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1. INTRODUCTION 
The dual system estimator (DSE) is used in several 

contexts for estimating the size of a population. Its 
applications range from wildlife populations to human 
populations. DSEs of births and deaths are used at the 
U.S. Bureau of the Census in the formation of the 
demographic analysis estimates of the national 
population. Currently, the Census Bureau intends to 
use DSEs for measuring coverage error in the 1990 
Decennial Census. This paper focuses on the 
application of the DSE in the census context where the 
two systems are the original enumeration and a Post 
Enumeration Survey (PES). 

DSEs are subject to several components of 
nonsampling error, in addition to sampling error. We 
present models of the total error and the components 
of error in the DSE. The models relate observed 
indicators of data quality to the f i rst  two moments of 
the components of the error. We then use techniques 
of propagation of error to estimate the bias and 
variance of the D SE. In doing so, we assess the total 
error, i.e. the joint effect of the errors. 

The methodology is applied to the 1986 Census of 
Central Los Angeles County, also known as the 1986 
Test of Adjustment Related Operations (TARO) 
conducted in Los Angeles (Diffendal, 1987). The PES 
in T A R 0 comprised about 6,000 housing units and over 
19,000 people. Estimates of the total error in the 
TARO DSE are interesting both in and of themselves 
and for what they suggest for the likely error in the 
D SEs to be produced for 1990. A sensitivity analysis 
shows how the component errors interact, which ones 
cancel, and which ones compound each other. The 
methods described here to estimate the error in the 
TARO DSE can be extended to estimate the er ror in  
the 1990 DSEs. 

Section 2 presents rationale for the TARO DSE 
and its major com ponents. Our strategy for assessing 
the component errors and combining them to estimate 
the total error in the DSE is described next (Section 
3). A detailed description of the DSE, with notation, is 
necessary for precise description of the component 
errors (Section 4). Following is an assessment of 
selected errors (Section 5). A synthesis of the 
component errors leads to estimates of the total error 
of the DSE (Section 6). Our major conclusions are then 
presented (Section 7). 

2. DUAL SYSTEM ESTIMATOR 
The application of the dual system estimator 

requires assuming that there are two lists of the 
population. The f irst l ist is the original census 
enumeration, and the second is an impl ic i t  l ist of those 
covered by the sampling frame for the P-sample of the 
PES, whom we will call the P-sample population. The 
sampling frame itself is not a l ist of people, but of 
census blocks. 

The P-sample is one of the two samples that 
comprise the PES. The PES is composed of the 
E-sample, which is a sam ple of census enumerations, 
and the P-sample, which is a sample of the 
population. The E-sample is selected to estimate the 
number of enumerations that are erroneous. The P- 
sample is selected to estimate the number of people 
missed by the original enumeration through dual 

syste m esti m ation. 
The dual system estimator is based on the model 

(Wolter, 1986) that the joint event that the i- th 
individual in the population of the size N is in the 
census or not and in the P-sample or not is modelled by 
the probabilities of falling in a cell shown in Table 2.1. 

Table 2.1 Probabilities of Falling in a Cell 

original enumeration 
in out total 

P-sa m pl e 
in P i l l  Pi12 Pil+ 

out Pi21 Pi22 Pi2+ 

total Pi+l Pi+2 Pi++ 

The true population size in each category are defined 
in Table 2.2. 

Table 2.2 True Population Size in Each Category 

original enumeration 
in out total 

in N l l  N12 NI+ 
P-sa m pl e 

out N21 (N22) (N2+) 

total N +I ( N I +) (N ++) 

In the table above, N++ = N, the total population 

size. Even i f  we could observe the Nij's in the f i rst  
• I row and f i rst  column, the Nijs in parentheses would 

not be observed directly, but would have to be 
estimated from the model. The DSE of N then would 

+*N / N which we will refer to have the form N I +I I I '  

as the ideal DSE. 
In estimating population size for measuring census 

coverage error, the observed N's are replaced by 
estimates from the original enumeration and two 
sample surveys, the P-sample and the E-sample. The 
survey data are weighted by the reciprocal of the 
selection probabilities. The following definitions are 
required for the development of the observed DSE and 
its nonsa m pli ng error: 

= the estimate of the total population 
fro m the P-sa m ple. 

CEN = the size of the original enumeration 
= the number of persons imputed 
= the weighted number of census 

enumerations with insufficient 
information for matching 

EE = the weighted number of erroneous 
enumerations in the original 
enu m eration, based on the E-sa m ple 

535 



A 

EE = the estimate of the number of 
erroneous enumerations in the original 
enumeration 

A 
= C E N - I I  1-112-  EE = thees t ima teo f  

the num bet of distinct people in the 
original enumeration from the E-sa mple, 

= the esti m ate of the num bet of people i n 
the census and the P-sample. 

With this notation, NpeStimates NI+ and C/M 

estimates N+I /NI I .  Thus, the estimator has the form 

: / 

The ratio C/M contains a correction for erroneous 
enumerations and for cases with insufficient 
information for matching, II 1 and If2, so that cases 

with no chance of being included in the denominator 
are also exluded from the numerator. 

The DSE is used to estimate the percent net 
undercount, or the undercount rate, in the original 
enu m e ration, 

O : I00" ( C E N -  N + + ) I  N++ . 

For the TARO site (i.e. Central Los Angeles 

County) as a whole, CEN = 355,352, Np= 336,707, C= 

343,567, M = 298,204, and N = 388,040. The ++ 
estimate of the percent net undercount is 8.42. 

3. STRATEGY FOR ASSESSING TOTAL ERROR 
The DSE is subject to various sources of error, 

including error due to incorrect addresses from the 
P-sample, error due to missing data (unit and item 
nonresponse), response errors, interviewer errors, 
correlation bias, sampling error, etc. We wish to 
esti mate the effects of these diverse sources of error 
on the D S E. 

The f i rst  step in our strategy is to express the D SE 
as a function of components. We have constructed the 
components so that, for the most part, the different 
sources of error act either independently or perfectly 
dependently on different components. By isolating the 
effects of the various errors, we are better able to 
identi fy the major distinct sources of error. 

Next, we estimate the f i rst  two moments of the 
component errors, one component at a t ime.  In doing 
so we draw upon the results of the TARO evaluations 
and quality control programs. The way we constructed 
the components implies that correlation between 
component errors typically equal either 0 or I. 

To study the propagation of errors we have used 
computer simulation methods. A multivariate 
distribution of the error components, say F, was 
assumed. The specification of F was consistent with 
the f i rst  two moments as estimated in Section 5. 
Realizations of the component errors were simulated 
by pseudo-random draws from F and then the DSE Was 
calculated; this procedure was repeated i0,000 times 
and the resulting empirical distribution of the D SE was 
used as an estimate of its actual distribution. The 
f i rst  two moments of the lat ter distribution provide 
numerical estimates of the total error of the DSE. 

Sensitivity analysis was performed to discover the 
importance of using one distributional form for F 

rather than another. The results suggest that the 
exact distributional form (beyond the f i rst  two 
moments) is relatively unimportant (see Section 6). 

We adopted a Bayesian approach in investigating 
of the error in the DSE. We estimated the f i rst  two 
moments of the distributions for the error components, 
then we derived the posterior distribution of the 
undercount rate conditional on the observed values 

of E Q e t c .  ' p ' , 

4. COMPONENTS OF THE DSE 
The DSE is subject to sampling errors and 

nonsampling errors, including failure of assumptions 
underlying the DSE model. The DSE does have a bias, 
but the bias in the census context is negligible (Wolter, 
1986). Nonsampling errors may affect the accuracy of 

estimation of N+I, NI+, and N I l .  Descriptions of the 
nonsampling error follow. The fionsampling errors are 
described in more detail in Mulry and Spencer (1988.) 

The nonsampling error in the estimation of N+I, 

called c, arises during the processing of the E-sample 

when respondents are misclassified as to whether they 
are correctly or erroneously enumerated in the original 
enumeration. Therefore, c has three components: c e, 
which occurs during the data collection and processing, 
c b, caused by a PES design that fails to balance 

esti mates of the gross overcount and gross undercount, 
and c i caused by missing data, 

c : c e + c b + c i 

The nonsampling error in the estimation of NI+, 

called np, arises during the interviewing for the P- 

sample when the P-sample selections are not 
interviewed. This situation occurs when household 
members are fabricated or when there is missing 
data. Therefore, np has two components: npf, the 

error due to fabrication and npi, the error due to 

missing data, 

np = npf + npi. 

The nonsampling error in the estimation of N l i ,  

called m, has four co m ponents: mm, which is the error 

introduced in the matching operation; ma, which is the 

error introduced by respondents giving the wrong 
Census Day address; m i, missing data, and mf, 

fabrication. 

The ideal DSE can be written as follows (Mulry and 

Spencer, 1988): 

N I + * N + I / N I I =  (~ - c ) * ( N p  - n p ) / ( M -  m).  

5. COMPONENTS OF PES ERROR 
Estimates of the f i rst  two moments of the 

posterior distribution of the undercount rate derive 
from estimates of the f i rst  two moments of the 
components of PES error. 
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The components are 

correlation bias, 
matching error, 
accuracy of the reported Census Day address, 
fabrication in the P-sample, 
measurement of erroneous enumerations, 
balancing the estimates of the gross overcount 
and the gross undercount, 
missing data, 
sam pli ng error. 

We next describe the source of three components 
of PES error, correlation bias, accuracy of reported 
Census Day address, and missing data. We model the 
component errors in terms of observable indicators of 
data quality. We estimate the f i rs t  two moments of 
the distributions of the errors for use in the total  error 
model in Section 6. In Mulry and Spencer (1988), we 
give the models for each of the component errors. 

5.1 CORRELATION BIAS 

5.1.1. SOURCE OF ERROR 
An important concern for dual system estimation 

is that the esti m ate of the proportion of the population 
enumerated in the census, based on the P-sample, is 
accurate. The violation of one of the independence 
assumptions underlying dual system estimation may 
cause the estimate of the proportion of the population 
in the census, and thereby the estimate of the 
population, to be biased. 

Three independence assumptions are made for dual 
system esti m ator: 

Causality. The event of being included in the 
census is independent of the event of being included in 
the PES. That is, the cross-product ratio satisfies 

e = PillPi22/Pi12Pi21 = 1, for  i = i . . . .  , N. 

Homogeneity. The capture probabilities satisfy 
Pil+ = PI+ or Pi+l = P+I f o r i  = i . . . .  , N, within each 

of the post-strata. 

Autonomy. The census and the PESare created 
as a result of N mutually independent tr ials. 

Next, we model the combined effect of the 
sources of correlation bias on the D SE. 

5.1.2. DEFINITION 
For insight into the effect of correlation bias, 

write the true population size as follows: 

N = NI l  + NI2+ N21 + B*(NI2*N21/NI1) ,  

where e is the cross-product ratio defined in Section 
5.1.1. 

The correlation bias affects only the last term 
because the other three may be estimated directly. 
The para m eter, O, represents the effect of the failure 
of the independence assumptions. When the 
independence assumptions hold, e = I. 

The correlation bias, arising when e does not 
equal I, is the only contributor to t,  the error due to 
failure of the model. The population size can be 

written as follows: 

N = N1+*N+1/N11 + t  

= N I+*N+I /N I I  + ( B- 1)*(N12*NI2/NI I ) .  

Therefore, the correlation bias, t ,  satisfies 

t : (  8-1)*(N I 2 i 2*N I/N 1 ). 

5.1.3 MEASUREMENT 
The para meter e m ay be esti mated at the national 

level for subgroups categorized by age, race, and sex 
using demographic analysis esti mates of the population 
size. Note, however, that this technique presumes 
that the de m ographic analysis esti mates are 
accurate. Even  so, this formulation also permits 
varying 8 to assess the sensitivity of the D SE to the 
estimate of the effect of the violation of the 
independence assu m ptions. 

5.1.4 ESTIMATION 
Estimates for e were not made for the 1986 T A R 0 

because an alternate source for population estimates 
did not exist, e.g., no demographic analysis estimates 
were feasible. However, Ericksen and Kadane (1985) 
made estimates of e for blacks for the 1980 census. 
They made three estimates of e: 2.1, 2.7, and 3.7. 
Since the population in the 1986  TARO was 
predominantly minority (73 percent Hispanic, 12 
percent Asian, and 15 percent non-Asian and non- 
Hispanic), the Ericksen and Kadane estimates for 1980 
will be used in this paper: 

E( e)= 2.1,2.7, or 3.7. 
Vat( O)=O.  

These estimates of e are consistent with the 
reports of the participant observers in the Los Angeles 
test site (Childers, et al, 1987). 

5.2 QUALITY OF THE REPORTED CENSUS DAY 
ADDRESS 

5.2.1 SOURCE OF ERROR 
Some of the respondents in the P-sample have 

moved between Census Day and their PES interview. 
The respondents may misreport whether they have 
moved. If they have moved, they may not report their  
previous address accurately, or their  previous address 
may not be geocoded correctly by the staff.  Any of 
these types of errors may cause the matching 
operation to search the census in an area other than 
where the respondent was enumerated. These errors 
may lead to assigning a nonmatch status to 
respondents who actually were enumerated because 
the matching operation is unable to locate their 
enu m erations. Inappropriate assign ment of the status 
of nonmatch will cause the estimate of the number of 
people missed by the census to be biased upward. 

Circumstances under which inaccurate reporting 
of the Census Day address by a PES respondent will 
not cause a false non match do exist. If the Census 
Day address is inside the search area for the reported 
address, and the reported address is geocoded 
correctly, then the matching operation will find the 
person. 

5.2.3. MEASUREMENT 
The conditional expected value and variance of m 
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given the observed value M are denoted by E(ma)and 
Var(ma). 

Measurement of m a is based on a follow-up of a 

sample of P-sample respondents whose enumeration 
status is "not enumerated." Data from the follow-up 
are used to estimate the error that arises when people 
who were enumerated mis-report their Census Day 
address when they respond to the PES. 

An evaluation of the quality of the reporting of 
the Census Day address was conducted after the 1986 
T A R 0. A post-production follow-up which 
reinterviewed a sample of the nonmatches to 
determine the number of nonmatches caused by mis- 
reporting mover status. Another search to match 
respondents who reported they in fact had moved 
within the test site was made at the new address. 

5.2.4. ESTIMATION 
The sample cases found to have errors in their  

reported Census Day address may be used to estimate 

L e = the weighted number of people who erroneously 
report their Census Day address in their P- 
sample interview. 

A search of census enumerations at the newly reported 
addresses produces 

ram = the estimator of the percentage of people with 
errors in the location of their reported Census 
Day address who match census enumerations. 

Then the expected value of the error m is estimated 
by a 

*L E(ma)=-ram e " 

The results of the post-production follow-up 
(Childers, et at, 1987) yielded a misreporting rate of 
2.7 percent in the P-sample. A match rate of 32 
percent was estimated for those who misreported their  
Census Day address and moved within the test site. 
The expected value of m a is 

E(ma) = -0.027 * 0.32 * 19,552 * 17 =-2871. 

An estimate of the variance of the error due to 
mis-reporting has not been made. Our professional 

judgment is that a conservative estimate of the 
variance at the PES sample level is 900. Therefore, 
the variance at the TAR 0 site level is 

Var(ma) = (17) 2 * 900 = 260,100. 

If no attempt had been made to match the sample 
cases to census enumerations, or i f  the variance of 
such an estimate would be unacceptably large, then 

ram can be replaced by the estimator of the final 

overall match rate for P-sample movers. Then the 
underlying assumption would be that the movers who 
report accurate addresses are like movers who give 
inaccurate addresses. 

5.3. MISSING DATA 

5.3.1. SOURCE OF ERROR 
Both the E-sample and the P-sample have missing 

data. The E-sample has cases where the information 

required to determine whether the person is correctly 
or erroneously enumerated in the census is not 
available. The P-sample has cases where the 
information needed to determine whether the person is 
enumerated in the census is not available. The 

enumeration status is imputed statist ical ly to 
compensate for the inabl i l i ty to resolve the case. 

Missing data occur in more than one way. The 
interviewer may be unable to obtain an interview 
during the P-sample interviewing or during the PES 
follow-up. A P-sam ple or E-sam ple questionnaire may 
not have all the demographic and housing information 
required for the estimation. E v e n  with all the 
information requested on the questionnaires, the 
circumstances may be so unclear that the enumeration 
status can not be resolved. 

5.3.2. MEASUREMENT 
We assess the error in the DSE caused by missing 

data instead of considering each component c i, m i and 

npi separately. Our approach is to perform a 

sensitivity analysis of reasonable alternative models 
for compensating for missing data. First a preferred 
method of imputation for unresolved P-sample and 
E-sample enumeration statuses is specified prior to 
the implementation of the P E S .  Reasonable 
alternative treatments of the missing data can be 
suggested by problems that arise during the collection 
and processing of the PES data. The DSE can be 
computed under these alternative models for 
compensating for missing data. The range of the 
alternative estimates indicates the sensitivity of the 
DSE to the method of imputation. For example, a 
narrow range implies that the estimates are robust, 
and the missing data cause l i t t le  uncertainty in the 
esti mates. 

5.3.3. ESTIMATION 
The effect of missing data on the estimates from 

the 1986 TARO was assessed by examining the range 
of estimates obtained when methods of imputation 
based on reasonable alternative assumptions were used 
in place of the preferred method. These included 
alternative treatment of proxy responses, movers, and 
designation of f ict icious enumerations (Schenker, 
1987). The alternative treatment of the proxy 
interviews for P-sample cases classified them as 
noninterviews and applied the weighting adjustment. 
This essentially assigned proxy cases the same match 
rate as nonproxy cases. The alternative treatment of 
the P-sample movers reclassified them all as 
unresolved and imputed a match status, instead of 
imputing for only those who were not resolved. This 
essentially assigned movers the same match rate as 
nonmovers. The alternative treatment of f ict i t ious 
cases resulted 1~rom a review of the unresolved 
E-sample cases by experienced matching personnel 
who converted some unresolved cases to f ict i t ious. 
This raised both the observed and imputed rates of 
erroneous enu meration. 

Models i0 and I I  shown in Table 4 of Schenker's 
paper give the upper and lower bounds of the estimates 
of undercount rates, respectively. Model i0 has the 
TARO treatments while Model I i  has all the 
alternative treatments. Both models dif fer from 
TARO in that they have E-sample outmovers as 
substitutes for P-sample inmovers and imputations for 
their match statuses. In the 1986 TA R 0 the E-sa mple 
outmovers and the P-sample inmovers were omitted 
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from the PES estimation. The omission of the 
outmovers from estimation essentially assumes that 
they had the same capture rate in the original 
enumeration as the included cases. Movers are 
believed to have a lower capture rate than nonmovers. 

6. SYNTHESIS OF TOTAL ERROR 
The Combined effect of the component errors will 

be sum marized by posterior distibutions for the net 
undercount rate. The bias in the estimate of net 

undercount rate, B (O) ,  is estimated by the 
^ 

difference between U and the mean of the posterior 
d is t r ibut ion.  To construct the posterior distribution, 
we used a simulation method with I0,000 repetitions, 
generating pseudo-random component errors and 
adding them to the TARO estimates. Using the 
formulas in Section 5.1.2, we obtain the following 
formula: 

N = ( N p - n p ) +  ( C - c - ( M - m ) )  

+ O* ( C - c - ( M - m ) ) * ( N p - n p -  (M-m))  / (M-m) 

: ( C - c ) * ( N p - n p ) / ( M - m )  

+ ( O - Z ) * ( C - c - ( M - m )  ) * ( N p - n p -  (M-m))  / (M-m) 

Several dif ferent distributions were used to ref lect 
alternative estimates of imputation error, alternative 
estimates of correlation bias (parameterized by 0), 
and alternative marginal distributional forms for the 
components -- normal, gamma, and uniform. 

In this study, the percent net undercount estimate 
for the TARO site is 8.42 with a sampling standard 
deviation of 0.7. This estimate was selected because 
estimates of nonsampling error components are 
available only for the site as a whole. When a DSE is 
constructed for each post-stratum and then the DSEs 
are summed to give an estimate for the site, the 
percent net undercount esti mate is 9.02 percent. 

Table 6.1 displays the means and standards 
deviations of the error components for the PES 

sample. Recall that N = + +  

388,o40,  :298,204,  :343, 67, 
and N = 336,707 for the TARO site. 

P 
The overall sampling weight, 17, was used 

consistently throughout all the simulations so that 
comparisons of the effect of alternative assumptions 
such as correlation bias parameter values, error 
distributions, and imputation models are appropriate. 
The methodology generalizes to other applications 
where a different sampling weight is used in each 
stratum. 

Table 6.1 Assumed distributions of error estimates 

Standard 
Mean Deviation 

Net Matching -782 115 
Census Address -2871 510 
F a bri c ati on -1751 172 
Net E-sample -1390 153 

Table 6.2 displays the effects of the individual 
errors on the posterior distribution of the undercount 
when the TARO imputation is used. The net matching, 

Census Day address, and fabrication errors are all 

errors in M. Therefore, the presence of only one of 
them alone causes the bias in the estimate of percent 
net undercount to be positive. The net E-sa m ple error 

is an error in C. The presence of E-sample error alone 
causes the bias in the estimate of percent net 
undercount to be negative. The estimate for 
correlation bias, o, was chosen to be 2.7, the median 
of Ericksen and Kadane's estimates. The presence of 
only correlation bias causes the bias in the percent net 
undercount estimate to be negative. 

Table 6.2 Individual effects of errors on posterior 
distribution of net undercount rate 

E(U) Std. Dev. B ( U ) 

Net Matching 8.11 0.03 0.31 

Census Address 7.53 0.16 0.89 

F abrication 7.85 0.06 0.57 

Net E-sa m ple 8.68 0.04 -0.26 

Corr. Bias (2.7) 10.61 0.00 -2.19 

Varying the value of the estimate of 0 for the 
correlation bias did affect the moments of the 
posterior distribution of the undercount. The variation 
appears in the mean and in the standard deviation. 
Table 6.4 shows the results for the different values 
of O, where the distribution for the errors are 
normal. The case where O= i portrays virtually no 
correlation bias, while for the other sources of error 
are present. In the cases where O= 2.1, 2.7, and 3.7, 
all the sources of error are taken into account. The 
distribution of the undercount shifts to the right as the 
estimate of o for the correlation bias increases. The 
variance also increases as the estimate of 0 

increases. For 0 = 2.1 the bias B(U) is very close 
to zero, but positive. For 0 = 2.7and 3.7, the bias is 
negative. 

Table 6.4 Posterior distribution of the net undercount 
rate for several values of o. 

0 E(U) St. dev. B(U) 

I 7.15 0.17 1.27 

2.1 8.35 0.22 0.07 

2.7 8.95 0.23 -0.53 

3.7 10.12 0.26 -1.70 

The simulations were conducted with reasonable 
alternate models for the imputation for unresolved 
match status. Although there was some variation in 
the f i rst  two moments of the distribution of the net 
undercount rate, the estimate of net undercount rate 
in TARO appears robust to missing data. Table 6.5 
il lustrates the results of the simulations using models 
I0 and 11 described in Section 5.7.3. Models i0 and 11 
yielded the upper and lower bounds of the undercount 
estimates under all the reasonable alternative 
imputation models. The bias in the estimate of the 
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percent net undercount rate ranges from -0.86 to 1.04. 
In other words, the bias is between a negative 9 
percent and a positive 13 percent of the net 
undercount rate estimate of 8.42. Varying the 
imputation model has almost no effect on the standard 
deviation. 

Table 6.5 Posterior distribution of the net undercount 
rate under reasonable alternative imputation 
models when 0 = 2.7 

E(U) St. dev. B(U) 

T A R 0 8.95 0.23 -0.53 

Model 10 9.19 0.22 -0.77 

Model 11 7.31 0.22 1.11 

The total variance of the estimated net 
undercount rate may be estimated by the sum of the 
sampling variance and the nonsampling variance. For 
the case where O= 2.7, the standard deviation shown in 
Table 6.5 for both models 10 and 11 is 0.22 which 
translate to a nonsampling variance of 0.05 when all 
errors are considered. 

The standard randomization theory model for 
survey sampling is appropriate for estimating the 
variance of the DSE. The coefficient of variation 
which is the ratio of the square root of the variance of 
the observed DSE to the mean of the distribution of 
the DSE provides information on the amount of 
sa m pli ng error i n the D S E. 

The Taylor series estimator of variance (Moriarty, 
1987) yields as standard deviation of 3100.37 for the 
dual system estimate of 388,040 for the TARO site. 
The coefficient of variation is 0.008. This i mplies the 
standard deviation for the estimated net undercount 
rate is 0.70 which translates to a sampling variance of 
0.49. 

Therefore, the total variance is 0.54 and standard 
error is 0.73. The coefficient of variation of the net 
undercount rate is 0.083. The nonsampling variance 
contributes very l i t t le to the total variance relative to 
the contribution by the sam pling variance. 

7. CONCLUSIONS 
When all the sources of error are considered in the 

posterior distribution of the undercount and the 
estimate of O for correlation bias is 2.7, the estimated 

net undercount rate for TARO, U= 8.42, has a small 
bias: 

-0.77 < B(G)< 1.11 

The standard deviation of the posterior distribution for 
the net undercount rate is 0.73. 

When the post-stratification is used in the 
estimation, the undercount estimate for TARO is 
9.02. The post-stratification increased the net 
undercount rate esti mate by 0.6, which is less than one 
standard deviation from the estimate of 8.42. 

Although we expect the error in the post-stratified 
estimate is smaller, the result is consistent with the 
error analysis. 

The DSE appears to be robust to the joint effect of 
errors arising in the data collection of the 1986 T A R O. 
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