USING THE EM ALGORITHM FOR WEIGHT COMPUTATION IN THE FELLEGI-SUNTER MODEL OF RECORD LINKAGE

William E. Winkler, Bureau of the Census *

Washington, D.C.

KEY WORDS: Decision rule, error rate.
1. INTRODUCTION

The paper describes using the EM Algorithm
(Dempster, Laird, and Rubin 1977, Haberman 1977,
Wu 1983) for parameter estimation in the
Fellegi-Sunter model of record linkage., The
method is applicable for more general classes of
distributions than those considered by Fellegi
and Sunter (1969).

Let A X B be the product space of two sets A

and B which is divided into matches (pairs
representing the same entity) and nonmatches
(pairs representing different entities).

Linkage rules are those that divide A X B into

links (designated matches), possible 1inks
(pairs for which we delay a decision), and
nonlinks (designated nonmatches).

Under fixed bounds on the error rates,

Fellegi and Sunter (1969, hereafter denoted FS)
provided a linkage rule that is optimal in the
sense that it minimizes the set of possible
links. The optimality is dependent on knowledge
of certain probabilities that are used in a
crucial likelihood ratio.

In applications, an independence assumption
is made that allows estimation of the
probabilities. The probabilities are referred
to as matching parameters. If the independence
assumption is not valid (Winkler 1985, 1987,
Kelley 1986), then linkage rules based on the
estimated probabilities may not be optimal.

The remainder of this paper contains a
methodology for estimating parameters for
general distributions. Section two is divided
into four parts. The first part provides a
summary of the FS Model of record linkage. The
second describes the basic EM Algorithm when the
underlying distributions are  independent.
Computation 1is particuiarly straight-forward
because of the closed-form maximization step.

The third part describes the EM Algorithm for
general distributions. The theoretical validity
can be deduced from methods of Haberman (1977,
1979) or more generally Dykstra (1985a, b, 1987,
1988). The fourth part presents a procedure for
deriving frequency-based weights when a weak
independence assumption is met. The assumption
involves only two parameters, is weaker than the
assumption of FS (pp. 1207-1210), and can
typically be shown to hold in practice.

The discussion in the third section comprises
three  components. The first  describes
convergence properties of the EM Algorithm. The
second describes Dykstra's computational methods
which generalize some iterative fitting methods
than have typically been used {e.g., Haberman
1977, 1979). The third discusses the
computation of frequency-based weights.

The final section is a summary.

2. MODEL AND COMPUTATIONAL PROCEDURES

2.1,
The

Fellegi-Sunter Model
FS Model wuses an

decision-theoretic
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approach embodying principles first used in
practice by Newcombe (Newcombe et al. 1959). To
give an overview, we describe the model in terms
of ordered pairs in a product space. The
presentation closely follows FS (pp. 1184-1187).
There are two populations A and B whose
elements will be denoted by a and b. We assume
that some elements are common to A and B.
Consequently the set of ordered pairs

A X B = {(a,b) : aeA, beB}

is the union of two disjoint sets of matches
M = {(a,b): a=b, acA, beB}

and nonmatches
U = {{a,b): azb, aeA, beB}.

The records corresponding to A and B are denoted

by a{a) and B(b), respectively. The comparison
associated with the records s defined
by:

[(a(a),8(b))] = {c[(ala), 8(b))]

t20a(2),8(0)) T, eenst L (ala),8(5)) 1}

Where confusion does not arise, the
function t on A X B will be denoted by t(a,R),

t(asb), or . The set of all possible
realization of t 1is denoted by T.
The conditional probability of t{a,b) if

(asb) € M is given by
m(t) = P{t[a(a),8(b)]:(a,b)eM}
) P{t[ala),B(b)]} . P[{a,b)|M].

(a,b)em

1

Similarly we denote the conditional probability
of v if (a,b) e Uby u( = ).

We observe a vector of information <(a,b)
associated with pair (a,b) and wish to designate
a pair as a link (in set Al)’ a possible link
(in set Az), or a nontink (in set A3). We let L

denote a linkage rule that divides A X B into
Aps AZ’ and A3). We say that a Type I error has

occurred if rule L places m ¢ M in A3,

Tel

and a Type II error if L places u ¢ U

P(AIV) = ] u(x) P(A[T).
Tel

in Al’

FS define a linkage rule LO with associated

sets Al’ A2, and A3 that is optimal in the
following sense:
THEOREM (Fellegi and Sunter 1969). Let L' be



a linkage rule with associated sets A;', A',
and A3' such that P(A3'|M) = P(A3|M) and
P(Ay'|U) = P(Aj|U). Then P(Ay1U) < P(A,'|U) and
P(Ay[M) < P(A'|M).

In other words, if L' is any competitor of Ly

having the same Type 1 and Type II error rates
(which are both conditional probabilities), then
the conditional probabilities (either on set U
or M) of not making a decision under ruie L' is
always greater than under L.,

The FS linkage rule is actually optimal with
respect to any set Q of ordered pairs in A X B
if we define error probabilities PQ and a
linkage rule L, conditional on Q. Thus, it may
be possible to define subsets of A X B on which
we make use of differing amounts and types of
available information.,

In application, we consider the following
likelihood ratio

R[t(a,b)] = m{t)/ulr).

If the numerator 1is positive and the
denominator is zero in (2.1), we assign a fixed
very large number to the ratio. The FS linkage
rule takes the form:

R = (2.1)

If R > UPPER, then denote (a,b) as a link.

If LOWER < R < UPPER, then denote (a,b)

as a possible link. (2.2)
If R < LOWER, then denote (a,b) as a nonlink.

The cutoffs LOWER and UPPER are determined by
the desired error rate bounds.

2.2 EM Algorithm for Independent Distributions

Applying the FS model 1involves determining
estimates of the conditional probabilities m(t)
and u{t) . To obtain maximum 1ikelihood
estimates we use the EM Algorithm.

For record pairs rj, J =1, 25...4N, from Q,

. i
the comparison vectors T3

index as follows:

i

T, 1 if field i agrees for record pair r

J j

0 if field i disagrees for record pair rye

"

The elements in Q = (QNMYU(ANU) are
distributed according to a finite mixture with
the unknown parameters & = (m,u,p) where p is
the proportion of matched pairs in Q. Let x be
the complete data vector g = <rj, gj> where

95 = (1,0) if rie MNQ and
.= (0,1) if r, e UNQ.
9 (0,1) jeung
Then the complete data log-tikelihood

(Dempster, Laird, and Rubin 1977, pp. 15-16) is
given by

In f(x]|¢)

9 <ln P(TJ. | MNQ), 1n P(rjluno)>
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+
J

He~12

g. » <ln p, In(l-p)>.
1 J

Fitting using the EM Algorithm will be performed
under the following assumption:

There exist vector constants m =z (ml,mz,...,mk)
and u = (ul’“2""’uk) such that, for all ter,
K i i
Plx | MNQ) = v m.® (1am)(}7)
. i i
i=1
and (2.3)
K i i
Pt | UNQ) = n u,"’ (1-u.)(1'T ).
. i i
i=1
Probabilities my and Uy i = 1,2,...,K, are

constant for all representations t of pairs in
Q. To avoid trivialities, we assume that
(0<m.i), U1-<1, .i = 1,2,-..,K-

We begin the EM Algorithm with estimates of
the unknown parameter <%, J, ﬁ>. For the E-step
under (2.3), replace 9j with <P(Mr1Q|rj),
P(Ur1erj)> where

~

p

K i
o
ﬁ(Mﬂerj) = L

1

and ﬁ(unghj) = 1- ﬁ(Mthj),

where (2.4)
. Ko i
D=pwrm 'j (l-m.)(l'TJ)
s i
i=1
K 1 i
~ ~ ~ 1_
+ (1-p) UiTJ (1-u1)( T ).
i=1
) For the M step, the complete data log-
likelihood can be separated into three
maximization problems. Setting the partial
derivatives equal to zero  and solving
for ms s i=1, 2,.++,K, yields:
N i
P(MN RIS
L RN
m = (2.5)
N .
) P(MNQ | t.)
j=1 J

Estimates us» i =1, 2,0¢+,K, are derived in a

similar manner. The matrix of second partial
derivatives can be shown to be negative-
definite. The estimate of the proportion of

matched pairs is given by



N . .
I PMnQ | )
~ _ j___l
p = N .
2.3. EM Algorithm for General Distributions
For “general estimation of m{t) and u(t) we

apply a generalized version of Theorem 4 of
Haberman (1977). The generalization involves
assuming that the proportion p of matches is
bounded above and that the matrix of observed
population frequencies can contain zeros.

The E-step takes the form

p P(x;IMNQ)

ﬁ(Mthj) = — —

p P(TjIMnQ) + (1-P) P(leunQ)
and (2.6)
ﬁ(unohj) =1 - ﬁ(Mthj).

The M-step involves finding maximum T1ikelihood
estimates P(rlerWQ), P(leUrﬁQ), and p .

Generally, the estimates must be found using
iterative fitting procedures (e.g. Haberman
1976, 1977, 1979). Fitting satisfies the

restraint that the margins are the fixed values
determined by the observed frequency patterns
and the p is constrained to be less than a fixed
upper bound. The number of interaction terms
used in fitting determine the number of
dependent relationships.

2.4, Extension to Frequency-Based Weights

This section considers a procedure for
extending simple agreement/disagreement weights
to weights that account for frequency. We call
such a procedure a dispersion. When the more
stringent assumptions of FS (pp. 1207-1210) are
satisfied our dispersion procedure agrees with
theirs. If the agreement/disagreement weights
found via the EM Algorithm coincide with the
agreement/disagreement weights found via the FS
procedures, then the frequency-based weights
also coincide.

Frequency-based weights are useful because
they can account for the fact that a specific
surname pair such as (Zabrinksy, Zabrinsky)
occurs less often than a surname pair such as
(Smith, Smith).

We need some background material before
presenting the computational procedures for
frequency-based weights.

We observe that if, for some i and k,

mi=P( Tk=1lMﬂQ)
and (2.7)
u, = P = 1| UnQ),

i
then the kth comparison 1is independent of the
other K-1 comparisons.
The right hand sides of (2.7) are just the
appropriate marginal inclusion probabilities.
Note that m; and ui, i =1, 2,...,K of this

paper generally differ from the my, my, m3, uj,
up, and ug in FS (pp. 1194-1195, 1207-1210).
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We define a random variable ;k by ;k = ujk if
the kth comparison pair takes value ujk where
ujk, J o= lyeese, Lk, is an enumeration of the
specific values of the kth comparison. We make

two assumptions:

Al. Agreement/disagreement in the kth comparison
is independent of the other K-1 comparisons.

A2. There exists a comparison k' such that the

specific realizations of ¢ k are pairwise
independent of agreement/disagreement in the
k‘th comparison.

If we consider one comparison, say of
agreement/disagreement in surname, then we can
perform EM fitting under a restricted version of
(2.3) by specifying that one of the (mi, ui)
must converge to the marginal probabilities (as

in (2.7)) associated with surname. We can,
thus, always find a comparison satisfying
assumption Al for the restricted class of
distributions.

Assumption A2 is a weaker form of

independence assumption than the one considered
by FS (p. 1208). It allows dispersion of the
agreement/disagreement weight obtained under
assumption Al to freguency-based weights.

In a manner similar to the dispersion of FS
(pp. 1207-1210), we define

~k k k'

k

Nk(“i ) =P = By s T = 1),
k ~k k

Vk(u1 ) = P( " = ¥y )9

¢ = # pairs in Q, and

N = # pairs in MNQ.

Then, for i = 1, 2,...,LK,
K k!
w1 MNP+ = 1 1 N

. (2.8)
wk 1 un) (<= 1 1 ung)

Kk ~k
C'Nk(l-li ) = NeP(1'=

+ (c - N)oP(1*=

and

W IMnY  (2.9)

k ~k
C.Vk(ui ) = NeP(7

+ (c-M)P( = | una).

In (2.8) and (2.9) ¢, N (u )s ¥ (5;),

i=1,2,...,Lk, can be computed directly because
they are based on observed file

characteristics. The marginal probabilities

P(rk=1 | MNQ) and P(rk=1 | UNQ) and the number
of matches N in MNQ can be computed using the
estimated parameters of (2.4) that are obtained
by the EM Algorithm. Equations (2.8) and (2.9),
thus, consist of two equations to be solved for

the two unknowns P(;k = uik | MNQ) and

~k

p(X = uik | UNQ), i = 1, 2,-00,L%,



3. DISCUSSION

This section is divided into three parts.
The first discusses the convergence properties
of the EM Algorithm. The second describes a
general computational methods due to Dykstra,
Lemke, and Wollan. The third considers the
extension to frequency-based weights.

3.1 Convergence Properties of EM Algorithm

This paper's application of the EM Algorithm
most closely resembles the approach of Haberman
(1977). Although Haberman's EM convergence
proof was proved under more restrictive
assumptions than the assumptions of this paper,
it can be extended to deal with bounds on the
proportion of matches. Haberman observed that
the limiting value was dependent of the initial
values of the parameters and, thus, not
necessarily unique.

Wu (1983) noted that limiting values of the
EM Algorithm are stationary points that can
either be saddle points or local maxima. He
made the conjecture that there is unlikely to be
any general condition that assures convergence
to a unique maximum.

Wu did observe, however, that if the
likelihood is wunimodal, if the estimated
parameters have at most one stationary limiting
point, and if a technical condition holds (which
it does for the distributions of this paper),
then the estimated parameters converge to the
unique maximizer of the likelihood.

The 1implication is that, while the EM
algorithm of this paper 1is of value 1in
accounting for failures of the Conditional

Independence Assumption, several starting points
for the EM Algorithm should be used. The
estimated parameters associated with the largest
Tocal maximum are the ones that are used.

If we can show that there is at most one
stationary 1limiting point, then the parameter
estimates will necessarily converge to it.

3.2. Dykstra's Computational Procedure

Dykstra and Lemke (1988) have shown the
duality of maximum 1ikelihood estimates and I-
Projections under cone constraints. The cone
constraints are more  general than  the
constraints considered by Haberman (1977, 1979)
and in this paper.

On the dual space, computation of individual
I-Projections under affine constraints (Dykstra
1985a) is sometimes much easier than computation
of the  corresponding maximum  likelihood
estimates. Iteratively computing a limiting
solution satisfying multipie restraints can be
done using an algorithm of Dykstra and Wollan
(1987). The theoretical validity of the
algorithm follows from Dykstra's Iterative
Fitting Procedure (1985b).

3.3. Extension to Frequency-Based Weights

Under the more stringent assumptions of FS
(pp. 1207-1210) frequency-based weights computed
using the techniques of this paper agree with
those computed using Method II of FS. This
follows because the dispersion method of this
paper is identical to the dispersion method of
FS and there can exist at most one local maximum
of the likelihood.
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The chief value of assumptions like
Assumptions Al and A2 of this paper is that they
aliow dispersal of agreement/disagreement
weights with 1little increase in computation.
Although the EM Algorithm might be extended to
allow direct computation of frequency-based
weights, such an extension will generally
require enormous increases in computation.

4, SUMMARY

This paper describes using the EM Algorithm
for estimating matching weights in the Fellegi-
Sunter model of record linkage. The general

theoretical and computational validity can be
deduced using techniques of Haberman (1977,
1979) and of Dykstra (1985a, b, 1987, 1988).
The procedure automatically incorporates a

Bayesian adjustment for margins in the matrix of
observed population frequencies.
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