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ABSTRACT 

The problem of sample selection, when a one-stage 
superpopulation model-based approach is used to 
predict individual variate values for each unit 
in a finite population based on a sample of only 
some of the units, is investigated. The model 
framework is discussed and a sample selection 
scheme based on the model is derived• The sample 
selection scheme is evaluated using actual data. 
Future research topics including multiple predic- 
tions per unit are suggested• 

I. INTRODUCTION 

The problem considered here is as follows: 
Assume a one-stage superpopulation model-based 
approach is used to predict individual variate 
values for each unit in the population, based on 
a sample of some of the units. How should the 
sample units be selected? That is, if we are 
using a model-based approach to predict variate 
values for all units in a finite population, 
based on auxiliary variables and a sample of some 
of the units, what is the best way to select the 
sampled units? The purpose of this paper is to 
examine a sample selection procedure based on the 
model. 

Problem Formulation and Inference Model 

Consider a finite population of units, {Ul,U2, 
...,u.} which have associated with them known 

v auxillary variables, {x I ..... XN}, where x i = 
(l,x. ° ...... x._). Let ~(Y .... 7,Y.) be independent 

ii I N v 
random varia~es and assume that Y. ~ $(x.8,o 2) 

V ~i ~ where ~ = (8N,B ] ..... Bk) and 02 are unknown 

parameters. TNin~ of (YI'Y2 ..... yN ) as a parti- 
cular realization of this random vector• A sam- 
ple of n of the variate values is observed and 
on the basis of this sample together with the 
auxiliary variables, an estimate the variable 
values of each of the remaining N-n units will 
be derived• 

To simplify the notation, let the population 
of units be arranged so that the first n units 
correspond to the sample units. Denote the ob- 

served variate vector by Y' = (Yl ..... YN ) and 
let 

.! 

v 

~2 
X= 

X v 

~n 

As estimators for the N-n units not in the 
sample, the work of Royall (1971) will be used 
and the best linear unbiased predictor (with res- 
pect to the distribution ~) 

^ 

= 'B for i = n+l N Yi ~i~ ' .... 

where B (X'X)-ix ' = y will be the estimators. 
At this point only the homogeneous variance case 
will be considered. Some discussion of this case 
will be given in the last section. 

The problem thus formulated is one of multiple 
prediciton in a linear regression context. The 
uniqueness of the problem is that there is a pre- 
specified finite number of units such that a sam- 
ple of size n of these may be selected to ob- 
serve, then predictors must be derived for the 
unspecified ones. Of course, this prediciton is 
only with respect to $. The question of ran- 
domization must still be dealt with. However, 
first inference with respect to ~ will be con- 
sidered and then probability sampling will be 
discussed. The main questionwith which this pa- 
per is concerned, which units to take in the sam- 
ple, will now be considered. 

Optimal Designwith Respect to 

The expected mean square error of an individual 
prediction is, for i = n+1,...,N, 

E~(Yi-Yi)2 = E~(xi ~ - yi 12. 

Now for i=n+l,...,N, B and Y. are independent, 
- I 

so 

E~(xi ~ - yi )2 = V(xi ~) + V(Y i) 

x' (X'X) -I 02 02 = . x° + 
~i ~i 

= O2[x ' (X'X)-Ix + i] 
~i ~i 

In order to express this expected mean square er- 
ror in terms of deviations about the mean, let 

I ;I 
x .  

d .  = a n d  D = 
~ 1  _ . 

L X i k  - x d;J 
and it will be seen from Searle (1971) that, 

E~(XiB~ - Yi )2 = °211 + ~n + d~(D'D)-l~i]'~1 

So, for given n, the MSE of a particular es- 
timate is determined by d~(D'D)-id.. It also 

~I ~l 
happens that in the normal theory context, multi- 
ple prediciton intervals have width determined by 

v v I the quantity d.(D D)- d°. This quantity will be 
~i ~I 

used as a basis for designing the sample• The 
problem however is still complicated since there 
are N-n estimates. There will be a value 
d~(D'D)-id, for each of the N-n units. With 
t~e typica~ population size it is not practical to 

consider !!! sets and evaluate the N-n predic- 

tions for h set. Even if it were practical, 
there is still the problem of choosing a criterion 
for deciding when one set of N-n predictions is 
better than another set. Alternatives that might 
be used include dealing with the maximum error, 
the total error, or to consider each prediction 
in the sense that, for a particular sample, S, 
the question could be asked, is there a unit in 
S that could be replaced by a unit not in S, 
such that every prediction would be as good or 
better than the predictions with S. 

6 5 4  



To attack the problem directly by deciding 
which n units should be put in the sample 
seems to be particularly cumbersome. Consequent- 
ly the proposed procedure starts with all N 
units in the population, then uses a stepwise 
procedure to decide which one of these units to 
eliminate. A unit is eliminated at each step by 
deciding which one of those remaining would be 
easiest to predict. That is, omit the one with 
the smallest expected mean square error at each 
step. 

To express this more precisely, let ~' = 
(x. 1 ..... X.k), where x' is calculated using all 
N population units, and also calculate D using 
all N units in the population. In addition let 
x' and D(~) denote that unit j is omitted 

(J) ~ations. That is, x(~) and from the calcu ~ J 
D~ are calculated using N-I units. The 
q6~tion then is, if one unit were left out to 
predict, which unit would be easiest to predict, 
i.e., which unit has smallest d'(~)(D'...D...) -I 

~ J ~ 3 )  ~ J ~  d.. where d(.) denotes deviations 
~L j) _ ~ ~ J 
about x .... It turns out that this is ~quiva- 
lent to~~ding the minimum of d~(D'D)- dj (the 
proof of this result is omitted for the sake of 
brevity). This implies that the unit to omit is 
the one closest to ~ using the metric 
d!(D'D)-id.. ~ 
~3 ~3 

Once one unit, say k, has been eliminated, 
from the sample, the previous process is repeated, 
only now the "population" consists of the N-I 
remaining units. That is, use X(k)~ and D(k) 
in place of x and D and repeat the procedure. 
Eliminate another unit and repeat again with the 
new "population" of N-2 units. This process 
continues until only n units are left. These 
n units will be the sample units. 

This selection method requires N-n steps 
with d~(D'D)-id, evaluated N - i + 1 times at 

J ~j 
step i . This will generally be fast and easy 
to compute. A major strength of this method is 
that it is practical and applicable. However, by 
using a stepwise approach it will not necessarily 
select the same n units that would have been 
selected if all possible sets of n were consi- 
dered, and the set that satisfied some optimality 
criterion were chosen. 

Example: Evaluation of the Procedure 
Using Actual Data 

In order to examine how well this sample selec- 
tion process works, actual data was used to eval- 
uate it. The data set that was used provided 
information for 141 large standard metropolitan 
statistical areas (SMSAs) in the United States. 
This data set is located on pages 1109 - 1113 of 
Neter, Wasserman and Kutner (1985). The ultimate 
goal was to predict the number of physicians 
(variable 6) based on the auxiliary variables 
land area (var 2), total population (var 3) and 
total personal income (var i0). A multiple re- 
gression using the entire set of 141 with the 
previously mentioned variables, yielded a multi- 
ple R 2 of 96.4%. Therefore it appeared there 
was a good relationship between the three predic- 
tor (auxiliary) variables and the response varia- 
ble. 

As a method of evaluation, for the sample sel- 
ection procedure it was decided to compare the 

proposed procedure with two possible optimality 
criteria. The optimality criteria chosen were: 

i. pin Z E~(Yi - Yi )2 and 

2. min max E$(Yi - Yi )2 , 

where the sum and the max are taken over all non- 
sample units. The idea, of course, is that the 
proposed sampling plan might be justified as giv- 
ing a sample which is approximately optimal ac- 
cording to one of these criteria. 

Since N = 141 is too large to work with when 

we are looking at all ~ N~ samples, the decision 
n / 

was made to use N = 1 and n = 4. That is 
N = I0 of the SMSAs were randomly chosen as the 

'population'. Then all (i~ = 210 samples of 
\ --! 

size 4 from this population ,ere examined. For 
each sample^ ZE(~=± - Yi )2 was computed and the 

max of E~(y i - Yi ~2 was determined. In addi- 

tion, the proposed sample selection procedure was 
run to determine which of the 210 samples would 
have been selected by this procedure. It was de- 
termined which samples would have satisfied cri- 
teria 1 and 2 and then the values obtained for 
criteria 1 and 2 were compared with the 

ZE~(Yi - Yi )2 and max~ E~(y.~. I - y.)21 obtained 

for the sample chosen by t~e proposed procedure. 
This procedure was repeated 30 times, i.e., thir- 
ty 'populations' of size ten were drawn from the 
data set and this evaluation procedure was repeat- 
ed for each of these 'populations'. The following 
ratio was then computed: 

ZE~(Yi_ - Yi )2 ÷ sum for sample chosen by 
the proposed procedure 

minZE$(y i- - Yi )2 ÷ minimum sum for all 210 
possible samples 

If this ratio is i, the proposed sample selection 
process chooses the optimal sample according to 
this criterion. A second ratio was computed, 

namely: 2 
max E~(~ i~ _ yi ) ÷ max for sample chosen by 

the proposed procedure 

min max E$(~ i- _ yi )2 ÷ min max for all 210 
samples 

Once again, a ratio of 1 means the sample chosen 
by the proposed procedure was optimal according 
to this criterion. 

Summary statistics for the comparisons are 
given in Table i. The medians of the ratios are 
quite good for both optimality criteria. They 
indicate the proposed procedure produced 

ZE~(Yi - Yi )2 and max E~(Yi - Yi )2 values which 

differed from the optimal values by less than 4% 
and 8%, respectively, 50% of the time. The mean 
ratios are also good. In fact, 25 of the thirty 
sum ratios are less than 1.25 and 20 of the max 
ratios are also less than 1.25. 

Table 1 

Sum Ratio Max Ratio 
mean i. 194 1.311 
median 1.035 1.075 
standard deviation .326 .529 

Percent exact match 
Percent differ by 1 
Percent differ by 2 

26.6 33.3 
66.7 56.7 
6.7 i0 
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The evaluation of the sample selection proce- 
dure up to this point seems to show that the pro- 
posed sample selection scheme performs very well 
and often gives samples "close" to "optimal". 
However, a population of size i0 and a sample of 
size 4 are very small numbers and are not realis- 
tic in practical terms. Since one goal of this 
research is to produce a sample selection scheme 
which isuseful for actual data sets, it was de- 
cided to see how well this sample selection proc- 
ess performed when used with the entire data set. 
That is, for N = 141 and with n = 47 (chosen 
to be 1/3 of the data set), the sample selection 
process was used and predictors were derived for 
the nonsample units. Since the true values for 
the predictor variable (number of physicians) 
were available, the prediction errors were also 
computed. Table 2 gives summary values for 

Yi - x'fl~i ~ and (Yi - x'B~i~)2 for the non-sample 

values. 

Table 2 
2 

Y~ - ~ i ~  (Y~ - ~ i ~ )  
min -594.76(at unit 53) 11.80 (at unit 70) 
max 1369.62(at unit 68) 1875847.4(at unit 68) 
mean -57.38 88036.57 
median -99.18 30864.487 

Table 2 shows that "on the average", the predic- 
tions produced based on this sample overestimated 
the number of physicians per SMSA by approximate- 
ly 58 (using the mean) and with a median over- 
estimate of 99 per SMSA. The actual number of 
physicians per SMSA ranged from 140 to 25,627 
with a median of 769. Thus, the predictions de- 
rived in this manner should be "close" to those 
achieved by "optimal" sampling and they tend on 
average to slightly overestimate the number of 
physicians. 

Comments and Further Questions 

There are a number of topics that require 
investigation before this model-based sample 
selection scheme becomes truly practical. The 
sensitivity of the model to deviations from the 
model assumptions is of critical importance in 
deciding whether to use randomization or purpos- 
ive sampling. One of the goals of this research 
was to determine what role the model could play 
in the sample design. Toward that end the pur- 
posive sampling scheme described in this paper 
was developed. However, there are many things to 
consider before performing nonrandom sampling. 
H~jek (1981, pp. 14 and 20) has stated that the 
sample selection is affected by many factors in- 
cluding population size, assumption of indepen- 
dence, sample size, number of auxiliary variables, 
and how well the population is mixed. Further 
research should be done on the sample selection 
process and how it affects the predictors and 
error variances before this procedure is routine- 
ly applied. However, it should be noted that a 
relatively small sample size may justify using 
the proposed purposive sampling scheme. As 
pointed out in Hansen, Madow, and Tepping (1983, 
p. 791), when dealing with a practical problem 
where the sample size is relatively small, model- 
dependent inferences may be preferable to strict- 
ly random sample selection. This topic definite- 
ly requires further study. 

Another important topic for study is the situ- 
ation where there are multiple predictions per 
unit. Even if there are still homogeneous var- 
iances, the auxiliary variables may change. What 
effect does this have on the sample selection 
process? If purposive sampling were to be used, 
how could one select the "best" set of sample 
units in order to predict variate values for two 
or more characteristics of interest per unit? 
These questions need examination. 

One consequence of the proposed allocation 
scheme deserves special mention. By ordering the 
sample units in the proposed way, any "outlier" 
will definitely be included in the sample. This 
may not be desirable in estimating ft. One pos- 
sible alternative to the proposed plan would be 
to use our method to order the population units 
and then to oversample the units with the larger 
values from this ordered set. Other types of 
sampling schemes may also be appropriate. This 
is another topic worth studying. 

It should also be noted that the sample selec- 
tion scheme proposed in this paper will work for 
homogeneous variances. A different approach must 
be taken for nonhomogeneous variances. 

To conclude, when individual unit predictors 
are required for each unit in a finite population 
but due to restrictions it is not possible to 
sample each unit, the sampling scheme described 
here is a possible procedure for selecting the 
"best" sample. 
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