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1 .  I n t r o d u c t i o n  

It is well known that stratification reduces the variance of 
direct expansion estimators by a factor of 1-92 when the 
survey and stratification variables have a correlation p and 
are linearly related with homoscedastic regression errors. 
This result follows from the work of Cochran (1977) and 
Anderson, Kish and Cornell (1980), among others. In prior 
work, the author generalized this result to the case where the 
regression errors are heteroscedastic (Bethel 1988). In this 
paper  we will  extend it further  to include nonl inear  
relationships between the survey and stratification variables. 
As it turns out, the asymptotic variances of optimally and 
proportionately allocated estimators do not depend on the 
function relating the survey and stratification variables. This 
result has some intuitive appeal: stratification should control 
the effects of E(y [ x) regardless of the functional form that it 
takes. In any case, the extension to nonlinear models allows 
us to consider an important class of models that describe 
lognormal survey variables. 

We assume a finite population 

if) = { (xI,Yl), (x2,Y 2) . . . . .  (XN,Y N) } 

of realizations of a random variable (Y,X) which satisfies the 
general regression model 

(1) Y = g(X) + v(X)e. 

We assume that X and e are independent, with E(e) = 0, 
E(E2) = t~E2 < oo, that X is bounded on a closed interval I, 
that g and v are continuous on I, and that v(x) > 0. 

We will examine the asymptotic behavior of stratified 
estimators as L, the number of strata, increases. We do not 
specify the type of stratification to be used, but rather we 
simply assume that the stratum boundaries, a 0 _< a I <_ "'" _< 
aL, satisfy 

(2) max {a h - ah_l} ---)0 as L---> co. 
l<h~L 

When X is bounded, it can be shown that most  common 
stratification strategies satisfy this condition. 

The main results are that stratified estimators under 
proportionate allocation have 

Var ((YPRoP_ V / ) [ X )  -~ C2ED (v(Xa)2)(  1 -  N )  

while optimally allocated estimators have 

21 2 21 
--> C~e--( E D n  ( v ( X ) ) )  - ~e~-EDV(X) 2 

as L -~ oo. Empirical results given in Section 3 suggest that 
either of these stratified estimators is at least as efficient 
asymptot ical ly  as either ratio or regression estimators,  
particularly when g is nonlinear. 

This paper is organized as follows. The next section 
presents the underlying asymptotic theory and derives the 
main results. Section 3 gives a numerical illustration and 
compares  stratified,  regress ion and ratio est imators .  
Section 4 discusses rates of convergence and Section 5 
concludes with a discussion of our results. 

2 .  V a r i a n c e s  of  Strat i f ied  Es t imators  

2.1 G e n e r a l  F o r m u l a t i o n  

The population ~ is stratified as follows: Given a set of 
stratum boundaries a 0, a 1 . . . . .  a L, we label the pair (ya,x~) 
as (Yhi,Xhi) - for some unique index i -  whenever ah_ 1 _< x~ 
< a h for h < L, or ah_ 1 _< x~ _< a h when h = L. We assume 
that simple random sampling is used within strata. We will 

n 

consider stratified estimators of the mean Y: 

^ L D 

(3) Y = ~ W h Y  h 

h=l 
m 

where Yh and N h are the mean and size of the h-th stratum, 
respectively,  and W h = Nh/N. As L increases, we must 
have N >_ n >_ L. Depending on the method of sample 
allocation, there may be conditions on n h which introduce 
addi t ional  res t r ic t ions on n (and thus N). Beyond  
recognizing these implicit relations, however, we will make 
no specific assumptions about the rates at which n and N 
increase. 

In what follows, it will be important to keep in mind that 
there are two sources of randomness: the first results from 
generating the pairs in ~ according to the model in ( 1 ) -  
which we will call model  r a n d o m n e s s -  while the second 
results from the selection of a sample of n pairs from 
according to the sample d e s i g n -  which we will call design 
randomness. We will denote expected value with respect to 
model  randomness  by E M (-), and expected value with 
respect  to design randomness  by E D (.). Notation for 
variances will use the same convention. E D (.) and V D (.), 
depending on the context,  may represent  the mean and 
variance under either stratified or simple random sampling. 
The mean with respect to design randomness within stratum 
h will be denoted as ED (h) (.) .  

For  the ~nost part, we will consider the condi t iona l  

variance of Y - Y given the values of X 1, X 2 . . . . .  X N. 
Assuming unbiasedness, 

(vo(  
where X = (X 1, X a . . . . .  XN). 

2.2 V a r i a n c e  under  P r o p o r t i o n a t e  Al locat ion  

First we note that 

(5) E M V D ( V E - V ( ) I x  : E M lWhSh(Yhi - IX , 

2 • 
where S.h(.) is the variance of. the argument within stratum h 
under simple random sampling. Furthermore 

S2(gCX" )) - , ' - h i  2 1 - - + c~ E M v(Xh~) 2 IX 
i= 
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= S~(g(X~)) + o~ ~D 

where Sh(., ") is the stratum covariance of the arguments 
under simple random sampling.) Thus we have 

(6, Eu(V n ( { ' - Y ) I X ) =  h= 1W hS h(g~.)) - 

+ Z W h o e  - • 
h=l 

From the uniform continuity theorem, g(x) is uniformly 
continuous on the domain of X, and, from equation (2), 

[ Xhi-Xhj [ < Max {a h-ah_l} = o(1) 
l<h_<_L 

2 Thus Sh(g(xhi)) is O(1) as L ---> ~,  from which it follows 
that the first term in (6) is also o(1). From (6) we have 

(Y 
+ ere W hinD - • 

h=l 

L 
2 .2.-,(h) (v(Xhi)2)~ 2 (V(Xa)2) 1 = o(1) + cre Z Wht~D " ere ED ~" 

h=l 

Under proportionate allocation, n h = nW h, thus (7) becomes 

(8) (vo 
L 0a)( 2)1 2 (  ) 

2 v C ~ )  - o~ = o(1) + Oeh=Y_,lWhEo _ En v(X)2 1 n N" 

o: o 1) 

giving the asymptot ic  variance under proport ionate 
sampling. 

2.3 Variance Under Optimum Allocation 

As we saw above, 

E M (S2h(Yhi) I X ) =  S2h(g(Xhi))+ ere2Eo ~) (v(Xhi.)2). 

Under optimum allocation, 

nh=n 

thus, from (5), we have 

(9) EM (Vn (~'OVT - Y)  ' X)  

= E M W hSh(Yhi) " [X 

-- W u S~(g(X~)) + e r ~ )  v(Xhi.)2 -_1 
n 

1 

Let m h = (a n + ah_l)/2. Clearly 

Xhi .---) m h as L -+ oo 

which we mean thatP(Xx _<t [ a h l < - X  <_ ah '~-+  (by 
1 if X _> m h and 0 otherwise). It follows that 

,/ 

V(Xhi) 2 ~ V(mh )2. 

Since X is bounded, the sequence {Xhi } is uniformly 
integrable, and thus 

E~ ~ (V(Xhi)) + v(m h) 
and 

ED00 (V(Xhi)2) --~ V(mh )2. 

It follows that 

(10) q E ~  ) (V(Xhi) 2)  + 4v(mh )2= V(mh). 

Combining these results, we have 

q E ~  ) (V(Xhi) 2) - ED ~) (V(Xhi)) = O(1). 

Since Sh2(g(xhi )) = o(1), formula (10) gives 

(11) (g(Xhi)) + er et~O V(Xhi) 2 _(h) 

Finally, applying the bounded convergence theorem and 
combining (9) - (11), we obtain 

(h~-I 4 (V(Xhi)2)) 21 = Wh S 2h(g(Xhi))er ~ZED~' n + 

er~2E D / N 1 

2 1 )(V(Xhi)) 2 1 --' °~ n w~E~ - °~ ~ G  v ( X f  

21 2 21 
= ere-(  Eo(v(Xa))n ) - ere N "ED v(Xa)2 

which gives the asymptotic variance under opt imum 
allocation. 

3 .  Application to Log Transportation Model 

As an application, we consider the log transformation 
model. This model is given by 

y = x0t e' 

where x and e' are independent lognormal random variables. 
Notice that e' does not satisfy E(e') = 0, but that is easily 
accomplished by setting e = ~' - E(£'). Then 

y = x~E(e ') + xae 
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This goes beyond the linear model that is generally used to 
analyze sampling strategies, but it is included in the 
generalized model in (1). 

This model can be parameterized by the mean and 
standard deviation of the distributions of In x and In e, 
together with the exponent c~. However, since the mean of 
In x and In ~ have no effect on the relative efficiencies of the 
estimators we are considering, we will take them to be zero. 
Thus we assume that 

In x -  N(0,Xl 2) and In E"- N(0,'c2). 

Table 1 shows the asymptotic efficiencies of ratio, 
regression, and optimally and proportionately allocated 
stratified estimators, as compared with simple random 
sampling. The parameters x 1, x 2, and 0~ are varied over the 
ranges of .50-1.00, .25-1.00, and .50-1.50, respectively. 
This table suggests several conclusions. First, although 
proportionately allocated estimators are always better than 
regression or ratio estimators, the improvement is small 
when x 2 is large, and vice versa. Second, optimum 
allocation is significantly more efficient than simple random 
sampling (or any of the other methods) as either x 1 or o~ 
increases. Finally, although the ratio estimator shows some 
significant savings over SRS for ¢x = 1.50, it performs 
worse for a = .50. 

Table 1: Efficiencies of stratified, regression, and ratio estimators* 

Mode l  Exponent 
Var(ln x) Var(/n e) 

Xl "1:2 0 .50  0.75 1.50 

0.50 0.25 

0.50 

1.00 

0.75 0.25 

0.50 

1.00 

1.00 0.25 

0.50 

1.00 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

Optimum Allocation 
Proportionate Allocation 
Regression 
Ratio 

2.06 3.49 13.46 
1.94 3.03 7.67 
1.88 2.98 6.23 
0.88 2.33 3.58 

1.29 1.68 4.41 
1.21 1.46 2.51 
1.21 1.46 2.39 
0.95 1.37 2.00 

1.10 1.24 2.19 
1.04 1.08 1.25 
1.03 1.08 1.24 
0.99 1.06 1.20 

3.49 7.14 43.01 
3.03 5.21 12.13 
2.63 4.80 6.18 
0.68 2.77 3.16 

1.68 2.68 12.51 
1.46 1.95 3.53 
1.41 1.92 2.90 
0.82 1.63 2.14 

1.24 1.59 5.03 
1.08 1.16 1.42 
1.07 1.15 1.37 
0.95 1.12 1.28 

5.69 13.46 141.09 
4.43 7.67 14.87 
3.01 6.11 4.45 
0.47 2.46 2.36 

2.28 4.41 39.37 
1.78 2.51 4.15 
1.61 2.38 2.71 
0.61 1.70 1.88 

1.45 2.19 14.43 
1.13 1.25 1.52 
1.11 1.24 1.40 
0.86 1.16 1.27 

*The values given are the efficiencies of the estimator as compared with direct 
expansion the estimator under simple random sampling. Thus 

SRS Variance 
Efficiency of Estimator = Variance of Estimator 

4 .  Rates of Convergence  

It seems unlikely that any rigorous results on rates of 
convergence can be obtained without some stronger 
assumption about g(x), such as, for example, that g' is 
bounded. For the special case where g is linear, arguments 
similar to those used here suggest that the convergence is at 
rate O(L -2) (Cochran 1977, Bethel 1988). 

Table 2 shows the eff iciency of optimally and 
proportionately allocated estimates with the L = 2, 5, 10, 20, 
and ,,,,, under the log transformation model with x I = 1.0, x 2 
= 0.5, and ~ = 0.75. Stratum boundaries were defined 
using the Dalenius-Hodges (1959) technique. Analysis of 
the data in this table suggests that the rate of convergence in 
the log transformation model is about O(L'1"553 under 
proportionate allocation and O(L "1"75) under optimal 
allocation, at least for L > 2. 

Table 2: Rates 9f Convergence in the Log Transformation 
Model 

Efficiency 
Number of Strata Vol, r VpROP 

2 2.12 1.54 

5 3.61 2.17 

10 4.14 2.39 

20 4.33 2.47 

oo 4.41 2.51 

*Calculations assume t 1 = 1.0, t 2 = 0.5, and a = 0.75. Efficiency is 
defined as in Table 1. Dalenius-Hodges boundaries were used to define 
strata. 

5 .  D i s c u s s i o n  

It generally recognized that regression and ratio 
estimators should be stratified when the slope of the 
regression line varies between strata, as would be the case 
when g(x) is nonlinear (e.g., see Des Raj 1977). From this 
point of view, estimators would be expected to be superior 
for nonlinear models, although the fact that a proportionately 
allocated estimate might be two or three times as efficient as 
either a regression or ratio estimate (e.g., see Table 1 where 
o~ = 1.5, x I = 1.0, .25 < x 2 < .50) is rather surprising. 

Concerning the issue of "combined versus separate" 
regression and ratio estimators, presumably the latter would 
be preferable when g is nonlinear. However, following the 
arguments given in Section 2.3, Sh(Yhi,Xhi ) ---> 0 for large 
L, so that it is not clear whether separate regression or ratio 
estimators would improve on stratified, optimally allocated 
direct expansion estimators. When g(x) is linear, Wright 
(1983) shows that combined regression and ratio estimators 
asymptotically achieve the variance shown in the RHS of (9) 
under unequal probability sampling. Although it is uncertain 
what this implies for stratified sampling when g(x) is 
nonlinear, it seems likely that stratified, separate regression 
or ratio estimators would be as efficient as stratifed 
estimators under optimal allocation. 

Generally speaking, optimal allocation is not a feasible 
strategy, since the required data on stratum variances are 
usually not available. On the other hand, proportionate 
allocation, regression estimation, and ratio estimation are 
feasible. The results derived here show that stratifed 
estimators using proportionate allocation are preferable to 
separate regression or ratio estimators. As noted above, it is 
not clear whether combined regression or ratio estimators 
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would be more efficient. The resuIts on proportionate 
allocation also have implications for post-stratification, since 
post-stratified estimates behave much like stratified estimates 
under proportionate allocation. As a final note, we point out 
that the results derived here are asymptotic: either ratio or 
regression estimators might be more efficient for small 
sample sizes. 
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