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1. INTRODUCTION 
The paper describes using the EM Algorithm 

(Dempster, Laird, and Rubin 1977, Haberman 1977, 
Wu 1983) for parameter estimation in the 
Fellegi-Sunter model of record linkage. The 
method is applicable for more general classes of 
distributions than those considered by Fellegi 
and Sunter (1969). 

Let A X B be the product space of two sets A 
and B which is divided into matches (pairs 
representing the same entity) and nonmatches 
(pairs representing different ent i t ies) .  
Linkage rules are those that divide A X B into 
links (designated matches), possible links 
(pairs for which we delay a decision), and 
nonlinks (designated nonmatches). 

Under fixed bounds on the error rates, 
Fellegi and Sunter (1969, hereafter denoted FS) 
provided a linkage rule that is optimal in the 
sense that i t  minimizes the set of possible 
l inks. The optimality is dependent on knowledge 
of certain probabilit ies that are used in a 
crucial likelihood ratio. 

In applications, an independence assumption 
is made that al lows estimation of the 
probabil i t ies. The probabilit ies are referred 
to as matching parameters. If the independence 
assumption is not valid (Winkler 1985, 1987; 
Kelley 1986), then linkage rules based on the 
estimated probabilit ies may not be optimal. 

The remainder of this paper contains a 
methodology for estimating parameters for 
general distr ibutions. Section two is divided 
into four parts. The f i r s t  part provides a 
summary of the FS Model of record linkage. The 
second describes the basic EM Algorithm when the 
underlying distributions are independent. 
Computation is particularly straight-forward 
because of the closed-form maximization step. 

The third part describes the EM Algorithm for 
general distr ibutions. The theoretical val id i ty 
can be deduced from methods of Haberman (1977, 
1979) or more generally Dykstra (1985a, b, 1987, 
1988). The fourth part presents a procedure for 
deriving frequency-based weights when a weak 
independence assumption is met. The assumption 
involves only two parameters, is weaker than the 
assumption of FS (pp. 1207-1210), and can 
typical ly be shown to hold in practice. 

The discussion in the third section comprises 
three components. The f i r s t  describes 
convergence properties of the EM Algorithm. The 
second describes Dykstra's computational methods 
which generalize some i terat ive f i t t i ng  methods 
than have typical ly been used (e.g., Haberman 
1977, 1979). The thi rd discusses the 
computation of frequency-based weights. 

The final section is a summary. 

2. MODEL AND COMPuTATIoNAL PROCEDURES 

2.1. Fellegi-Sunter Model 
The FS Model uses an decision-theoretic 

approach embodying principles f i r s t  used in 
practice by Newcombe (Newcombe et al. 1959). To 
give an overview, we describe the model in terms 
of ordered pairs in a product space. The 
presentation closely follows FS (pp. 1184-1187). 

There are two populations A and B whose 
elements wil l  be denoted by a and b. We assume 
that some elements are common to A and B. 
Consequently the set of ordered pairs 

A X B = {(a,b) • asA, bsB} 

is the union of two disjoint sets of matches 

M : {(a,b)" a:b, a~A, boB} 

and nonmatches 

U : {(a,b)" a,b, acA, boB}. 

The records corresponding to A and B are denoted 
by re(a) and B(b), respec t ive ly .  The comparison 
vector T associated with the records is defined 
by" 

z[(~(a),B(b))] = {zl [ (~(a),  B(b))], 

2[ , , . . . .  , . z ~(a) 6(b))] ~K[(~(a) 6(b))]} 

Where confusion does not arise, the 
function ~ on A X B wil l  be denoted by ~(~,B), 
~(a,b), or ~. The set of all possible 
realization of ~ is denoted by T. 

The conditional probability of T(a,b) i f  
(a,b) s M is given by 

m(~) = P{~[m(a),B(b)]'(a,b)cM} 

= Z P{T[~(a),B(b)]}.  P[(a,b)JM]. 
(a,b)~m 

Similarly we denote the conditional probability 
of T i f  (a,b) ~ U by u( ~ ). 

We observe a vector of information T(a,b) 
associated with pair (a,b) and wish to designate 
a pair as a link (in set At), a possible l ink 
(in set A2), or a nonlink (i~ set A3). We let L 

denote a linkage rule that divides A X B into 
A I,  A 2, and A3). We say that a Type I error has 

occurred i f  rule L places m ~ M in A3, 

P(A3IM) : Z m(T)P(A3J~), 
T~F 

and a Type I I  er ror  i f  L places u ~ U in A 1, 

P(A I jU) = ~ u(~) P(A l j ~ ) .  
TcF 

FS define a linkage rule L 0 with associated 

sets A 1, A2, and A 3 that is optimal in the 

following sense" 
THEOREM (Fellegi and Sunter 1969). Let L' be 
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a l inkage rule with associated sets A I ' ,  A2',  

and A 3' such that  P(A 3 ' I  M) = P(A31M ) and 

P(A I ' I U )  = P(A I IU ) .  Then P(A21U ) < P(A 2 ' IU) and 

P(A21M) < P(a 2 ' IM) .  

In other words, i f  L' is any compet i tor  of L 0 

having the same Type I and Type I I  e r ro r  rates 
(which are both cond i t iona l  p r o b a b i l i t i e s ) ,  then 
the cond i t iona l  p r o b a b i l i t i e s  (e i t he r  on set U 
or M) of not making a decis ion under rule L' is 
always greater  than under L n. 

The FS l inkage rule is ~ c t u a l l y  optimal wi th 
respect to any set Q of ordered pairs in A X B 
i f  we def ine e r ro r  p r o b a b i l i t i e s  P and a 
l inkage rule LF} cond i t iona l  on Q. Thus Q, i t  may 
be possible t o "de f i ne  subsets of A X B on which 
we make use of d i f f e r i n g  amounts and types of 
ava i l ab le  in fo rmat ion .  

In app l i ca t i on ,  we consider the fo l l ow ing  
l i k e l i h o o d  ra t i o  

R - R[T(a,b) ]  = m(~) /u(T) .  (2.1) 

I f  the numerator is pos i t i ve  and the 
denominator is zero in (2 .1 ) ,  we assign a f i xed  
very large number to the r a t i o .  The FS l inkage 
rule takes the form" 

I f  R > UPPER, then denote (a,b) as a l i n k .  
I f  LOWER < R < UPPER, then denote (a,b) 
as a possible l i n k .  (2.2) 
I f  R < LOWER, then denote (a,b) as a non l ink .  

The cu to f f s  LOWER and UPPER are determined by 
the desired er ro r  rate bounds. 

2.2 EM Al~or i tnm for  Independent D i s t r i b u t i o n s  
Applylng the FS model i n v o i v e s  determining 

est imates of the cond i t iona l  p r o b a b i l i t i e s  m(T) 
and u(T) . To obta in maximum l i k e l i h o o d  
est imates we use the EM Algor i thm.  

For record pairs r j ,  j = I ,  2 . . . . .  N, from Q, 
i 

index the comparison vectors T as fo l l ows :  
J 

i Tj = I i f  f i e l d  i agrees fo r  record pai r  r j .  

= 0 i f  f i e l d  i disagrees for  record pa i r  r j .  

The elements in Q = (QNM)U(AAU) are 
d i s t r i b u t e d  according to a f i n i t e  mixture with 
the unknown parameters @ = (m,u,p) where p is 
the propor t ion of matched pairs in Q. Let x be 
the complete data vector g = <Tj,  gj> where 

gj = (1,0) i f  r j  e MAQ and 

gj = ( 0 , I )  i f  r j  ~ UAQ. 

Then the complete data l o g - l i k e l i h o o d  
(Dempster, La i rd ,  and Rubin 1977, pp. 15-16) is 
given by 

In f(xI@ ) 

N 

= Z gj • <In P(Tj I MNQ), in P(Tj lUNQ)> 
j = l  

N 

+ Z gj • <in p, I n ( I - p ) > .  
j = l  

Fitt ing using the EM Algorithm wil l  be performed 
under the following assumption" 
There exist vector constants m - (m 1,m 2, . . . .  m k) 

and u - (Ul,U2,...,Uk) such that, for all ~er, 

K i i 
P(~ I MNQ) = ~ miT ( l - m i ) ( l - ~ )  

i = l  

and (2.3) 

K i i 
T ( 1 - + )  

P(T I UNQ) = ~ u i ( l - u i )  . 
i = l  

P r o b a b i l i t i e s  m i and u i ,  i = 1,2, . . . .  K, are 

constant fo r  a l l  representat ions T of pairs in 
Q. To avoid t r i v i a l i t i e s ,  we assume tha t  
(O<mi), u i < l ,  i = 1,2 . . . . .  K. 

We begin the EM Algor i thm with est imates of 
^ ^ 

the unknown parameter <m, u, >. For the E-step 

under (2 .3 ) ,  replace gj wi th <P(MNQITj) ,  

P(UNQITj)> where 

(Z_m i ) (Z-~ j  ) 
~(MN QITj ) = i=1 

D 

and P ( U N Q I T j ) =  i -  P(MNQITj ) ,  

where (2.4) 

^ K mi Tj i  = p ~ (Z-mi) (1-T j )  D 
i = l  

K ^ Tji i 
+ ( i - p ) ~  u i ( l - u ) ( 1 - ~ j  ) 

i = l  i " 

For the M step, the complete data log- 
likelihood can be separated into three 
maximization problems. Setting the partial 
derivatives equal to zero and solving 

^ 

for mi, i = 1, 2, . . . ,K,  yields" 

N 
Z P(MNQ I T j ) "  Tj i 

^ j=1 
m i = (2.5) 

N 

Z ~(Mnq I ~j) 
j= l  

^ 

Estimates u i ,  i = 1, 2 , . . . , K ,  are der ived in a 

s i m i l a r  manner. The matr ix  of second pa r t i a l  
de r i va t i ves  can be shown to be negat ive-  
d e f i n i t e .  The est imate of the propor t ion of 
matched pairs is given by 
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N 

Z P(MNQ I Tj ) 
^ ~ - 1  
P = N . . . . . . . . .  " 

2.3. EM Algorithm for General Dis t r ibut ions 
For general estimation of m(~) and u(~) we 

apply a generalized version of Theorem 4 of 
Haberman (1977). The general izat ion involves 
assuming that the proportion p of matches is 
bounded above and that the matrix of observed 
population frequencies can contain zeros. 

The E-step takes the form 

p P(TjIMNQ) 
rCMNQITj~,,, = ^ . . . . . . . . . . . . . . .  

p P(TjlMNQ) + ( I -p)  P(TjlUAQ) 

and (2.6) 

P(UNQITj) = I - P(MNQ]~j). 

The M-step involves f inding maximum l ike l ihood 

estimates P(TjlMNQ), P(Tj lUNQ), and p . 

Generally, the estimates must be found using 
i t e ra t i ve  f i t t i n g  procedures (e.g. Haberman 
1976, 1977, 1979). F i t t i ng  sa t i s f ies  the 
res t ra in t  that the margins are the f ixed values 
determined by the observed frequency patterns 
and the p is constrained to be less than a f ixed 
upper bound. The number of in teract ion terms 
used in f i t t i n g  determine the number of 
dependent re la t ionships.  

2.4. Extension to Frequency-Based Weights. 
This " section considers a procedure for 

extending simple agreement/disagreement weights 
to weights that account for  frequency. We cal l  
such a procedure a dispersion. When the more 
str ingent assumptions of FS (pp. 1207-1210) are 
sa t is f ied  our dispersion procedure agrees with 
the i r s .  I f  the agreement/disagreement weights 
found via the EM Algorithm coincide with the 
agreement/disagreement weights found via the FS 
procedures, then the frequency-based weights 
also coincide. 

Frequency-based weights are useful because 
they can account for the fact that a speci f ic  
surname pair such as (Zabrinksy, Zabrinsky) 
occurs less often than a surname pair such as 
(Smith, Smith). 

We need some background material before 
presenting the computational procedures for  
frequency-based weights. 

We observe that i f ,  for  some i and k, 

k 
m i = P( T = I I MNQ) 

and (2.7) 
k 

u i : P(T : 1 I UNQ), 

then the kth comparison is independent of the 
other K-I comparisons. 

The right hand sides of (2.7) are just the 
appropriate marginal inclusion probabi l i t ies.  

Note that m i and u i ,  i = i ,  2 . . . .  ,K of this 

paper generally d i f fe r  from the m 1, m 2, m 3, u 1, 

u 2, and u 3 in FS (pp. 1194-1195, 1207-1210). 

We define a random variable ~k by ~k = ujk i f  

k 
the kth comparison pair takes value ~j where 

k L k uj , j = I , . . . ,  , is an enumeration of the 

speci f ic  values of the kth comparison. We make 
two assumptions" 

AI. Agreement/disagreement in the kth comparison 
is independent of the other K-I comparisons. 

A2. There exists a comparison k' such that the 
^ k  

speci f ic  real izat ions of T are pairwise 
independent of agreement/disagreement in the 
k ' th comparison. 

I f  we consider one comparison, say of 
agreement/disagreement in surname, then we can 
perform EM f i t t i n g  under a rest r ic ted version of 
(2.3) by specifying that one of the Lie s ui) 
must converge to the marginal probabi l i  (as 
in (2.7))  associated with surname. We can, 
thus, always f ind a comparison sat is fy ing 
assumption A1 for the res t r ic ted class of 
d i s t r i bu t i ons .  

Assumption A2 is a weaker form of 
independence assumption than the one considered 
by FS (p. 1208). I t  allows dispersion of the 
agreement/disagreement weight obtained under 
assumption AI to frequency-based weights. 

In a manner s imi lar  to the dispersion of FS 
(pp. 1207-1210), we define 

^k k k' 
Nk(uik) = p( T = ~i ' ~ = i ) ,  

^k k 
Vk(" ik)  = P( ~ = " i  ) '  

c = # pairs in Q, and 

N = # pairs in MNQ. 

Then, for i = 1, 2 , . . . , L  k 

N.P(~ k = k '  
C.Nk(,i k) = , i k l  MNQ).P(T = 1 I MNQ) 

(2.8) 
N).P(~ k : , k '  

+ ( c -  , i k l  UAQ).P(T = I I UNQ) 

and 
C-Vk(,i k) : N'P( ~k : ~i k I MAQ) (2.9) 

+ (c N)p(~k k 
- " : u i  I UNQ). 

k 
In (2.8) and (2.9) c, Nk(~ik), Vk(~i ), 

i 1,2, ,L k = . . .  , can be computed di rect ly  because 
they are based on observed f i l e  
characterist ics. The marginal probabi l i t ies 

k= 1 P(Tk=I ] MAQ) and P(~ I UAQ) and the number 
of matches N in MNQ can be computed using the 
estimated parameters of (2.4) that are obtained 
by the EM Algorithm. Equations (2.8) and (2.9) ,  
thus, consist of two equations to be solved for 

^k k 
the two unknowns P(T = ~i I MAQ) and 

p(~k = " i  k I UAQ), i = I ,  2 , . . . , k  k. 
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3. DISCUSSION 
This section is divided into three parts.  

The f i r s t  discusses the convergence propert ies 
of the EM Algorithm. The second describes a 
general computational methods due to Dykstra, 
Lemke, and Wollan. The th i rd  considers the 
extension to frequency-based weights. 

3.1 Convergence Properties of EM Algorithm 
This paper's appl icat ion of the EM Algorithm 

most closely resembles the approach of Haberman 
(1977). Although Haberman's EM convergence 
proof was proved under m o r e  r e s t r i c t i v e  
assumptions than the assumptions of th is  paper, 
i t  can be extended to deal with bounds on the 
proport ion of matches. Haberman observed that 
the l im i t i ng  value was dependent of the i n i t i a l  
values of the parameters and, thus, not 
necessari ly unique. 

Wu (1983) noted that l im i t i ng  values of the 
EM Algorithm are stat ionary points that can 
e i ther  be saddle points or local maxima. He 
made the conjecture that there is un l ike ly  to be 
any general condit ion that assures convergence 
to a unique maximum. 

Wu di d observe, however, that i f the 
l i ke l ihood is unimodal, i f  the estimated 
parameters have at most one stat ionary l im i t i ng  
point ,  and i f  a technical condit ion holds (which 
i t  does for the d is t r ibu t ions  of th is  paper), 
then the estimated parameters converge to the 
unique maximizer of the l i ke l ihood .  

The impl icat ion is tha t ,  while the EM 
al gori thm of th i  s paper i s of va I ue i n 
accounting for fa i lu res  of the Conditional 
Independence Assumption, several s tar t ing points 
for  the EM Algorithm should be used. The 
estimated parameters associated with the largest 
local maximum are the ones that are used. 

I f  we can show that there is at most one 
stat ionary l im i t i ng  point ,  then the parameter 
estimates wi l l  necessarily converge to i t .  

3.2. Dykstra's Computational Procedure 
Dykstra and Lemke (19E~8) have  shown the 

dua l i t y  of maximum l ike l ihood estimates and l -  
Projections under cone constra ints .  The cone 
constraints are m o r e  general than the 
constraints considered by Haberman (1977, 1979) 
and in th is  paper. 

On the dual space, computation of indiv idual  
I -Project ions under a f f ine constraints (Dykstra 
1985a) is sometimes much easier than computation 
of the corresponding maximum I i kel i hood 
estimates. I t e r a t i v e l y  computing a l im i t i ng  
solut ion sat is fy ing mul t ip le res t ra in ts  can be 
done using an algorithm of Dykstra and Wollan 
(1987). The theoret ica l  v a l i d i t y  of the 
algorithm fol lows from Dykstra' s I te ra t i ve  
F i t t i ng  Procedure (1985b). 

3.3. Extension to Frequency-Based Weights 
Under the more str ingent assumptions of FS 

(pp. 1207-1210) frequency-based weights computed 
using the techniques of th is  paper agree with 
those computed using Method I I  of FS. This 
fol lows because the dispersion method of th is  
paper is ident ical  to the dispersion method of 
FS and there can exist  at most one local maximum 
of the l i ke l ihood .  

The chief value of assumptions like 
Assumptions A1 and A2 of this paper is that they 
allow dispersal of agreement/disagreement 
weights with l i t t l e  increase in computation. 
Although the EM Algorithm might be extended to 
allow direct computation of frequency-based 
weights, such an extension wil l  generally 
require enormous increases in computation. 

4. SUMMARY 
This paper describes using the EM Algorithm 

for estimating matching weights in the Fellegi- 
Sunter model of record linkage. The general 
theoretical and computational val idi ty can be 
deduced using techniques of Haberman (1977, 
1979) and of Dykstra (1985a, b, 1987, 1988). 
The procedure automatically incorporates a 
Bayesian adjustment for margins in the matrix of 
observed population frequencies. 
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