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ABSTRACT

In sample surveys, one of the main reasons for
stratifying the population is to produce a gain in
precision of the estimates. The stratification is often
based on several stratification variables. Moreover
several variables of interest are measured. The
problem considered is how to determine optimum
points of stratification which would - divide the
population domain of two or more stratification
variables into distinet subsets such that the precision
of one or more variables of interest is maximized.
Following the approach wused by Buhler &
Deutler (1975), the methods proposed are based
prineipally on the use of Dynamic Programming., This
computational technique has been found to be free
from some of the disadvantages of other previously
published methods. Results are presented for the

two-way stratification case but can easily be

extended to higher dimensions.

Keywords: Dynamic programming; two-way
stratification; optimum points; global
minima.

1. INTRODUCTION
Stratification is a technique commonly used in
sample surveys where the population of interest is
divided into sub-populations. As stated by
Cochran (1977), one reason for stratification is that it
may produce a gain in precision in the estimates of

the characteristics of the total population. This
article will mainly be concerned with the
maximization of the gain in precision due to

stratification in the case of stratification based on
two variables. The variables will be assumed to come
from infinite populations or large finite ones.

The use of a stratified sample survey basically
involves five different design operations:

1. the choice of the stratification variables;

2. the choice of the number of strata;

3. the determination of the way in which the

population is to be stratified;

4. the allocation of the total sample size n

the strata;

5. the choice of a sampling design within

strata.

Although in theory any sampling design can be
chosen, following earlier work, only Simple Random
Sampling (SRS) without replacement is considered
within each strata. The stratification variables can
be either categorical or non-categorical
(i.e. continuous, discrete). The latter will be the type
of stratification variable for which maximization of
precision of estimates will be performed. Along this
line, the most effective variables on which to stratify
would be the variables of interest themselves.
However, since in practice this is not always feasible,
the stratification variables should be auxiliary
variables which are highly correlated with the
variables of interest.

The importance of efficient stratification should
certainly not be under rated. For example, Dalenius
and Gurney (1951) showed that in some cases
increasing the number of strata can lead to a loss in
iprecision if stratification is not well chosen.

to

646

The optimum stratification of a population
consists in dividing the joint domain of the
stratification variables in such a way that the
precision of the estimates is maximized. In acheiving
this goal, it is usually required that this division be
done by cutting the domain of each stratification
variable into distinet intervals. Suech a stratification
has been refered to as a lattice (or interval) optimum
stratification by Isii and Taga (1969). A lattice
stratification can in fact be seen as being formed by
straight lines parallel to each of the axis of an
Eueclidian space.

Considering the determination of the optimum
stratification as an important problem in survey
sampling, many authors developed different methods
to solve it with varying degrees of mathematical
rigour. A large number of articles, since Hayashi and
Maruyama (1948) and Dalenius (1950), who worked on
the one-way optimum stratification problem, have
been published for particular applications. One
approach that has been considered by Buhler and
Deutler (1975) in the one-way case is to use the
technique of Dynamiec Programming (DP). This
technique, which is relatively simple to use, has been
found to be free of some of the disadvantages of the
previously published methods (see Section 3.2 and 4.2).
The DP approach will in fact be the one that will be
used in this article to solve the problem of
determining the two-way optimum stratification.

2. SOME ASPECTS OF DYNAMIC PROGRAMMING

2.1 Definitions and Conecepts

DP has been fully described in Bellman (1957),
and Bellman and Dreyfus (1965). No formal definition
seems to exist for DP. However, a general definition
may be that it is a computational method using
recurrence relations for solving sequential decision
optimization problems.

A very broad range of DP problems can be
deseribed in a formal way using the following
notation:

. K
M1nj£1¢j(uj_1,uj) (2.1)

subject to:  u.=t.(u '_1’Vj)

JUJJ
ujeDj
vye j(uj—l)

u0=u', j=1,...,K

The function to be minimized is called the
objective function. In the general approach of DP,
the concept of stage is used to make the decisions
ordered. Here, the subscript j is referring to the jth
of the K stages. The optimization problem is then
solved sequentially one stage at a time. The state of
the jth stage is given by the state variable u j The

set Uj is called the state space which can be

continuous or discrete depending on the type of
problem considered. The variable v j is called the

decision variable. Associated with the decision
variable is the decision space Dj(u j-l)' Finally, to

be able to deseribe the states from stage to stage,

the stage transformation funetion j is used.



2.2 The Use of Dynamic Programming

Expressing a problem in the form given by (2.1)
is a sufficient condition for using the DP method to
solve the problem. The whole idea behind the method
of DP is a simple principle called the Bellman's
Principle of Optimality. Stated by Bellman (1957),
this principle was given as follows:

"An optimal policy has the property that,
whatever the initial state and decision are,

the remaining decisions must constitute an
optimal policy with regard to the state
resulting from the first decisions".

With respect to the DP problem (2.1), let

Qg(uj_l) be the optimal value of the objective

function for the stages j to K given the state uj-l’
To determine the values of Qg(uj_l), the Bellman's

Principle of Optimality suggests one start at j=K
then go backward down to j=1.

Along this process, the problem (2.1) can then
be solved using the following recurrence relation:

o*(u, 4)= Min {e5(us 4,uy)

b AN Y SOV I (T NANNES S

VJe Jzu.]-l)
+o% . =ta(u, e .

<1:J+1(u3)|uJ rJ(uJ_l,vJ)} 2.2)

This last equation is often referred to as the

Functional Equation of Bellman. The optimal value

q:*l‘(uo) obtained at the end of the process gives in

fact the global minimal value of the objective
function. Since the optimal values Qs(uj-l) are now

and

known for all stages j and all states ”j—l’ the
optimal vector y_*=(v*1',...,vK) can then be obtained
by induetion. Using @’]‘:(uo), v’i‘ is first obtained and

then v§ is obtained from °§(U‘f) where

By

following this process, the optimization problem is
found to be completely solved.

Even if the method involves the use of the
recursive Functional Equation of Bellman, DP can be
implemented on a computer using either a language
that allows recursiveness or not. A non-recursive DP
algorithm can be found in Bellman and Dreyfus (1965).

u"1‘=rl(uo,vf) and so on up to the Kth stage.

3. TWO-WAY OPTIMUM STRATIFICATION WITH
ONE CATEGORICAL STRATIFICATION VARIABLE

In survey sampling, the population is often
divided using more than one stratification variable.
While the stratification based on the variables of
interest is mainly to improve the precision of the
estimates, the use of one or more other stratification
variables may also be dictated by other reasons such
as administrative convenience or to ensure a certain
representativeness in some subdivisions of the
population. These other stratification variables are
often found to be categorical.

In this section, we consider a single variable of
interest X for which we want to estimate the mean.
The population is assumed to be already stratified
into M categories (or classes). Each of these
categories is then to be subdivided into L substrata
according to the variable of interest X. Each
substratum is to be formed by a distinet subinterval
of the domain, [a,b] say, of the subpopulation of X
for the kth eategory. That is, for a given category k,
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each substratum h is to be given by [x:_l,xh] where
+ - 3 3 + -
[xh_l,xh]-]xh_l,xh] for h=2,...,L; [xo,xll—{xo,xll

and  a=Xg<X{<...<x =b. The vector g<_=(x0, . ,xL) is

called the vector of points of stratification.

The problem considered here is to obtain, for
each category k, Optimal Points of Stratification
(OPS) yk‘ in such a way that these points of

stratification will be the same for all M categories,
i.e. §:=5*. Recall that such a stratification is called

a lattice stratification. It should be noted that the
following results will also hold for the cases of two or
more categorical stratification variables, the
resultingM  categories being formed by the
intersection of the classes of all the categorical
variables. It may also be noted that the case of
M=1 corresponds simply to the case of one-way
optimum stratification.
We assume that the variable of interest X is

sampled, for the kth of the M categories, from a
subpopulation of size Nk with cumulative distribution

function (CDF) Fk(x) defined on [a,b] with mean My

Note that even if the CDF

may be different for each category k, the domain of

. . 2
and finite variance %

X is assumed to be the same. Let 9 represent  the
relative size of the subpopulation of the kth  category
such that Z:Ll ek=1 and ekzo for k=1,...,M. If the

overall population size N(N=z';:|=1 Nk) is finite, for
example, 8 is simply given by

N

8, =g

kN>

Based on these assumptions, the mean u of the
overall underlying population of the variable of
interest X can be expressed as

k=1,... .M. (3.1)

M

‘Fkﬁlek”k' (3.2)

An unbiased estimate of p is given by

- M _ M L y -
Xcomb=i 21Kk E 1%k K1 (K)hkh (3.3)
1 kn .
where th_m 1£1th1" (3.4)
*h

w(k)h=fx+ dF  (x). (3.5)

h-1
The quantity ;kh represents the sample mean in
stratum (k,h) and the quantity w(k)h is the stratum

subpopulation proportion within category k. The
population proportion for stratum (k,h), denoted by
wkh’ can be obtained from

W k=1,....M; h=1,...,L.

M=o (k) he (3.6)



Using the last equation, the estimator X omb’

given by (3.3), can be simply written in the form

- M L -
Xcomb=k£1 hﬁlwkhxkh‘ @.1
As noted in the introduction, it is assumed that

the subpopulation sizes Nk are infinite or at least

large enough compared to the corresponding sample
sizes N and the number L of substrata so that the

finite population correction (f.p.c.) can _be ignored.
Hence, ignoring the f.p.c., the varianee of x is

? comb
given by

M W2
Var (Xeomy)= 2y 121 kh_r(a_r)l_ @.8)
Ny 2
where o(k)h N (k)h_l I (x-u(k)h) dFk(x) (3.9
— [ *h xdF (x), (3.10)
(k)h w(k)h X

h=1,...,L3 k=1,...,M.

The determination of the OPS x* to construet
the lattice stratification for the population of the
variable X can be done by minimizing equation (3.8)
with respect to the points of stratification x.

3.1 Sample Allocation

Dalenius (1950) showed that the OPS generally
depend on the type of allocation used for the total
sample size n. In general, the allocation can be
expressed as

Meh=Pknh (3.11)

L
where hil pkh=1 and pkh>0 for k=1,...,M;

h=1,... ,_L. The variance of X, under the general

comb
allocation is given by
M L
Var(x ) M.
comb’ k21 p=1” Py (3.12)

It should be noted that pk
points of stratification x.

3.2 Obtaining OPS with DP

The determination of the OPS x* for Ilattice
stratification is done by minimizing the variance of
under a given type of allocation. One way to

may or not depend on the

X comb
solve this problem is to use the approach of
Dalenius (1950) as in the case of one stratification
variable, which involves taking the partial derivatives
of the variance of x with respect to the points of

comb
stratification x to obtain the minimal equations.
However, the studies of Schneeberger (1979),

Goller (1981) and Schneeberger (1985) have shown that
the minimal equations, which are only necessary but
not sufficient conditions for a global minimum, can
also lead to a local minimum, a saddle-point or even
a local maximum. An alternative approach, which
leads to a global minimum for the variance of

xcomb’ is to use DP.
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As suggested by Buhler and Deutler (1975) for
the one-way stratification case, the DP approach
discussed in general in Section 2 can easily be applied
to the present problem for most allocations
represented by (3.11). For the problem of
determining the OPS x* for lattice stratification
with one categorical stratification variable, the
objective function G(Xx) to be minimized can be
expressed in the form

L, M
G0x)= 2 (9 (xp_1a%p))e (3.13)

The determination of gk(xh-l’xh) is done by
considering the formula for the variance of ;comb’
given by (3.12), obtained under a given allocation.
Unfortunately some allocations ecannot be handled
using the DP approach since they do not permit
expressing the variance of Xcomb in the form (3.13) or

even more generally in the form (2.1). However,
for most usual allocations such as proportional or
Neyman allocation, the form G(x) is relatively easy
to obtain.

With the stages corresponding to the different
intervals h, the problem of determining of the OPS x*
for lattice stratification can be expressed in a form
similar to (2.1) by

L M
M1nhz1 R 1gk(xh 1,xh) (3.14)
subject to: xh=xh_1+d
Xhe[a,b]

dheBh(xh_1)=[0,b-xh_1]
Xg=2s h=1,...,L.

The sequential decision aspect of DP ecan in fact be
seen as distributing to one interval h at a time a
portion dh of the domain [a,b].

The next step in the DP formulation of the
problem involves the determination of the Functional
Equation of Bellman given in general by (2.2). Let
Gﬁ(xh_l) be the optimal value of the objective

function for the strata (k,h) to (k,L) considering all
M categories, given that lower bound for the strata
(k,h) for k=1,...,M is Xn_1- The Functional

Equation of Bellman for determination of the OPS x*
for lattice stratification is then expressed as

Gﬁ(xh_1)=dh83rz ){k lgk( h- l’Xh)

6 ()1 xg=xy g+d )

Following Result 1 of Buhler and Deutler (1975),
the solutions obtained from the DP formulation (3.14)
of the two-way optimum stratification problem with
one categorical stratification variable would in faet
be the true OPS x*. It should be noted that no
convexity assumptions have been used with respect to
the objective function (3.13). In the optimum
stratification problem, the main difficulty comes in
fact from being unable to assume convexity in
general. Based on equation (3.15), the DP approach
can be implemented easily, A difficulty, however, is
brought by the infinite nature of both the state space

(3.15)



[a,b] and the decision spaces Bh(xh—l)' This

problem can fortunately be overcome by crossing
these intervals by diserete steps which makes them
look like finite sets. The number of these steps is
chosen by taking into account precision, computer
space and time.

In practice, it often occurs that the population
of the variable X is a real population in the sense that
it is a set of measured values. The DP approach is
then simply used by replacing the different quantities
entering into the objective functions G(x)bytheir
finite population counterparts.

4. TWO-WAY OPTIMUM STRATIFICATION

The method of optimum stratification considered
in the previous section is applicable to a single
variable of interest X. However, as pointed out by
Kish and Anderson (1978), most surveys are in
practice multisubject, i.e. in a single survey, several
variables are measured. Multisubject surveys lead to
considerably reduced costs compared to individual
surveys for each variable of interest. However, the
determination of optimum points of stratification is
more difficult than in the single variable case.

In this section, it is supposed that two variables
of interest Xand Y are to be measured in order to
produce estimates of their means Hy and Hys

respectively. These variables (X,Y) are assumed to
be sampled from a population of size N with joint

CDF F(x,y) defined on [aX,bX]x[aY,bY]withmean
2
9%  Oxy

(“X’“Y) and covariance matrix I= 5> |- The
oy °y

matrix I is assumed to be finite, i.e. | £} <= where |A|
denotes the determinant of the matrix A. Given that
the population is to be divided into LxM strata, the
problem considered here is to obtain

5*=(x6,x’f, cee ,xt) with respect to the variable X

OPS

together with OPS x*=(y6,y’f, ves ,yﬁ) with respect to

the variable Y to form the optimum
stratification for the estimation of the means %

UY-

lattice
and

The usual unbiased estimators of the means Hy
and vy are given by Xst and Ygir respectively. For a

given vector of points of stratification (x,y),
the estimator X¢¢ can be obtained from

- L M -
Xst=h£1 kﬁlwhkxhk @.1)
-1 Mk
where xhk—m 1£1th1" (4.2)
X Yy
h k
whk=.r + I + dF(x,Y)’ (4'3)

*h-1 Yk-1
The estimator yst is similarly obtained from (4.1) by

substituting y's for x's. It should be noted that the
stratum population proportion th given by (4.3)

differs from the one denoted by wkh and used in

Section 3. As in the previous section, it is again
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assumed that the population size N is infinite or at
least large enough compared to the total sample size
n and the number LxM of strata so that the f.p.c.
can be ignored. Hence, the sampling variance related
to the estimator Xst is simply given by

LM w2 02
53 hk “Xhk

var(x_, )=
( St) h=1 k=1 Ppi

(4.4)

2 N &h 2
where °th=W—TII + 4y (x-uyp) dF(x,¥)  (4.5)
hk ™ Xp_1 Y1

R
MXnkH, Ix+ [ & xdF(x.y).
h-1 Yk-1
An expression similar to (4.4) can be derived for
the variance of Yot

(4.6)

One of the main problems in the determination
of two-way optimum stratification is the choice of
the objective funetion to be minimized to obtain the
veetor of OPS (x*,y*). Unlike the case of a
single variable of interest, the objective function for
two variables of interest is not wuniquely defined
because of the various possibilities of considering the
variances and covariance of Xst and yst' One

possible objective function proposed in the literature
(Ghosh (1963) and Sadasivan and Aggarwal (1978)) is
the generalized variance of Xst and yst’ The

generalized variance is defined by the determinant of
the covariance matrix of Xst and yst' As stated by

Dahmstrom and Hagnell (1978), a somewhat more
natural measure is the sum of the variances of Xst

and yst or, more generally, a weighted sum of these

variances where the weights indicate the relative
importance of the two variables. Letting oy and By

be the weights associated with the variances of ;st

and yst, respectively, such that eX+eY=1, eX30 and
9Y30, this objective funetion can be expressed as
VXY=eXVar(xSt)+eYVar(yst)
2 2 2
L M W (8yoy, +8yoy,.)
- s hk M "X"Xhk Y~ Yhk . .7

= I
h=1 k=1 Nhk

The weighted average VXY is often used as a

basis to obtain an optimal sample size allocation
(e.g., Dalenius (1957) and Cochran (1977)). In this
article, the determination of OPS is considered only
under the weighted average ny.

4.1 Sample Allocation
Since the values of the OPS generally depend on
the type of allocation used, the minimization of the
weighted average (4.7) should be done by considering
a given allocation.

Again, the allocation can be expressed in

general as Mk = M Phge The weighted average VXY

under the general allocation is simply expressed as



2, 2 2
LM W (8yoxpitoyoypy) w8
= I pX . .
XY h=1 k=1 Pr"

As mentioned in Section 3.1, Pk may or not

v

depend on the points of stratification (x,y).

4.2 Obtaining OPS with DP

Ghosh (1963) first considered the problem of
two-way optimum stratification. Using the same
approach as Dalenius (1950), he obtained minimal
equations by taking the partial derivatives of the
generalized variance under the proportional allocation.

However, as noted earlier, the minimal
equations are only necessary but not sufficient
conditions for achieving a global minimum of the
objective funetion. In fact, Schneeberger and
Pollot (1985) showed that, for the bivariate normal
distribution, Ghosh's result would lead to a saddle-
point. To solve the problem of determining the OPS
(x*,y*) minimizing the weighted average Vyys the

method to be used should provide at least a local
minimum (if not a global one). As in the preceding
section, such a method can again be developed by the
use of DP.

The objective function for the present problem
can be expressed in the form

L M
Glxoy)= 2. E 90X 1aXpaYy_qa¥)-

The expression for the funetion g(x,_1.Xps ¥, _15Y,)

(4.9)

is simply determined from the formula of the weighted
average VXY given by (4.8). Again some allocations

do not permit expressing VXY given by (4.8) in the

form (4.9). The objective funetion (4.9), however, is
relatively easy to obtain for most usual allocations.

The general equation (4.9) for the objective
function suggests that, for the determination of two-
way optimum stratification, a two-dimensional DP
approach should be used. Employing the general
concepts of DP given in Section 2 with the state and
decision variables being now two-dimensional, the
stages may be specified by the pairs (h,k). The
problem of two-way optimum stratification ean then
be expressed as

. LM

M1nh£1 kﬁlg(xh—l’xh’yk—l’yk)

subject to: (xh,yk)=(xh_1+dh,yk_1+tk)
(xh’yk)E[aX’bX]X[aY’bY]

(Aot )eB) (e @y, )
=[Osbx"xh_1]X[09bY‘yk_1]
(X09y0)=(axsay)s
h=1,...,L; k=1,...,M.

Although the formulation (4.10) seems to
correspond to the one given by (2.1), a difficulty can
in fact be seen with respect to the decision space

Béx)(xh_l)xBéY)(yk_l). In the formulation (2.1), the

decision space depends only on the state of the
previous stage. However, in the formulation (4.10),

the decision space B,(‘X)(xh_l)xBéY)(yk_l) depends on
the states of both past and future stages since the

(4.10)
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variable Xn-1 is present in the decision spaces of the

M stages {h,1) to (h,M) and the variable Ye-1 in the

decision spaces of the L stages (1,k) to (L,k).

Hence, the Bellman's Principle of Optimality stated in
Section 2.2, which forms the basis for the use of DP,
is not applicable. It should be noted that the problem
is partially due to the way the stages have been
defined. In fact, instead of LxM stages related to
each stratum (h,k), there are only (L+M) stages which
can be viewed through the decision variables dh and

tk' However, due to the nature of the objective

function given in general by (4.9), its transformation
to reflect the (L+M) stages does not seem to be
mathematically tractable for most allocations.

We propose a simple approach which permits a
solution to the problem (4.10) using the unidimensional
DP iteratively. Before the first iteration, some trial

values, say 5(0) and 1(0) sueh that ay = xéo) < xgo)

< ees < xr(‘c_)% < xl(_o) = bX and 3y = y(()o) < y%o) <
cee < yé% < yh(10) = bY, are chosen for the initial

points of stratification with respect to the variables X
and Y, respectively. Then for the ith iteration

(i=1,2,...), the points of stratification X(FI) are
first considered as fixed. Note that the points of
stratification 5(1-1) could also be chosen instead of
1(1_1). Fixing the values of xh_l) has in fact the
effect of reducing the problem exactly to the one of
two-way optimum stratification with one categorical
stratification variable discussed in Section 3. This
can be seen by comparing the formulation (4.10) to

the one given by (3.14) with the values of the points
of stratification y taken as constants in (4.10).

Let G;(’h(xh_l,x(i_l)) be the optimal value for

the objective function (4.9) for the strata (h,k) to
(L,k) for all k=1,...,M given that the lower bound
for the strata (h,k) for k=1,...,M s X,_1- The

Functional Equation of Bellman with respect to the
first part of the ith iteration is then given by

i M
(-1)). {2900 1%

B%h(Xh-1-¥
i-1 i-1 i-1
g )
| xp=x,_1*+dp} 4.11)
where Béx) (Xh-l) is given in (4.10).
thi§ last
stratification x (1) with respect to the variable X

Using of

can

equation, new points

be obtained to replace the preceding values x (1_1).
Hence, the OPS for the first part of the ith iteration

are given by (3(_(1),‘1(1_1)). For the second part of

the ith iteration, the points of stratification x (1)

are, in turn, considered as fixed. Using again the
similarity that exists with the formulations (4.10) and
(3.14) but now with the values of x taken as constants

in (4.10), let G’\tk(ﬁh),yk_l) be the optimal value for
the objective function (4.9) for the strata (h,k) to



(h,M) for all h=1,...,L given that the lower bound
for the strata (h,k) for h=1l,...,L is Y1t

The Functional Equation of Bellman for the second
part of the ith iteration is then given by

e D= i ( 2 a0 )k,
teBy )
yk-l"yk)+G¢k+l(é(1)"yk)
| yk=yk_l+tk} 4.12)

where B'EY) (yk_l) is given in (4.10).

Using expression (4.12), the values of the OPS
x(i) can be determined to replace the previous values
1(1_1) so that, for the ith iteration, the OPS are
given by (x(1),y(V).

This process iterates until some convergence

criterion is satisfied. A possible convergence
criterion as follows:
L (x () (-1)  (3-1)
ﬂi’l‘('xh -Xp /X, )<ey (4.13)
1y (i-1) , (i-1)
and ES{('yk =Yg A )<sY (4.14)

where eX>0 and eY>0.

A proof of convergence to the correct limit is
given in Lavallée (1987). It is shown under simple
assumptions that, if the unidimensional iterative DP
approach converges, the convergence limit is a local
minimum with probability 1 (or a saddle-point but
with probability 0). It should be. noted that, when the
objective funetion is not convex, which is the case
here, most of the iterative methods starting with
arbitrary values cannot guarantee to lead to a global
minimum.

The main advantage of the unidimensional
iterative DP approach is that it can be easily
implemented using the DP approach of Section 3 as a
guideline. One of its disadvantages is that
convergence cannot be insured. Note that this is true
in most other cases where a univariate iterative
approach is used instead of a multivariate one.

When the population of the variables X and Y is
a real population, the OPS x* and y* are then
obtained following the same approach as the one
described in Section 3.2. Following this approach, the
OPS are obtained using the proposed unidimensional
iterative DP method, but the different quantities
entering into the objective function (4.9) are replaced
by their finite population counterparts.
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