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i. INTRODUCTION 

In sample surveys, auxiliary variables and 
covariates are often used to increase the 
precision ~of survey estimators. The value of 
these variables for variance reduction increases 
as their correlation with the variables of 
interest increases. It will normally be the case 
that similar correlations exist between the 
members of subsets of the survey variables 
themselves and that in cases of partial 
nonresponse this correlation structure may also 
be employed to increase the precision of the 
survey estimates. This paper deals with one such 
situation and derives a best linesr unbiased 
estimator when the probability of response to an 
item in a sample unit is related to the value of 
that item. 

We explore survey estimation with partial 
nonresponse where these correlations are induced 
by a superpopulation model. The object is to 
estimate the finite population mean for each time 
j, in a sequence of k adjacent time periods from 
sample data collected at each time period from a 
single (fixed over time) sample of business 
establishments. A best linear unbiased estimator 
(BLUE) is derived under the combination of both 
the superpopulation model that describes the 
behavior over time of the data and the response 
model that captures the nonignorable response 
mechanism within the sampled units. 

The superpopulation model is a Markov 
relationship under which the expected value of 
the item of interest at time j is proportional to 
it's value at time j-I for each member of the 
population. The response mechanism relates the 
probability of response at a given time to the 
value for the item of interest at that time. Both 
this superpopulation model and this response 
mechanism can be combined to form a linear 
relation which defines a generalized least 
squares BLUE. 

The Markov superpopulation model is similar to 
the linear regression model that can be used to 
predict finite population means. This predictive 
approach is given and analyzed in Cassel, 
Sarndal, and Wretman (1977), Royall and 
Cumberland (1981a,1981b), and Royall and Herson 
(1973), among many others. The methods suggested 
here are based on BLU estimation of 
superpopulation means rather than prediction of 

the corresponding finite population means. For 
moderate to large population sizes the estimation 
of a superpopulation mean is essentially the same 
as the prediction of the corresponding finite 
population mean. These models seem to capture 
data relationships in certain establishment 
surveys, they consist of simple relationships on 
the first two moments of a superpopulation 
distribution, and they directly imply a BLUE 
under squared error loss. For the problem of 
estimation in the presence of nonresponse the 
superpopulation model and its corresponding BLUE 
provide a useful alternative to maximum 
likelihood estimators based on the Normal 
distribution as discussed by Rubin and Little 
(1987). 

The Markov multivariate superpopulation model 
describing the relationship between the item of 
interest for k time periods within each of the N 
units in the finite population is given next. 
For each member i, of the finite population let 

the item of interest for the k time periods be 
denoted as a k-dimensional column vector, (Zi} , 

which is given as" 

Z. = 8 + A. for i=1,2,3,. .... ,N. (I.I) 
1 1 

Where Zi, 8, and A i are k-dimensional column 

vectors, the set of random vectors {A i} are 

mutually independent each with expectation the 
zero vector and with covariance matrix, I . The z 
stochastic relationship between the components 
of Z. is as follows. The prime denotes matrix 

1 
transpose. 

Let Zi=(Zil,Zi2,. ....... ,Zik ) for i=l,2,...,N 

and let B~ for j=1,2,3,. .... ,k be unknown 
J 

positive constants then Zil = B1 + Xil 

and zij=Bj.zij_l + Xij for j=2,3,...,k. 
! 

Where letting A i = (Xil'%i2'" ...... ,Xik ) for 

i=1,2,3,. ...... N, the {A i} are iid random vectors 

with diagonal covariance matrix and with the zero 
vector for mean, and V(Xijlzij_l)=rjzij_l where 

r. is an unknown constant. This variance 
J 

condition has been shown to be both appropriate 

and robust for many of the data series at the 
Bureau of Labor Statistics (BLS), West (1981) and 
Royall (1981). The covariance matrix of a Zi, 

lz, is necessarily of the form (bii) where" 

02 i ~ $£ for j>i 

£=i+i 

bij = °21" for i=j (1.2) 

i 

o 2 
-T'------T-- 

I I B for j<i 

£=j+l 

and o 2 i' i=1'2' ....... ,k are positive real 

numbers. 
A k-dimensional response indicator vector of 

=(t ti2 t tik )', zeroes and ones, t i il' ' i3' ..... ' 

given for each sample unit will be defined next. 
th 

The j component of ti, tij , is one if the data 

for time j in sample unit i gets a response and 
zero if not. Conditional on Z. it is further 

x 
assumed that these components of t. are 

l 
independent. 
Thus we have- 

k 

P ( t  i =u£ I Z i ) =  P ( t i j  = u£j  I Zi)  
j = l  

where (u£~) i s  t h e  2kxk m a t r i x  whos rows a r e  a l l  
,.J 

d i s t i n c t  k - t u p l e s  of  z e r o e s  and ones and where 

d e n o t e s  t h e  £ th  row of  (U£j ) .  ug 

In t h i s  pape r  we w i l l  c o n s i d e r  B L U - e s t i m a t i o n  
under  ( 1 . 1 )  f o r  t he  {Z i} and unde r  n o n i g n o r a b l e  

621 



nonresponse given by the following: 

P(tij = I I Zi)= Lj(zij) 

for l<-j<-k, l<_i<_N, where Lj(x) is a polynomial 

with its range in [0,I] for all x in the support 
of zij. Given Z i, Lj(zij) is the probability of 

th 
response to the j item. Note that in case 
L=constant then we have ignorable nonresponse. 
The above conditions on t. will be referred to 

1 
as model (1.3). 

Under the stochastic structure given by (i.I) 
and (1.3) we will be interested in estimating 
the vector of finite population means for the 
item of interest at times 1 through k using a 

conditional BLUE for 8 that is denoted by 8. 
In the next section this BLUE under both 

(i.I) and (1.3) is derived together with its 
variance. Estimators for unknown model 
parameters are also suggested. 

The empirical section will consider response 
mechanisms applied to real data where (i.i) and 
(1.3) are only a crude approximation to the 
processes which yield the usable survey data. 

Model (I.i) will often provide an adequate 
description for data on total number of 
employees within a business establishment across 
time, West (1981). The model (i.I) may also be 
used to describe the wages paid at different 
levels of the same occupation and (1.3) may 
be used to model the reluctance to respond in 
cases where extreme differences exist between 
the amount paid and the average paid. 

The sample must be chosen so that the sample 
units can themselves be reasonably described by 
model (i.I). Simple random sampling is one way 
to achieve this end. In more complex situations, 
the generally accepted principles of good survey 
design will usually yield such samples although 
(I.I) must be applied with more care in the case 
of highly stratified cluster sampling. 

The mean square errors (MSEs) of four other 

estimators are compared to the MSE of 8. These 
four estimators are: 

i) The BLUE under (i.i) from the responding 

data ignoring (1.3) and which is denoted 8(i.I). 
2) The sample means of the responders, 

z = ( Z l ( S l ) , Z 2 ( S 2 ) , . . . .  , Z k ( S k ) ) ,  

w h e r e  s .  i s  t h e  s e t  o f  r e s p o n d e r s  a t  t i m e  j .  
J 

3) The p r o d u c t  e s t i m a t o r s  
k 

j = l  

w h e r e  ~ j = z j ( s j C l S j _ l ) / Z j _ l ( S j N S j _ l  ) f o r  j > l  and  

~l=Zl(Sl ). 

4) The composite estimator, C:(CI,C2,....C k) 

where C. is defined as" C.:~z:(s.) + 
J J J j- 

(I-~)~jCj_ 1 with ~ chosen to minimize the 

_ 

variance of C.j and with Cl=Zl(Sl )" 

Some simulation results using a Bureau of 
Labor Statistics Consumer Price Index data base 
are summerized in section 4 where comparisons of 

t h e  MSEs o f  t h e  v e c t o r  8 = ( 8 1 , 8 2 , .  . . . . .  8k)  t o  

1) t h r o u g h  4)  a b o v e  a r e  t a b u l a t e d .  I n  t h e  
presence of nonignorable nonresponse given by 

(1.3) 8 seems to give the estimator with the 
minimum mean square error among those tested. 

2. DERIVATION AND DETAILS 

In this section the data vector, design 
matrix, and covariance matrix for the data vector 
are defined and the generalized least squares 
BLUE is derived. Estimates for unknown 
superpopulation parameters are suggested and 
variance estimators for the BLUE are also 
included. 

(u£~) is the 2k×k matrix whos rows are all 
J 

distinct k-tuples of zeroes and ones and where 

denotes the Z th row of (u£j). Let m£ be the uz 

sum over the components of u£, let u k be the 
2 

row vector of zeros and let u I be the row vector 

of ones. 
For any matrix (dii), d with a single 

th 
subscript ( d i ) will be used to denote the i 

row of (dij). 

l<_i<_2k-I and l<_j<_m i let F .= the column For 
' ij 

th 
of (ui:)j in which the j one in u.1 occurs. Let 

A i = ( a £ j )  w h e r e  f o r  1<-£<-m'1 and  l<_j<k,  a g j =  1 i f  

Fi£ : j and a£j = 0 otherwise. A.I is an m.xkl 

matrix for i=1,2,3,. ..... ,2k-l. 

2<_i<_2 k and l<_i<_k-m i ~  let F 9 be the For 
' lj 

th 
column of (uij] _ in which the j zero in u. 1 
occurs. Let Bi=(c£_ )j where for l<-£<-k-m'x and 

c " and c = 0 otherwise. B l<_j<_k, c£j:l if Fi£=j £j i 

is a (k-mi)×k matrix for i=2,3,. ..... ,2 k. 

Note {B." 2<_i<2 k} = {A."  l < _ i < 2 k - 1 } .  L e t  
1 1 

C .=  {£- 1<£<N an d  t £  = u i } .  C i i s  t h e  s e t  o f  1 
rows  i n  ( z i i )  w h i c h  h a v e  d a t a  i n  e x a c t l y  t h o s e  

c o l u m n s  c o r r e s p o n d i n g  t o  t h e  n o n z e r o  c o l u m n s  o f  
u . .  L e t  n . =  t h e  n u m b e r  o f  e l e m e n t s  i n  C . .  

z 1 1 
L e t  ~ d e n o t e  E ( t i ) ,  t h e  e x p e c t e d  v a l u e  o v e r  

b o t h  ( 1 . 1 )  and  ( 1 . 3 )  o f  t h e  r e s p o n s e  v e c t o r  f o r  

u n i t  i and  l e t "  

= (1/ ) z 

£¢s 

w h e r e  s i s  a s u b s e t  o f  t h e  f i r s t  N i n t e g e r s  and  

n is the size of s . Define t similarly. 

When the conditional response f u n c t i o n s ,  ( L j } ,  

d e f i n e d  i n  t h e  p r e v i o u s  s e c t i o n s  a r e  l i n e a r "  

Lj (x):fjx + gj ( : E(tij Izij:x )) 

for l<j<_k, and D is the diagonal matrix of 
(fl'f2'f3'' .... ,fk) then we have" 
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II I 1 - Ez lzD 
E z : and Cov z : (I/n) 

t t DE z Z t 

= z _ ZzDZ t 1 - _ Let w ~ - (t ~). Then E(w ) : 8 

and Cov(w )=(I/n )(Z -I DT.-IDz ) define 7. 
Z Z t Z ' W 

• - 7. DT.-IDT. Since w and t are to be I z z t z" ~ 

uncorrelated the conditional expected value of 

w given te is approximately 8 and the 

given t is conditional covariance matrix of w 

approximately (I/n)7.w (if n is large enough so 

that (z ,t ) is approaching normality then these 

approximations become exact.) Now define w i for 

C i# = C Let y all i such that 9~ as w with s i" i 

= A.w.. We can summarize the information given 
i 1 

by models (I.I) and (1.3) together with all the 
available sample data consisting of both the 
response indicator vectors for each sample 
establishment and their responses in the 
expression • 

Y = X8 + g (2.1) 
T I ! I 

where X' = (AI, A2, A3,. .... A2k 1 ) , 
1 T I I 

Y'=(Yl 'Y2 'Y3 '" .... Y2k-I )' ~ is the random 

vector with mean zero and covariance matrix, 7., 
given as the block diagonal matrix of the 

! 

(I/ni)AiZ A for all i with n >0 from i=l in the w i i 

upper left to i=2k-i in the lower right. 
The BLUE of 8 is given as" 

: (X' 7.-Ix)- IX' 7.-IY (2.2) 
This expression reduces to' 

= AiZ~' iT.i Yi (2.3) 

i~S iTS 
! 

where S = {i'C i # ~} and Z = (i/n)AiEwA i i i" 

is a function of the matrices in {7.-1. 
1 

iTS}. Each of the {7.i } matrices are functions 

of Zz, Zt' and D. Note that" 
T ! ! 

Zi-(AiZwlAi - AiZwlB (B 1B -I 7.w I ' i iZw i ) Bi Ai)n i (2.4) 

for all i~S such that Ai#I k. 

Also note" 7.w I= 7.z I+ D(7.t - DT.zD)-ID" Zt-DT.zD 

is the diagonal matrix with {$j(l-$j)-o 2f2}jk 
J J =I 

on the diagonal where S j = f jSj + gj. As 

described in the following paragraphs it will be 
-I 

possible to estimate 7.t and Z z (and hence 7. ) 
w 

without directly estimating the {$j}. The {$j} 

may also be estimated using 8. = J 

(i/n(sj)) ~, z£j/(fjz~j+gj) , 

£gs. 
J 

a Horwitz-Thompson estimator for 8. using the J 
probabilities of response to adjust for 
nonignorable nonresponse bias. 

Since the response indicator vectors, {ti} , 

suffer no nonresponse I t is readily estimable 

through (I/(n-I))(H'H - ntt') where H is the nxk 

matrix with rows, {ti}i~ s and where t' is the 

vector of column means of H. Hence it suffices 

to know (or estimate) z-land this can be done as 
z 

follows" 
Let Z . be the covariance matrix of the zj 

vector ~ij=(Zil,Zi2 ..... ,zij) for l<_j<_k and 

l_<i_<N (note- Zzk = Z ). Then Z 2 and Z -I 
z zl = °l zl 

= i/o~. 

2 and T =02 ~202 for Let TI=O 1 j j - j j-i 

j=2,3,4,....,k. Then g-lcan be found from the 
z 

following matrix difference equation. 

T.Z -I + B~Mj 1 -~ Qj 
Z-I (I)J~ zj-I - ' i 
zj : /Tj 

- jQj 

for j=2,3,4,. ...... k and where Qj is the 

(j-l)-column vector of zeros except in the 
st 

(j-l) row where a one appears and Mj_I is the 

(j -l)x (j -l) matrix of zeros except for the 
bottom right entry which is a one. 

-i This expression gives Z under (I.i) as a 
z 

tridiagonal kxk matrix function of the {T j} and 

the (B j}. Next note that T. is the expected 
J 

value of the conditional variance of zij given 

~ij-i and that with this condition the BLUE of 

Bj is the ratio estimator, ~j, given below and 

the expected value of this ~j is Sj independent 

of the response mechanism which generates the 
{tij}. Given this second moment condition, an 

estimator of T. for j>l is the product of ] 

8jHT=(I/n) ~ zij/Lj(zij ) where this summation 

is over the units which have responses for time 
j and the estimator of r j given by" 

~i BJ 
rj (I/[n(sj,j_l)-l]) J (zij zij_l)2/ = _ zij_l. 

i~s. j,j-i 
Where s j, j_ 1 denotes the set of sample units 

which have observations for times j and j-l, 

n(sj,j_l) denotes the size of sj,j_ 1 and ~j = 

zj(sj,j_l)/Zj_l(Sj,j_l), zj(sj,j_l) is the 

sample mean of the data for time j over sj,j_ 1 

and Zj_l(Sj,j_l) is the sample mean for time j-I 
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over these units. As with ~j, the expected value 

^ 

of r. is independent of the response mechanism. 
J 

Also note that E(8jHTl{Zij},s)=zj(s ) where zj(s) 
K-- I 

is (I/n) > zii and s=the full sample of n 
J 

igs 
units. 

2 be estimated with" Let T 1 = o 1 

(i/(n-l)) > I, (Zil-81HT)2/Ll(Zil) 
igs 

Let s. denote the set of sample units which 
J 

have observations for time j and zj(sj) denote 

the sample mean over these units of the data for 
time j. 

If the sample data permits adequate estimators 
for the {T i} and {~i } (i.e. {sj,j_ I} is 

sufficiently large) then (2.3) can be used to 
estimate 8'= (81, 82, 83,. ...... ,8k) 

k 

= (BI,BI~2,BI~2B 3 ............... ~ ~j ) • 
j=l 

The covariance matrix of 8 is also estimated 

as (X'Z-Ix) -I. If 8 varies "much" from the 
vector of sample means used to estimate the {Ti} 

then this 8 should be used to reestimate the {T i} 

and in turn to reestimate 8. This may be 
continued until convergence. 

3. A COMPARISON OF MEAN SQUARE ERRORS 

The tables in this section compare the exact 
mean square error (MSE) under the full model 
given by (I.i) and (i.3) of" 

i) The BLUE under (I.i) and (1.3) as given by 
(2.3) and denoted as A I. 

2) The BLUE under (I.I) alone as given by 
(2.3) with D=0 and denoted as A 2. 

3) The vector of component means from 
responding units for each item that is denoted as 

A3" 

This comparison is made for the case k=2. The 
lid random vectors Z i = (Zil,Zi2)' have support 

in [0,al]×[0,a2] and the conditional response 

functions for the two components are" 

Ll(X) = (fl/al)x + Kl(l-fl) for 0<_x_<a 1 

L2(x) = (f2/a2)x - f2 + K2(l+f2) for 0<_x<_a 2 

where 0<_KI<_I, 0<_K2<_I, 0<_fl<_l, -l<_f2<_0. 

For these tables Bi=.45ai, 32=I.05 , o2=0.1, and 

2 2 2 
o2=$2o I + (.02)B I. 

Note that when fl and f2 are zero we have 

ignorable nonresponse. In tables 1 and 2 we 
summarize a comparison of the MSEs of the above 
estimators for estimating (81,82). Let MSE(m,8) 

denote the MSE under (I.i) and (1.3) of A for 
q 

estimating 8 . Then for each tabled pair of 
m 

parameter pairs, [(fl,f2),(Ki,K2)], is given a 

2×2 array consisting of" 

MSE(I, I)/MSE(I,3) MSE(2 ~ I)/MSE(2,3) 

MSE(I,2)/MSE(I,3) MSE(2,2)/MSE(2,3) 

Table I. Ratios of Mean Square Errors 
for Steep Response Functions 

(KI,K 2) (.8, .8) (i.0,i.0) 

(fl 'f2 ) 

(0,0) .845 .845 1.00 1.00 
.845 .845 I. 00 i. 00 

(0,'.6) .875 .009 1.00 .010 
2.39 .051 1.00 .015 

(.6,0) .009 .883 .011 1.00 
.049 2.13 .016 I. 00 

(. 6, -. 6) .008 .008 .009 .009 
.014 .029 .015 .026 

(. 9, -. 9) .002 .002 .002 .002 
.016 .039 .015 .036 

Table 2. Ratios of Mean Square Errors 
for Flater Response Functions 

(KI,K2) (.8, .8) (1.0,1.0) 

(fl,f2) 

(0,-.i) .850 .318 .999 .413 
.883 .350 .999 .416 

(0,-.2) .855 .105 .999 .137 
.991 .149 .999 .142 

(0, -. 3) • 860 • 046 . 999 • 059 
1.18 .092 .999 .064 

(.2,-.2) .118 .105 .151 .134 
• 121 • 116 • 155 • 141 

(. 3, -. 3) • 051 • 045 . 063 • 056 
• 054 .060 .068 .066 

All the entries in the upper right array in 
Table i are one since in the case of no 
nonresponse all three estimators are identical. 
The entries in the upper left array are all .845 
because here we have ignorable nonresponse, A 1 is 

identical to A2, and both are slightly more 

precise than A 3. 

For [(fl,f2),(Ki,K2)]=[(0,-.6),(.8,.8)] we see 

A 1 has slightly less MSE than A 3 for 81 and 

vastly less for 82 . Note that for this case A 3 

is unbiased for 81 but negatively biased for 82 . 

The entry, 2.39, results from the negative bias 
in A 2 for estimating 81 . This negative bias is 

caused by two things; the response mechanism that 
gives A 2 its negative bias for 82 and the 

positive correlation between the components of 
A 2. The squared bias in A 2 for 81 overwhelms the 

variance of A 3. 

For [(fl,f2 )' (KI'K2)]=[('6'0)' (1,1)] we see 

that all three estimators have the same MSE for 
82 but for 81 only A 1 is unbiased. A 2 and A 3 are 
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biased but A 2 has considerably smaller variance 

than A 3 . 

Table 2 considers less extreme cases of 

nonignorable nonresponse and except for 
magnitudes of the entries is similar to table I. 

4. SIMULATION COMPARISONS 

In this section computer simulation results 
are summarized. These simulations attempt to 
reflect the numerous practical difficulties of 
applying the forgoing survey methodology. In 
particular, the problems of estimating the 
superpopulation parameters in model (i.I) and 
the effects of misspecifying the nonresponse 
parameters in model (1.3). 

The populations used for this simulation study 
are derived from a CPI data base with data for 
four time periods from Iii0 establishments. 
Tables 3 contains simulation results using 
population I (p=.99) where p is the average 
correlation between data from adjacent time 
periods, i.e. the average correlations of 
(zii,zij_l)~ for j=2,3,4. Table 4 and Table 5 

have the simulation MSEs for population II 
(p=.95). The sample size is 250 and for each of 
these 250 sample units the data for time j is a 
response if fjzij+gj<UNIF(i,j) and is a 

nonresponse otherwise where the UNIF(i,j) are iid 
uniform (0,I) random variates. For all pairs 
(i,j), 0<-z..-<l, l<-i<-lll0 & l<-j<-4. ij 

Each of the following tables contains 
estimated MSEs based on 400 replications of the 
sampling and estimation process. This number of 
replications sufficed to give the tabled entries 

-i 
a standard error of approximately i0 or less 
(Note that these tabled entries are the estimated 

MSExI04). Thus both practical differences and 
statistically significant differences are evident 
between most of the estimators under study. 

Table 3 through Table 5 give estimated MSEs of 

8, the BLUE from (2.3) and its four competitors 
which are defined at the end of section i. The 

estimates of the superpopulation parameters in 
are those given in section 2. For each of these 

tables the parameters {fj}, {gj}, {fj}, {gj}, and 

p are given below the table title. The hat 

indicates the value of fj or gj used to derive 8. 

Table 3. Population I Simulation Results 

Estimated MSEx104 

-- --. ~ -----. ~ fj .8, fj 75 gj I, gj .15, for l<_j<_4 & p= 99 

Time 1 2 3 4 

Estimator 

z 2.63 2.83 2.71 2.50 

LR 2.63 2.64 2.61 2.63 

C 2.63 2.32 1.66 1.78 

8(i.i) 0.65 0.62 0.59 0.59 

0.43 0.41 0.39 0.39 

Table 4. Population II Simulation Results 

Estimated MSEx104 

f.=j. ,8 f~j=.75, g j=. ,i gj=.15, for l<j<4 & p=.95 

Time I 2 3 4 

Estimator 

Z 2.63 3.00 2.91 3.04 

LR 2.63 2.98 3.20 3.59 

C 2.63 2.30 1.02 1.24 

8(i.i) 0.84 0.77 0.72 0.85 

0.44 0.43 0.41 0.46 

The actual values of f i ~ and gj used to generate 

nonresponse in the simulation are given without a 
hat. 

The best of the four biased competitors is 

8(i.i) and when the {fj} are large (tables 3 and 

4) it has about a 50% larger MSE than does 8. 
This difference in their MSEs seems to be greater 
when p=.95 than when p=.99. When the {f j} are 

smaller in table 5 we see that the difference 

between 8(I.i) and 8 is barely significant. 
Both populations I and II are skewed to the 

left in the interval (0,I) at each time period. 
This means that in cases where the nonignorable 
nonresponse mechanism gives higher probabilities 
of response to smaller values of zij , (fj<O), we 

should see little difference between 8(i.i) and 

8. In the examples tested here the {fj} are all 

positive and there clearly is a pleasing 
reduction in MSE when this nonignorability is 

used to derive the BLUE 8. 

The tables in this section indicate that 8, 
may offer useful reductions in MSE in the 
presence of moderate to extreme nonignorable 
nonresponse. When the nonignorable nonresponse 
mechanism is less extreme (the probability 
distribution of t i approaches a distribution that 

occurs when the data is missing at random) 8(i.i) 
is the estimator of choice. 

Table 5. Population II Simulation Results 

Estimated MSEx104 

:. . . , • ~ fj 5, fj= 45, gj= 3 gj: 35 for l<_j_<4 & p= 95 

Time 1 2 3 4 

Estimator 

z 1.20 1.35 1.30 1.25 

LR 1.20 1.31 1.38 1.52 

C 1.20 0.88 0.73 0.68 

8(i.i) 0.48 0.42 0.43 0.46 

0.42 0.39 0.39 0.40 
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5. CONCLUSIONS 

This article examines a way of reducing the 
MSE of sample survey estimates by using the 
relationships which often exist between subsets 
of survey variables. These relationships may be 
expressed in terms of superpopulation models from 
which a linear relationship ( and its attendent 
BLUE) may be derived. The Markov superpopulation 
model discussed here has been found by the Bureau 
of Labor Statistics to accurately model the 
changes over time in establishment employment, 
West (1981) and Royall (1981). 

Additional structure in the form of a 
nonignorable nonresponse mechanism was joined 
with this Markov model to modify the estimation 
process for cases where the probability of 
nonresponse is related to the would-be response 
for a particular time period in a given 
establishment. Both zhis nonresponse mechanism 
and this Markov Superpopulation model are 
combined in a single linear relationship where 
the response indicator vector may be treated as a 
covariate (it is completely known for each sample 
member). By conditioning on this known response 
indicator vector the response bias resulting from 
this nonresponse mechanism is removed from the 
observed data. A linear model using this 
conditioned data and involving the parameters we 
want to estimate, is used to construct a BLUE for 
the vector of mean values. 

This BLUE was examined both theoretically and 
empirically in sections 3. and 4. where it 
performed well against its competitors. In 
section 3, the theoretical MSEs of three 
estimators were compared and some eyepoping 
results are seen in the tables of this section. 
In section 4 the more realistic simulation 
results bring us back to earth again. Although 
these simulations still show substantial 
reductions in MSE from the BLUE given by (2.3) as 
compared with the other biased estimators these 
differences in MSE are far less than those found 
in the theoretical MSEs of section 3. This is 
caused by the practical difficulties of 
estimating additional response mechanism 
parameters. 

When nonignorability is most extreme (large 

{fj}) 8 has the most to offer for reducing MSE. 

This appears to hold both when the correlation 

between adjacent time periods, p, is very close 
to one and when it is smaller. 

Estimation of the response mechanism 
parameters {fj} and {gj} was not addressed here. 

These must be obtained from a source external to 
the available data and its stochastic structure 
as described in sections I. and 2. The Bureau of 
Labor Statistics is currently establishing a 
survey cognition laboratory for measuring 
phenomena concerning the reaction of survey 
participants to questions being asked of them. 
In particular, data on a survey participants 
decision about whether or not to respond to a 
given question could become available for 
designing an appropriate response mechanism. 

In cases where auxiliary data that is 
correlated with the survey variates is available, 
or weaker superpopulation structure must be 
assumed for the survey variates,.the methods used 
here may still be applied whenever a good 
estimate of E, the covariance matrix of the 
vector consisting of the survey variates, the 
auxiliary variables, and any covariates, is 
available. 

This paper was concerned with estimating a 
time series of population means from a sample 

that was fixed over time. The Markov 
superpopulation model, (I.i), may also capture 
the stochastic relationship between hierarchical 
variates like wages paid in different levels of 
the same occupation. In this case, the 
occupational levels which are missing in a given 
establishment may be treated as the item 

nonresponses and 8 or 8(i.I) used as appropriate 
to estimate wages at all levels of the 
occupation. 

In repeated sampling problems with sample 
overlap between adjacent time periods, (I.i), may 
describe the relation between survey variates 
from adjacent times. For such estimation 
problems, composite estimators are often used but 
the BLUE under (I.I) has been shown to be 
considerably more precise. 

Superpopulation relationships like those used 
in this paper to derive an efficient estimator 
are routinely used in sample design (in 
stratified, systematic, and clustered designs). 
Apparently, there is still more to be gained by 
their use in the construction of survey 
estimators. 
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