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Introducti o,~_ 

Supplementing aI~ area sample with a sample from 
a list frame of important units can be an 
effective way to improve the efficiency of a 
multistage sample. This technique is useful 
for sampling from a population where the units 
of greatest interest are relatively rare. To 
form unbiased estimators, a theoretically 
straightforward approach would be to calculate 
joint probabilities of selection for sample 
units in the overlap between the area and list 
portions of the sample. However, this can be 
very difficult to accomplish for multistage 
area samples, since listing of basic units is 
restricted to selected higher stage units. 
Approaches that have been used in some surveys 
adjust certain sample weights to account for 
the overlap between the area and list frames; 
these adjustments produce unbiased estimates of 
population totals without the difficulties of 
calculating joint selection probabilities. 

This paper derives the components of variance 
of the estJmates produced using one type of 
overlap adjustmer, t procedure, and discusses the 
construction of pseudostrata to capture these 
variance components. The methods are described 
in reference to the Department of Energy's 
NonresideptJ~] Buildings Energy Consumption 
Survey (NBECS). 

The 1986 NBECS was based on a four-stage area 
probability sample, where individual buildings 
were the ultimate sample units. For the first 
stage of sampling, 129 strata were formed by 
grouping together similar primary sampling 
units (PSU's). Each of the 1,799 PSU's was 
composed of a city and surrou~,dJng counties, or 
of rural counties only. Thirty-two of the 
PSU's were highly populated, and were not 
grouped with other PSU's to form strata. These 
32 PSU's were designated as certainty PSU's and 
were taken into the sample with probabilities 
of I. For the remaining strata, containing 
grouped noncertainty PSU's, one PSU was 
selected from each stratum, yielding a total 

first-stage sample of 129 PSU's. Within each 
selected PSU, further sampling stages selected 
ZIP code groups, then area segments, and 
finally buildings. 

Very large buildings, although relatively rare 
in the population, account for a high 
proportion of total energy consumption. To 
ensure adequate coverage of large buildings and 
of others that: were significant energy users, 
the area sample within each PSU was 
supplemented by a sample from lists of large 
and "special" buildings such as hospitals and 

schools. For both area and list samples, the 
overall selection probabilities for individual 
buildings were set to be proportional to 
building size, which is correlated with energy 
consumpti(m. The supplementary sample from the 
lists of large and special buildings thus 
improves the overa]l efficiency of the sample 
design. This is true even though these lists 
have undercoveroge s~d do not comprise a 
complete within-PSU sampling frame. 

ConstructJr, g the NBECS Linear Estimator 

Supplementing an area probability sample with a 
sample from ].ist frames requires special 
treatment for the frame overlap, to avoid 
doubJe cotmtJpg and produce unbiased survey 
estimates. The most theoretically straight- 
forward way to create unbiased linear 
estimators is to compute (with great 
difficulty) the joint probabilities of 
selection for those sample units that can be 
selected into either the area sample or the 
list sample. 

Another way to handle the overlap between the 
area sample and the list frame is simply to 
delete any cases from the area sample found to 
be on the list frame. This is the "screening" 
estimator approach used by the National 
Agricultural Statistics Service (NASS) in its 
sur~eys of Crops and liverstock (Bosecker and 
Ford 1976). For the Nq3ECS, though, simply 
eliminatir~g the Jr, tersectJor, cases (unless a]so 
sampled from the lists) would be an inefficient 
use of resources. The informatJ(m required to 
determine that an area-sample building is or. 
the list frar,,~" 5s typically not obtained until 
the time of interview. At that point, the 
incremental cost of completing the interview 

and obtai~ipg usable Jr, formation is small 
compared to t be cost already incurred of 
getting to the building. 

Composite ostJmators offer an alternat/ve 
approach, and are currently in use by NASS 
(Hartley 1962, and Bosecker and Ford 1976). 
Two independer, t estimates of the list-frame 
universe are obtaiD ed, one from the area 
sample, using area-sample weights, and one from 
the list sample, using list-based weights. An 
overall estimate of the list-frame universe is 
then constructed as the linear combination of 
these two separate estimates, with weights in 
inverse proportion, to the variances of the two 
estimates. In principle, this would be the most 
efficiel,t way to combine the informatio~ from 
the intersection and list samples. IIowever, 
this approach is impractical for the NBECS, 
which is a multi-purpose survey used to produce 
extensive tabulations of population aggregates. 
The increased computa ti onal complexity is 
unlikely to be justified by the improvement in 
resulting estimates. 
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A simpler unbiased procedure Jn current use for 
NBECS is formulated in terms of weighting rules 

as follows : 

I) Area-sample ~ selections that are not 
included in any of the list frames 
are given the appropriate area-sample 
weights. These sample selections 
thus provide an estimate of only that 
portion of the total population that 
does not appear on any list frames. 

2) All a r e a - ~  buildings that are 
included on a list frame are assigned 
a wJthin-PSU weight of i. That is, 
they represez~t or,]y themselves within 
the PSU. 

3) List-sampled~ selections that are not 
also takez~ Jmto the area sample are 
assigned the appropriate list- 
sample weights. These buildings 
provide an estimate of that portion 
of the list frames that did not also 
come into the area sample. 

The resulting estimator x' is the sum of three 
components, 

x' = A + I + N, 

where A is a linear combination of attributes 
of sample units from the area sample, excluding 
buildings appearing on any list frame; I is a 
linear combination of units from the inter- 
section sample, consisting of buildings on the 
list frame that were also selected into the 
area sample~ and N is a linear combination of 
units from the nonintersection list sample, 
consisting of buildings on the list frame and 
sampled only Jn the list sample. 

This estimator was originally proposed by Jack 
Ogus, a consultant to the 1979 NBECS contractor. 

It cam be shown (Chu, 1987) that for any 
PSU-level aggregate X, the linear estimator 
(x') resulting from this weighting procedure is 
unbiased. 

As illustrated Jr, Figure i, the components I 
and N together estimate the list-frame 
aggregate, while the component A estimates 
the aggregate for the population excluded 
from the list frame. The present paper explores 
the contributions of each of the three 
components A, I, and N to the variance of 
x', and the relationships among these 
contributions. 

Estimating the Variance of the Linear Estimator 

To estimate variances of survey statistics in 
NBECS, the first-stage sampling strata were 
collapsed to form pseudostrata, and the sampled 
PSU's paired i~ this way were used in a 
jackknife replication technique (McCarthy, 1966 

Figure I. NBECS Overlap Adjustment Scheme 
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and 1969). One goal of the present work is to 
determine the appropriate treatment of the 
intersection buildings in constructing 
variance-estimation pairs (or pseudostrata). It 
has been the convention in the past to treat 
these buildings as certainty units (since they 
have weights of I), and include them in all 
replicates, rather than placing them into 
variance-estimation pairs so that they would be 
left out of some replicates and included in 
others. This convention implies that these 
intersection buildings have zero contribution 

to the variance of x'. This is actually not 
the case. The main conclusion of the 
developments described below is that the 
convention results in a slight overestimate of 
variance, but is adequate for present 
applications. Alternative methods have been 
considered, and may be used in future surveys. 

Before proceeding to the main results, some 
general principles of constructing variance- 
estimation pairs, and the application of those 
principles to the NBECS sample, are reviewed. 

General Principles for Constructing Variance 
Estimation Pairs 

The variance and covariance relationships 
developed here are for linear estimators, which 
are linear combinations of sample values. 
Linear estimators include weighted sums of 
sample-building attributes, provided the 
weights are nonrandom. Variance estimation 
pairs are constructed to provide unbiased 
estimates of variance for such statistics. 
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Within each stratum, this construction pairs 
together two sampling units at the earliest 
stage of sampling, in such a way that the two 
members represent two independent samples, each 
of which incorporates all subsequent stages of 
random selection. Restricting calculations to 
the initial stage of the sample is called the 
"Ultimate Cluster" technique (Wolter, 1985). 
In practice, ultimate clusters often refer to 
noncertainty PSU's, and to SSU's within 
certainty PSU's. The difference between 
estimates based on these two ultimate clusters 
then gives an estJmat:e, with one degree of 
freedom, of the variance of the component of 
the statistic contributed by tbe initial 
sampling stage. 

If only one first-stage unit was sampled from 
each of the original first-stage strata, the 
variance-estJmatJom pairs must be constructed 
by collapsing the origins] strata into pseudo- 
strata. Only similar strata are collapsed 
together, in order to minimize bias in the 
variance estimates due to between-strata 
components. Stratum similarity must be judged 
using only pre-sampling information, to avoid 
further bias. 

Sets of ultimate clusters that were dra~ 
independently of each other can be split into 
pairs separateJ y to represent independent 
variance components. But sets whose 
contrjbutjol,s to  the aggregate estimate have 
nonzero covariance need to be combined into a 
single pair J f thJ s covariance is to be 
correctly reflected i~ the variance estimate. 

More specifically, if the variances of B and 
C, respectively are estimated by 

(BI - B2) 2 and (CI - C2) 2 

then the combined pair 

((BI + CI) - (B2 + C2)) 2 = (BI - B2) 2 

2 
+ (Cl - C2) + 2 (BI - B2)(CI - C2) 

represents the variance of the sum B + C, 
with the cross-product of differences estimating 
the covariance of B and C. If B and C 
are kept as separate pairs, this covariance 
term will not be represented in the resulting 
variance estimate, resulting in a bias if the 
covariance is nonzero. 

If, on the otber hand, the covariance is zero, 
then keeping B and C as separate pairs gives 
a more accurate estimate of the total variance. 
If the pairs are merged, the cross-product term 
will have zero expectation, but will contribute 
to the variance of the variance estimate. 
Pseudostrata were formed for the 1986 NBECS in 
such a way as to minimize the additional 
variance of the variance estimate that would 
result from cross-product terms with zero 
expectation. 

Application of  General Principles to the NBECS 
Sample 

For the NBECS noncertainty PSU's, the first 
stage of sampling is the selection of PSU's 
themselves. Preliminary pseudostrata were 
formed in this group by pairing one PSU (one 
ultimate cluster) agaimst another. All stages 

of sampling within each PSU were conducted 
independently of the sampling in other PSU's. 
Thus, the difference betwee~ PSU's correctly 
reflects the variance of the entire selection 
and estimation process involving noncertainty 
PSU's. This process included the selection of 
some intersection cases, and the setting of 
their within-PSU weights to one. Thus, it is 
appropriate, to keep these i~tersection cases 
with the rest of their PSU for the pairing; 
this has been done for the NBECS. 

Construction of variance-estimation pairs for 
certainty PSU's is the subject of the remainder 
of this paper. For the NBECS certainty PSU's, 
the first s~mp]Jr, g stage is the secondary 
sampling u~it or SSU. Each SSU selection for 
the sample is imdepe~dent of any other SSU 
selection. A single segment is selected within 
each of the independently selected SSU's. 

Variances and Covariances of the Linear 
Estimator Components 

The derivations that follow are for segment- 
level variance and covariance relationships. 
All these resuJts hold also for the PSU-level 
variances and covariances, which, under 
independence assumptions, are the corresponding 
sums of the segment-level terms. 

Lemma i establishes the validity of 
partitioning the total variance of an aggregate 
estimate into a component due to the area-only 
sample and a component due to the list-frame 
buildings. Formulas for these separate variance 
components have been derived, in terms of 
selection probabilities at different stages 
(Goldberg, 1988). These formulas offer some 
insight into the components of variance, but 
give no direct guidance for variance-pair 
constructiol,. Lemmas 2 and 3 and their 
corollaries show relationships among the 
components of the list-frame variance. These 
relationships do have direct implications for 
the constructJo~ of variance estimation pairs. 
Lemma 4 summarizes the results of Lemmas i, 2, 
and 3 to e~press the total variance of the 
within-PSU aggregate in terms of the variances 
of the components A, I, and N. 

The estimator of a PSU-level population 
attribute X is given (Chu, 1987) as 

X t -- ~ X t " 
1 

i 

481 



where 

X t -- 

i 

XAi d. 
m + ~, XLij di j 

eAi J 

(i - dij ) gij/PLij + 

J 

= population value of an aggregate 
at:tribute within the PSU 

x' = sample-based estimate of population 
aggregate X 

XAi = value of aggregate in ith segment 

XAi = sample-based estimate of aggregate 

XAi 

XLi j = value of the attribute for the jth 
list-frame building in the ith 
segment 

d. = indicator variable (0/I) for inclusion 
m of segment i it, the area sample 

d.. = indicator variable for inclusion of 
x3 list-frame building j from segment 

i in the area sample 

gij 
= indicator variable for inclusion of 

list-frame building j from segment 
i in the list sample 

- probability that segment i is included 
PAi 

PLij 

in the sample (i.e. probability 
that d. = i) 

1 

= probability that list-frame building 
j from segment i is included in 
the list sample 

= probability that gij 

Define also 

= 1 

PAij = conditional probability that list- 
frame building j from segment i is 
included J n the area sample, given 
that segment i is included in the 
area sample 

= conditional probability that d.. = 1 
given that d. = 1 x3 m 

h.. = indicator variable for inclusion of 
13 list-frame building j from segment 

i in the area sample, conditional 
on inclusion of segment i in the 
area sample. 

That is, d = (d.)(h..), where d. and 
ij m ij i 

hij are indeper, dent, and PAij is the 

probability that h . .  = I. We assume that the 
13 

random variables di' hij' gij' and 

XAi (which contains the random estimation 
error for segment i) are all mutually 
independent, across all i and j. 

The estimator (x' .) can be expressed as the sum 
i 

of three pieces 

x' = A. + I. + N. 
i m i l 

where 

A. = d / m XAi i PAi 

I. = ~ ~ij d'h'' 
i j i Ij 

N. = ~, XLi j (i -d i hij) gij / PLij " i j 

In this break-down, A. represents the x 

contribution from the area sample exclusive of 
the portion that intersects the list frame, I. m 
represents the contribution from that inter- 
section, and N. represents tbe contribution 

i 

from the list frame not intersected by the area 
sample. The total list-frame contribution is 
denoted by 

L. = I. + N.. 
i l 1 

As noted above, relationships are established 
here among the within-segment variances and 
covarisnces of the components Ai, li, Ni, 

and L.. Under the assumption of independence 
l 

among segments, all these relationships hold 
also for summations of these components over 
the segments, where the summations are denoted 
respectively as A, I, N, and L. 

Lemma I: Cov(Ai, L i) = 0. 

Proof: 

Since XAi is independent of all random 

terms in L i, 

Cov(A i, L i) = E(XAi/PAi) Cov(di, Li ) 

= (XAi/PAi) Cov(d i, ei). 

Combining the expressions for I. and N. 
i i 

gives 

L = ~, XLi j ( d h (i - gij/ ) i j i ij PLij 

+ gij /PLij )" 

Since h.. and 
mj gij 

d. and of each other, 
1 

are independent of 
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E(L | d )= ~, XLi j ( d i i j i PAij 

(1 - PLij/PLij) + PLij/PLij) 

= ~,XLi j 
J 

= E(L. ) .  
1 

Therefore Cov(d i, L i) = 0, and 

Cov(Ai, L i) = 0. 
Q.E.D. 

Thus, the component of the linear estimate due 
to the area-sample buildings excluding those on 
the list frame is uncorrelated with the 
component due to all list-frame buildings, 
including both intersection and non- 
intersection buildings. That is, the estimates 
of the list-frame aggregate and its 
complementary population aggregate are 
uncorrelated. 

Corollary i: Var (x'.) = Var(A.) + Var(L.). 
1 1 l 

Lemma 2: Cov(A., I ) 
i i 

= XAi (i - PAl ) ~' XLij P j Aij 

Proof: 

By the independence of XAi , di, and hij , 

Cov(A i, I i) 

= C°V(XAi di/PAi ~'~ij d h ) ' . i ij 
J 

= E(XAi/PAi) Var(d. ~' ~ij E(h..) 
1 . 13 J 

: XAi (i - PAl ) .~ ~ij PAij " 
J 

Q.E.D. 
C o r o l l a r y  1: Co'v(A i ,  I i )  > 0 

(with equality only if) 

PAl = 1, XAi = 0, 

or ~ XLij PAij = 0). 
J 

Corollary 2: Cov(Ai, N i) -- Cov(Ai, I i) _< 0 

(with equality under the same conditions as for 
Corollary i). 

Thus, except in trivial conditions, the area- 
only component has nonzero covariance with the 
intersection component. As a consequence of 
Lemma i, the covariance between the area-only 
and nonintersectJo~ components J s of the same 
magnitude, but opposite sign. 

Lemma 3: E(N i # I i) = E(L.) - I.. 
1 1 

Proof: 

E(N i | I i) = E( ~, XLi j ( 1 -  d. h.. ) j l i] 

gij/PLij | ~, XLi j d. h.. ) j i ij 

- ~,XLi j (i - d. h.. ) j l Ij 

E(gij/PLi j I ~, ~ij d. h.. ) j i I] 

by the independence of all gij from d.1 and 

all h... This independence also means that the 
iJ 

expectations of the gij's are not dependent 

on any function of d. and the h..'s. Hence, 
l mj 

E(N I I ) = ~, XLi j (i- d h ) i i j i ij 

= ~ XLij - ~'. ~ij d.1 h..ij 
j J 

= E(L. ) - I.. 
1 1 Q.E.D. 

Corollary 1 : 

E(L i I I i) = E(N. I I ) + 
= E(L.I). i 

1 

E(I. t x . )  
1 1 

Corollary 2: Cov(Li,I i) = 0. 

Corollary 3: 

Cov(N. I ) = Cov(Li,I i) - Cov(I i I i) l' i 

= -Var(l.). 
1 

That is, the covariance between the inter- 
section and r, onJntersection list components is 
the negative of the variance of the 
intersection component. 

Corollarv 4: Var(L ) = Var(N ) - Var(I ) 
" i i i " 

Lemmas i through 3 and their corollaries lead 
directly to the main result: the total variance 
is equal to the sum of the area-only variance 
and the I,omJntersection variance minus the 
intersectioI, variance. Formally, we have 

Lemma 4: 

Var(x'.) = Var(A.) + Var(N.) - Var(I.). 
1 i 1 1 
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Proof: 

Var(x'.) = Var(A.) + Var(L.) 
l i i 

- Var(A.) + Var(N.) - Var(I.). 
i i I Q.E.D. 

Implications of the Variance-Covariance 
Relationships 

I. The corollary to Lemma 1 means that the 
area-only sample can be split into pairs 
separately from the list sample. This has been 
the standard practice for NBECS. 

2. Lemma 4 implies that treating intersection 
buildings as having zero contribution to the 
variance amounts to omitting a negative 
contribution to the variance, resulting in an 
overestimate of variance. Because the total 
number of intersection buildings is expected to 
be small in each sample, this overestimate is 
slight. This treatment of conditional certainty 
buildings has been used in the past for NBECS, 
and is in current use. 

3. Corollary 1 to Lemma 2 means that including 
the intersection buildings with the area-only 
pairs according to the segments the inter- 
section cases came from would result in a 
greater overstatement of variance, because this 
would add the positive covariance between the 
area-only and intersection, while omitting the 
negative covariance between area-only and 
nonintersection, and still omitting the 
negative covariance between intersection and 
nonintersection. Treating intersection cases 
this way was thus rejected. 

4. Lemma 4 shows that an unbiased estimate of 
the total variance could be constructed by 
subtracting an unbiased estimate of the 
intersection variance from the sum of unbiased 
estimates of variance for the other two 
components. The estimate of intersection 
variance could be obtained by pairing 
intersection segments in the same way the 
area-only segments were paired, but not merging 
the intersection pairs with the area-only 
pairs. This approach is not recommended, 
because of two computational problems. First, 
the variance estimate could be negative in some 
cases, particularly for cells with small sample 
sizes. Second, it is not clear how to adapt 
either the mechanics or the theory of variance 
estimation by Balanced Repeated Replications or 
Jackknife to a variance estimator that requires 
the subtraction of a variance component. 

An unbiased estimate of the total variance 
could also be formed, avoiding the problems 
just noted, by forming within each PSU a single 
stratum combining the intersection and 
nonintersection list samples. This combined 
stratum would correctly incorporate the 
covariance between the two into the total 
variance estimate. A procedure for implementing 
such an approach has been explored. The 
approach is not in use at this time because the 
list-sample pairing was constructed based on 

other considerations, including confident- 
iality. 

5. Lemma 3 suggests that the current pairing 
of the nonintersection list buildings, treating 
all these buildings as independent selections, 
is not quite appropriate for estimating the 
variance of the nonintersection component. 
Because buildings are selected for the 
intersection sample in clusters in each PSU, 
and these clusters are ineligible for the 
nonintersection sample, there is some negative 
covariance among the selections made for the 
nonintersection sample. A theoretically 
correct, but more complicated method has been 
considered for estimating the variance of the 
nonintersection sample. Consideration of this 
method indicates that it would yield variance 
estimates negligibly different from those 
obtained under the current scheme. 
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