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ABSTRACT 
In sample surveys, one of the main reasons for 

stratifying the population is to produce a gain in 
precision of the estimates. The stratification is often 
based on several stratification variables. Moreover 
several variables of interest are measured. The 
problem considered is how to determine optimum 
points of stratification which would divide the 
population domain of two or more stratification 
variables into distinct subsets such that the precision 
of one or more variables of interest is m..aximized. 
Following the approach used by Buhler & 
Deutler (1975), the methods proposed are based 
principally on the use of Dynamic Programming. This 
computational technique has been found to be free 
from some of the disadvantages of other previously 
published methods. Results are presented for the 
two-way stratification c a s e  but can easily be 
extended to higher dimensions. 

Keywords: Dynamic programming;  two-way 
stratification; optimum points; global 
minima. 

1. INTRODUCTION 
Strat i f icat ion is a technique commonly used in 

sample surveys where the population of interest  is 
divided into sub-populations. As s ta ted  by 
Cochran (1977), one reason for s t ra t i f ica t ion is that  it 
may produce a gain in precision in the es t imates  of 
the charac ter i s t ics  of the to ta l  population. This 
ar t ic le  will mainly be concerned with the 
maximization of the gain in precision due to 
s t ra t i f ica t ion in the case of s t ra t i f ica t ion based on 
two variables. The variables will be assumed to come 
from infinite populations or large finite ones. 

The use of a s t ra t i f ied sample survey basically 
involves five different  design operations: 

1. the choice of the s t ra t i f ica t ion variables; 
2. the choice of the number of s t rata;  
3. the determinat ion of the way in which the 

population is to be stratif ied; 
4. the allocation of the to ta l  sample size n to 

the s t rata;  
5. the choice of a sampling design within 

s t ra ta .  
Although in theory any sampling design can be 

chosen, following ear l ier  work, only Simple Random 
Sampling (SRS) without rep lacement  is considered 
within each s t ra ta .  The s t ra t i f ica t ion variables can 
be e i ther  ca tegor ica l  or non-categorical  
(i.e. continuous, discrete).  The l a t t e r  will be the type 
of s t ra t i f ica t ion  variable for which maximization of 
precision of es t imates  will be performed. Along this 
line, the most ef fec t ive  variables on which to s t ra t i fy  
would be the variables of interest  themselves.  
However,  since in pract ice  this is not always feasible, 
the s t ra t i f ica t ion  variables should be auxiliary 
variables which are highly corre la ted  with the 
variables of interest .  

The importance of eff icient  s t ra t i f ica t ion should 
certainly not be under rated.  For example,  Dalenius 
and Gurney (1951) showed that  in some cases 
increasing the number of s t ra ta  can lead to a loss in 
!precision if s t ra t i f ica t ion is not well chosen. 

The optimum st ra t i f ica t ion of a population 
consists in dividing the joint domain of the 
s t ra t i f ica t ion variables in such a way that  the 
precision of the es t imates  is maximized. In acheiving 
this goal, it is usually required that  this division be 
done by cut t ing the domain of each s t ra t i f ica t ion 
variable into distinct intervals. Such a s t ra t i f ica t ion 
has been refered to as a la t t ice  (or interval) optimum 
st ra t i f ica t ion by Isii and Taga (1969). A la t t ice  
s t ra t i f ica t ion  can in fact  be seen as being formed by 
straight  lines parallel  to each of the axis of an 
Euclidian space. 

Considering the determinat ion of the optimum 
st ra t i f ica t ion as an important  problem in survey 
sampling, many authors developed different  methods 
to solve it with varying degrees of mathemat ica l  
rigour. A large number of art icles,  since Hayashi and 
Maruyama (1948) and Dalenius (1950), who worked on 
the one-way optimum st ra t i f ica t ion problem, have 
been published for part icular  applications. One 
approach that  has been considered by Buhler and 
Deutler  (1975) in the one-way case is to use the 
technique of Dynamic Programming (DP). This 
technique, which is relat ively simple to use, has been 
found to be free of some of the disadvantages of the 
previously published methods (see Section 3.2 and 4.2). 
The DP approach will in fact  be the one that  will be 
used in this ar t ic le  to solve the problem of 
determining the two-way optimum strat i f icat ion.  

2. SOME ASPECTS OF DYNAMIC PROGRAMMING 
2.1 Definitions and Coneepts 

DP has been fully described in Bellman (1957), 
and Bellman and Dreyfus (1965). No formal definition 
seems to exist for DP. However, a general definition 
may be that it is a computational method using 
recurrence relations for solving sequential decision 
optimization problems. 

A very broad range of DP problems can be 
described in a formal way using the following 
notation: 

K 
M i n j__z 1¢ j (u j_ 1 ,u j) (2.1) 

subject to: u j=T j (u j_ 1' v j ) 
uj~Uj 
vj~Dj(uj_ I) 
Uo=U' j=l K. 9 9 " ' ' $  

The function to be minimized is called the 
objective function. In the general  approach of DP, 
the concept  of s tage is used to make the decisions 
ordered. Here, the subscript j is referr ing to the j t h  
of the K stages.  The optimizat ion problem is then 
solved sequential ly one stage at a t ime.  The s ta te  of 
the j t h  s tage is given by the s t a te  variable u j .  The 

set Uj is called the state space which can be 

continuous or discrete depending on the type of 
problem considered. The variable v j is called the 

decision variable. Associated with the decision 
variable is the decision space Oj(Uj_l )" Finally, to 

be able to describe the states from stage to stage, 
the stage transformation function ~j is used. 
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2.2 T h e  Use of D~namie Programming 
Expressing a problem in the form given by (2.1) 

is a sufficient condition for using the DP method to 
solve the problem. The whole idea behind the method 
of DP is a simple principle called the Bellman's 
Principle of Optimality. Stated by Bellman (1957), 
this principle was given as follows: 

"An optimal policy has the property that, 
whatever the initial state and decision are, 
the remaining decisions must constitute an 
optimal policy with regard to the state 
resulting from the first decisions". 
With respect to the DP problem (2.1), let 

¢~(Ui_l ) be the optimal value of the objective 

function for the stages j to K given the state Uj_l. 

*(u j_ ) the Bellman's To determine the values of s j 1 ' 

Principle of Optimality suggests one start at j=K and 
then go backward down to j=1. 

Along this process, the problem (2.1) can then 
be solved using the following recurrence relation: 

~*.(u ):v M {¢~(uj u ) 3 j - i  jeDji  n Uj_l ) j - I '  j 

+ *  ~j(u , } (2 2) Cj+l(Uj) luj: j-1 vj) . . 
This last  equat ion is o f ten  r e f e r r e d  to as the  

Funct iona l  Equat ion of Bellman.  The opt imal  value 
~ ( u 0 )  obta ined at  the  end of the  process  gives in 

f ac t  the  global minimal  value of the  objec t ive  
*(U ) are now function. Since the optimal values sj j-1 

known for all stages j and all states uj_1, the 

optimal vector v*=(vI,...,VK) can then be obtained 

by induction. Using $~(u0), v I is first obtained and 

then v~ is obtained f rom $~(u~)where 

uI=Tl (u0'vl) and so on up to the Kth stage. By 

following this process, the optimization problem is 
found to be completely solved. 

Even if the method involves the use of the 
recursive Functional Equation of Bellman, DP can be 
implemented on a computer using either a language 
that allows recursiveness or not. A non-recursive DP 
algorithm can be found in Bellman and Dreyfus (1965). 

3. TWO-WAY OPTIMUM STRATIFICATION WITH 
ONE CATEGORICAL STRATIFICATION VARIABLE 

In survey sampling, the  populat ion is o f ten  
divided using more than one s t r a t i f i ca t i on  var iable .  
While the  s t r a t i f i c a t i on  based on the  var iables  of 
in te res t  is mainly to improve the  precis ion of the  
e s t ima te s ,  the  use of one or more  o ther  s t r a t i f i ca t i on  
var iables  may also be d i c t a t ed  by o the r  reasons such 
as admin i s t r a t ive  convenience  or to  ensure  a ce r t a in  
r e p r e s e n t a t i v e n e s s  in some subdivisions of the  
populat ion.  These  o ther  s t r a t i f i ca t i on  var iables  are  
o f ten  found to be ca tegor i ca l .  

In this sect ion,  we consider  a single var iable  of 
in t e res t  X for  which we want  to e s t i m a t e  the  mean.  
The populat ion is assumed to be a l ready  s t r a t i f i ed  
into M ca tegor i e s  (or classes).  Each of these  
ca t ego r i e s  is then  to be subdivided into L subs t r a t a  
accord ing  to the  var iable  of in te res t  X. Each 
subs t ra tum is to  be fo rmed  by a d is t inct  subin terval  
of the  domain,  [ a , b ]  say, of the  subpopulat ion of X 
for  the  kth ca tegory .  That  is, for  a given ca t ego ry  k, 

each substratum h is to be given by [Xh_l,Xh] where 
÷ 

[Xh_l,Xh]=]Xh_l,Xh ] for h=2,...,L; [x~,xl]=[x0,x I] 

and a=x0<xl<... <XL=b. The vector x=(x0,... ,XL) is 

called the vector of points of stratification. 
The problem considered here is to obtain, for 

each category k, Optimal Points of Stratification 
(OPS) x~ in such a way that these points of 

stratification will be the same for all M categories, 
i.e. x~=x*. Recall that such a stratification is called 

a lattice stratification. It should be noted that the 
following results will also hold for the cases of two or 
more categorical stratification variables, the 
resulting M categories be ing  formed by the 
intersection of the classes of all the categorical 
variables. It may also be noted that the case of 
M=I corresponds simply to the case of one-way 
optimum stratification. 

We assume that the variable of interest X is 
sampled, for the kth of the M categories, from a 
subpopulation of size N k with cumulative distribution 

function (CDF) Fk(X ) defined on [a,b] with mean iJ k 

2 and finite variance o k . Note that even if the CDF 

may be different for each category k, the domain of 
X is assumed to be the same. Let O k represent the 

relative size of the subpopulation of the kth category 

such that r M=1 Ok=1 and Ok>0 for k=1,...,M. If the 

overall population size N(N=rM:I Nk) is finite, for 

example, o k is simply given by 

N k 
ek=~-, k : l , . . .  ,M. (3.1) 

Based on these assumptions, the mean IJ of the 
overall underlying population of the variable of 
interest X can be expressed as 

M 
~=k_Z_lek~k. (3.2) 

An unbiased estimate of ~ is given by 

M _ M L 

Xcomb=k z__ 1E) kXk=k z= 1E) k hZ__iW(k)hXkh (3.3) 

n 
where ~kh = 1 kh r (3.4) i=lXkhi, 

x h 
W(k)h=~ + dFk(X ). (3.5) 

Xh_ 1 

The quantity Xkh represents the sample mean in 
stratum (k,h) and the quantity W(k) h is the stratum 
subpopulation proportion within eategory k. The 
population proportion for stratum (k,h), denoted by 
Wkh, can be obtained from 

Wkh=ekW,k,h , ~ ;  k=l,...,M; h=l,...,L. (3.6) 
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Using the last equation, the estimator Xcomb, 

given by (3.3), can be simply written in the form 

M L m 

Xcomb=kZ__l h=ZlWkhXkh. (3.7) 

As noted in the introduction, it is assumed that 
the subpopulation sizes N k are infinite or at least 

large enough compared to the corresponding sample 
sizes n k and the number L of substrata so that the 

finite population correc t ion  (f.p.c.) can_be  ignored. 
Hence, ignoring the  f.p.c.,  the var iance of Xcomb is 
given by 

2 

Var(~comb) = M L 2 °(k)h z W (3.8) 
k=l h=l kh nkh 

2 Nk Xh 
where O(k)h=NkW(k)h_l .Fx+ (x-~(k)h)2dFk(X) (3.9) 

h-1 

1 Xh 
= ~ xdF (x), (3.10) 

+ k (k)h W(k)h Xh-i 

h=l, . . . .  L; k=l . . . .  ,M. 

The de te rmina t ion  of the  OPS x* to construct  
the l a t t i ce  s t ra t i f ica t ion  for the population of the 
variable X can be done by minimizing equation (3.8) 
with respec t  to the points of s t ra t i f ica t ion  x_. 
3.1 Sample Allocat ion 

Dalenius (1950) showed that the OPS generally 
depend on the type of allocation used for the total 
sample size n. In general, the allocation can be 
expressed as 

nkh=Pkh n (3.11) 

M L 
where z z =i and p 0 for k=l M; k=l h=l Pkh _kh > " " '  
h=1, . . . ,L .  The variance of Xcomb under the general 
allocation is given by 

Var(~comb)= Ms zL W~hO~k)h 
k=l h=l Pkh n " (3.12) 

It should be noted that puh may or not depend on the 
points of s t r a t i f i c a t i o n _  x." 

3.2 Obtaining OPS with DP 
The de te rmina t ion  of the OPS x* for l a t t i ce  

s_tratification is done by minimizing the variance of 
Xcomb under a given type of al location.  One way to 

solve this problem is to use the approach of 
Dalenius (1950) as in the ease of one s t ra t i f ica t ion  
variable,  which inv_olves taking the par t ia l  der ivat ives  
of the var iance of Xcomb with respect  to the points of 

s t ra t i f i ca t ion  x to obtain the minimal equations.  
However,  the  studies of Schneeberger  (1979), 
Goller (1981) and Schneeberger  (1985) have shown tha t  
the minimal equations, which are only necessary but 
not suff icient  conditions for a global minimum, can 
also lead to a local minimum, a saddle-point  or even 
a local maximum. An a l t e rna t ive  approach, which 
l_eads to a global minimum for the  variance of 
Xcomb , is to use DP. 

o o  

As suggested by Buhler and Deutler (1975) for 
the one-way stratification ease, the DP approach 
discussed in general in Section 2 can easily be applied 
to the present problem for m o s t  allocations 
represented by (3.11). For the problem of 
determining the OPS x_* for lattice stratification 
with one categorical stratification variable, the 
objective function G(x) to be minimized can be 
expressed in the form 

h=l(k=l gk (Xh-i 'xh) )" (3.13) 

The determination of gk(Xh-l'Xh) is done by 

considering the formula for the variance of X-comb , 

given by (3.12), obtained under a given allocation. 
Unfortunately some allocations cannot be handled 
using the DP approach since they do not permit 
expressing the variance of Xcomb in the form (3.13)or 

even more generally in the form (2.1). However, 
for most usual allocations such as proportional or 
Neyman allocation, the form G(x_) is relatively easy 
to obtain. 

With the stages corresponding to the different 
intervals h, the problem of determining of the OPS x* 
for lattice stratification can be expressed in a ~orm 
similar to (2.1) by 

L M 
Min z z (x h Xh) (3.14) h=l k=l gk -1' 

subject to: Xh =Xh- l+dh 

XhC[a,b] 

dheB h (Xh_ I)=[ O, b-Xh_ 1 ] 
XO=a, h= l , . . . , L .  

The sequential decision aspect of DP can in fact be 
seen as distributing to one interval h at a time a 
portion d h of the domain [ a, b ]. 

The next step in the DP formulation of the 
problem involves the determination of the Functional 
Equation of Bellman given in general by (2.2). Let 
G*(Xh h-l) be the optimal value of the objective 
function for the strata (k, h) to (k, L) considering all 
M categories, given that lower bound for the strata 
(k,h) for k=l, . . . ,M is Xh_ 1. The Functional 

Equation of Bellman for determination of the OPS x* 
for lattice stratification is then expressed as 

M 
n { x )  G (xh-ll=dh B"hixh_1) k igk(x,_1,, 

+G~+ l(xh) l Xh:Xh_l+dh } . (3.15) 

Following Result 1 of Buhler and Deutler (1975), 
the solutions obtained from the DP formulation (3.14) 
of the two-way optimum stratification problem with 
one categorical stratification variable would in fact 
be the true OPS x*. It should be noted that no 
convexity assumptions have been used with respect to 
the objective function (3.13). In the optimum 
stratification problem, the main difficulty comes in 
fact f rom being unable to assume convexity in 
general. Based on equation (3.15), the DP approach 
can be implemented easily. A difficulty, however, is 
brought by the infinite nature of both the state space 
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[a,b] and the decision spaces Bh(Xh_l). This 

problem can fortunately be overcome by crossing 
these intervals by discrete steps which makes them 
look like finite sets. The number of these steps is 
chosen by taking into account precision, computer 
space and time. 

In practice, it often occurs that the population 
of the variable X is a real population in the sense that 
it is a set of measured values. The DP approach is 
then simply used by replacing the different quantities 
entering into the objective functions G(x)bytheir 
finite population counterparts. 

4. TWO-WAY OPTIMUM STRATIFICATION 
The method of optimum stratification considered 

in the previous section is applicable to a single 
variable of interest X. However, as pointed out by 
Kish and Anderson (1978), mos t  surveys are in 
practice multisubject, i.e. in a single survey, several 
variables are measured. Multisub]eet surveys lead to 
considerably reduced costs compared to individual 
surveys for each variable of interest. However, the 
determination of optimum points of stratification is 
more difficult than in the single variable case. 

In this section, it is supposed that two variables 
of interest X and Y are to be measured in order to 
produce estimates of their means ~X and Uy, 

respectively. These variables (X,Y) are assumed to 
be sampled from a population of size N with joint 
CDF F(x,y) defined on [ax,bx]x[ay,b Y] withmean 

(~X'~Y) and covarianee matrix z= . The 
LOxy Oy ] 

matrix z is assumed to be f inite, i.e. IZl<o~ where I AI 
denotes the determinant of the matrix A. Given that 
the population is to be divided into LxM strata, the 
problem considered here is to obtain OPS 
x * = ( x ~ , x ~ , . . .  ,x~) with respect to the variable X 

togethe  with OrS with respect to 

the variable Y to form the optimum latt ice 
stratification for the estimation of the means ~X and 
Uy. 

The usual unbiased estimators of the means UX 
m 

and Uy are given by Xst and Yst' respectively. For a 

given vector_ of points of stratification (x,y), 
the estimator X st can be obtained from 

L M . _  m 

x = Z kS= (4.1) st  h=l 1Whkxhk 

~ _ 1  nhk 
where hk-nh k iz--iXhki' (4.2) 

x h whk:l + IY+ k dF(x,y).  (43) 
Xh-1 Yk-1 

The estimator Yst is similarly obtained from (4.1) by 

substitutingy's for x's. It should be noted that the 
stratum population proportion Whk given by (4.3) 

differs from the one denoted by Wkh and used in 

Section 3. As in the previous section, it is again 

assumed that the population size N is infinite or at 
least large enough compared to the total sample size 
n and the number LxM of strata so that the f.p.e. 
can be ignored. _Hence, the sampling variance related 
to the estimator X st is simply given by 

L M W~kO2hk (4.4) 
Var(Xst)=h_Z_l kZ=l nhk 

2 N Xh 
If x f k+ 2 where OXhk=NWhk - h-1 Yk-1 (x-~Xhk) dF(x,y) (4.5) 

,Xh ~Y i ~ + k xdF(x,y). (4.6) UXhk 
= nK ~ Xh_ 1 Yk-1 

An expression similar to (4.4) can be derived for 
the variance of Yst" 

One of the main problems in the determination 
of two-way optimum stratification is the choice of 
the objective function to be minimized to obtain the 
vector of OPS (x*,y*). Unlike the case of a 
single variable of interest, the objective function for 
two variables of interest is not uniquely defined 
because of the various possibili_ties of considering the 
variances and covariance of Xst and Yst" One 

possible objective function proposed in the literature 
(Ghosh (1963) and Sadasivan and Aggar_wal (1978)) is 
the generalized variance of X st and Yst" The 

generalized variance is defined by_the determinant of 
the covariance matrix of Xst and Yst" As stated by 

Dahmstrom and Hagnell (1978), a somewhat more 
natural measure is the sum of the variances of Xst 

and Yst or, more generally, a weighted sum of these 

variances where the weights indicate the relative 
importance of the two variables. Letting 0 X and By 

be the weights associated with the variances of X st 

and Yst' respectively, such that 0X+0y=l, 0X>0 and 

0y>_0, this objective function can be expressed as 

Vxy=exVar(~st)+eyVar(Yst) 

2 2 
L M W~k(eXoXh k+eY°Yh k) 

= ~i 

h=l k=l nhk 
(4.7) 

The weighted average Vxy is often used as a 

basis to obtain an optimal sample size allocation 
(e.g., Dalenius (1957)s~nd Coehran (1977)). In this 
article, the determination of OPS is considered only 
under the weighted average Vxy. 

4.1 Sample AUoeation 
Since the values of the OPS generally depend on 

the type of allocation used, the minimization of the 
weighted average (4.7) should be done by considering 
a given allocation. 

Again, the allocation can be expressed in 
general as nhk = n Phk" The weighted average VXy 

under the general allocation is simply expressed as 
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2 2 
L M W~k(OX°Xh k+°Y°Yh k) V = ~ Z 

XY h=l k=l Phk n 
• (4.8) 

As mentioned in Section 3.1, Phk may or not 

depend on the points of s t ra t i f ica t ion  (x ,y ) .  

4.2 Obtaining OP8 with DP 
Ghosh (1963) first considered the problem of 

two-way optimum st ra t i f icat ion.  Using the same 
approach as Dalenius (1950), he obtained minimal 
equations by taking the par t ia l  der ivat ives  of the 
general ized variance under the proportional  allocation. 

However, as noted earl ier ,  the minimal 
equations are only necessary but not sufficient 
conditions for achieving a global minimum of the 
obje.etive function. In fact ,  Sehneeberger  and 
Pollot (1985) showed that ,  for the bivariate  normal 
distribution, Ghosh's result  would lead to a saddle- 
point. To solve the problem of determining the OPS 
(x_*,y*) minimizing the weighted average Vxy, the 
method to be used should provide at least  a local 
minimum (if not a global one). As in the preceding 
section, such a method can again be developed by the 
use of DP. 

The object ive function for the present  problem 
can be expressed in the form 

L M 
= z z g(Xh_l,X 'Yk- 'Yk ) (4.9) G(x,y) h=l k=l h 1 " 

The expression for the function g(xh_ 1,x h, Yk_l,Yk) 

is simply determined from the formula of the weighted 
average Vxy given by (4.8). Again some allocations 

do not permit  expressing VXy given by (4.8) in the 

form (4.9). The objective function (4.9), however,  is 
re la t ively  easy to obtain for most usual allocations.  

The general  equation (4.9) for the object ive 
function suggests that ,  for the de terminat ion  of two- 
way optimum st ra t i f icat ion,  a two-dimensional  DP 
approach should be used. Employing the general  
concepts  of DP given in Section 2 with the s ta te  and 
decision variables being now two-dimensional,  the 
s tages may be specified by the pairs (h ,k ) .  The 
problem of two-way optimum s t ra t i f ica t ion  can then 
be expressed as 

L M 
Min z z g(x xh,Y ,yk) (4.10) h=l k=l h-l' k-1 
subject to- (xh,Yk):(Xh_l+dh,Yk_l+tk) 

(xh,Yk)~[ax,bxlx[ay,b Y] 

(dh,tk) EB~X)(Xh_l)xB~Y)(Yk_l ) 
=[ O, bx-Xh_ I Ix[ O, by-yk_ 1 ] 

(Xo,Yo)=(ax,ay), 
h : l , . . . ,L ;  k=l,...,M. 

Although the formulat ion (4.10) seems to 
correspond to the one given by (2.1), a diff iculty can 
in fac t  be seen with respect  to the decision space 

B~X)(xh_l)xB~Y)(Yk_l)." " In the formulat ion (2.1), the 

decision space depends only on the s t a t e  of the 
previous stage. However, in the formulat ion (4.10), 

the decision space 8~ X) (Xh_l)xB~Y)(Yk_l) depends on 

the s ta tes  of both past and future s tages since the 

variable Xh_ 1 is present  in the decision spaces of the 

M stages (h ,1)  to (h,M) and the variable Yk-1 in the 

decision spaces of the L stages (1,  k) to (L, k). 
Hence, the Bellman's Principle of Optimali ty  s ta ted  in 
Section 2.2, which forms the basis for the use of DP, 
is not applicable. It should be noted tha t  the problem 
is part ial ly due to the way the stages have been 
defined. In fact ,  instead of LxM stages re la ted  to 
each s t ra tum (h ,k ) ,  there  are only (L+M) stages which 
can be viewed through the decision variables d h and 

t k. However, due to the nature  of the objective 

function given in general  by (4.9), its t ransformat ion  
to re f lec t  the (L+M) stages does not seem to be 
mathemat ica l ly  t r ac tab le  for most allocations. 

We propose a simple approach which permits  a 
solution to the problem (4.10) using the unidimensional 
DP i tera t ively .  Before the first  i terat ion,  some tr ial  

° ( (o1 values, say x_ (0) and y (0) such tha t  a x = x 0) < Xl 

< ... < x~O_l < x~O)= b XandaY = y~O)< y~O) < 
~(o) (o) 

" ' "  < JM-1 < y = by, are chosen for the initial 

points of s t ra t i f ica t ion  with respect  to the variables X 
and Y, respect ively.  Then for the i th i tera t ion 

( i = 1 , 2 , . . . ) ,  the points of s t ra t i f ica t ion  y(i-1)" " are 
first  considered as fixed. Note that  the points of 

s t ra t i f ica t ion  x ( i - 1 )  could also be chosen instead of 

Y ( i - 1 ) .  Fixing the values of y ( i - 1 )  has in fact  the 
e f fec t  of reducing the problem exact ly  to the one of 
two-way optimum s t ra t i f ica t ion  with one ca tegor ica l  
s t ra t i f ica t ion  variable discussed in Section 3. This 
ean be seen by comparing the formulat ion (4.10) to 
the one given by (3.14) with the values of the points 
of s t ra t i f ica t ion  y taken as constants  in (4.10). 

Let G~h (Xh_l ' y  ( i - 1 ) )  be the optimal value for 

the object ive function (4.9) for the s t ra ta  (h ,k)  to 
(L,k)  for all k = l , . . . , M  given tha t  the lower bound 
for the s t r a t a  (h ,k )  for k=l . . . .  ,M is Xh-l" The 

Functional  Equation of Bellman with respect  to the 
first  part  of the i th i te ra t ion  is then given by 

M 
G~h(Xh_l,y(i-1)) = xMi n { zlg(x h x h 

dhEB !,, (Xh_ 1) k= -1' ' 

( i - l ) ,y~ i - l )  (x y ( i - l ) )  
Yk-1 )+G~h+l h' 
I Xh=Xh_l+dh } (4.11) 

where B~ x) (Xh_ I) is given in (4.10). 

Using this last equation, new points of 

s t ra t i f ica t ion  x ( i )  with respect  to the variable X can 

be obtained to r ep lace  the preceding values x_ ( i - 1 ) .  
Hence, the OPS for the first  par t  of the i th  i tera t ion 

are given by ( x t i ) , y t i - 1 ) ) . "  " " " For the second part  of 

the i th i terat ion,  the points of s t ra t i f ica t ion  x ( i )  
are, in turn, considered as fixed. Using again the 
s imilar i ty  tha t  exists with the formulat ions (4.10) and 
(3.14) but now with the values of x taken as constants  

m 

in (4.10), let  G~k(x ( i ) ,Yk_ l )  be the optimal  value for 

the object ive function (4.9) for the s t ra ta  (h ,k)  to 
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(h,M) for all h=l , . . . ,L  given that the lower bound 
for the strata (h,k) for h=l , . . . ,L  is Yk-l" 

The Functional Equation of Bellman for the second 
part of the i th iteration is then given by 

G~k(x(i)'Yk-1)=tkEB~Mi n(yk_l ){ ! ~!I x~ i) h i g(x ' ' 

+ .  (x (i) ) Yk-l'Yk ) Gyk+I 'Yk 
i yk:Yk_l+tk} (4.12) 

where B~ Y) (Yk-1) is given in (4.10). 

Using expression (4.12), the values of the OPS 

~('i) can be determined to replace the previous values 

y(J-1)'" so that, for the Jth iteration, the OPS are 

given by (x ( j ) ,y ( j ) ). 

This process iterates until some convergence 
criterion is satisfied. A possible convergence 
criterion as follows: 

' 
max(Ix I/x )<e X 
h=l 

. 
and max( [y -y [/y )<ey (4.14) 

k=l 

where eX>0 and Cy>0. 

A proof  of convergence  to the co r r ec t  l imit  is 
given in Laval l6e  (1987). It is shown under  s imple 
assumptions  tha t ,  if the  unidimensional  i t e r a t ive  DP 
approach converges ,  the  convergence  l imit  is a local  
minimum with probabi l i ty  1 (or a saddle-point  but 
with probabi l i ty  0). It should be. noted tha t ,  when the 
objec t ive  funct ion  is not convex, which is the  ease  
here ,  most  of the  i t e r a t i ve  methods s t a r t ing  with 
a rb i t r a ry  values cannot  gua ran tee  to lead to a global 
minimum. 

The main advan tage  of the  unidimensional  
i t e r a t ive  DP approach is tha t  it can be easi ly 
implemen ted  using the  DP approach of Sect ion 3 as a 
guideline.  One of its d i sadvantages  is tha t  
convergence  cannot  be insured. Note  tha t  this is t rue  
in most o the r  eases  where  a un ivar ia te  i t e ra t ive  
approach is used instead of a mul t iva r ia te  one. 

When the  populat ion of the  var iables  X and Y is 
a rea l  populat ion,  the  OPS x* and y* are  then 
obta ined fol lowing the  same approach as the one 
descr ibed in Sect ion 3.2. Following this approach,  the  
OPS are  obta ined  using the proposed unidimensional  
i t e r a t ive  DP method,  but the  d i f f e ren t  quant i t ies  
en te r ing  into the  ob jec t ive  funct ion (4.9) are  rep laced  
by the i r  f in i te  populat ion coun te rpar t s .  
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