ignorable case (or equivalently a 
multiple file situation) denoted by LLI-M. In practice, 
the choice between LLI-S and LLI-M would depend on 
the validity of the untestable assumption of conditional 
independence of Y and Z given ×. Generally this 
assumption would be unrealistic and hence LLI-M would 

be preferable  as it uses Y information.  Among the five 
steps of LLI, namely,  
(i) choice of X predictors,  
(ii) choiee of opt imal  par t i t ion and hence opt imal  

imputat ion classes, 
(iii) smoothing via log- l inear  modelling, 
(iv) es t imat ing  the conditional distr ibution for 

proport ional  allocation,  and 
(v) complet ing the missing Z values; 
the method LLI-M uses Y information in all the steps 
except  in (iii). 
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The above observation suggests an important 
direction for further research in which LLI-M could be 
generalized. For instance, in the smoothing step via 
log-linear modelling, the two-factor (Y*,Z*) and the 
three-factor (X*,Y*,Z*) effects are necessarily 
dropped because there are no data containing (Y,7) and 
(X,Y,Z) values. It is interesting to note that under the 
categorical conditional independence assumption, these 
are precisely the parameters that are dropped. Now, it 
is conceivable that reasonable estimates of some or all 
of these parameters could be obtained from some other 
source of information. This can then be incorporated to 
obtain modified estimates of expected proportions and 
in turn a new version of LLI. As regards evaluation of 
LLI, the preliminary results reported in this paper are 
promising in the sense that LLI-M offers some 
protection against violation of the conditional 
independence assumption. More extensive work on 
evaluation of LLI is planned using synthetic data as well 
as a data file created by exact matching of information 
from Revenue Canada and the Survey of Consumer 
Finance. 
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