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Introduction

Supplementing an area sample with a sample from
a list frame of important units can be an
effective way tc improve the efficiency of a
multistage sample. This technique is useful
for sampling from a population where the units
of greatest Jnterest are relatively rare. To
form unbjased estimators, a theoretically
straightforward approach would be to calculate
joint probabilities of selection for sample
units in the overlap between the area and list
portions of the sample. However, this can be
very difficult to accomplish for multistage
area samples, since listing of basic units is
restricted tco selected higher stage units.
Approaches that have been used in scme surveys
adjust certain sample weights to account for
the overlap between the area and list frames;
these adjustments produce unbiased estimates of
populatior totals without the difficulties of
calculating joint selection precbabilities.

This paper derives the components of variance
of the estimates produced using one type of
overlap adlustment procedure, and discusses the
construction of pseudostrata to capture these
variance components, The methods are described
in reference to the Department of Energy's
Nonresidential Buildings Energy Consumption
Survey (NBECS).

The 1986 NBECS was based on a four-stage area
probability sample, where individual buildings
were the ultimate sample units. For the first
stage of sampling, 129 strata were formed by
grouping together similar primary sampling
units (PSU's). Each of the 1,799 PSU's was
composed of a city and surrounding counties, or
of rural counties only. Thirty-two of the
PSU's were highly populated, and were not
grouped with other PSU's toc form strata. These
32 PSU's were designated as certainty PSU's and
were taken into the sample with probebilities
of 1. For the remaining strata, containing
grouped noncertainty PSU's, one PSU was
selected from esch stratum, yielding a total
first~stage sample of 129 PSU's. Within each
selected PSU, further sampling stages selected
ZIP code groups, then area segments, and
finally bujldings.

Very large buildings, although relatively rare
in the population, account for a high
proportion of total energy consumption. To
ensure adequate coverage of large buildings and
of others that were significant energy users,
the area sample within each PSU was
supplemented by a sample from lists of large
and "special” buildings such as hospitals and
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schools. For boeth area and list samples, the
overall selection probabilities for individual
buildings were set to be proportional to
building size, which is correlated with energy
consumption. The supplementary sample from the
lists of large and special buildings thus
improves the overall efficiency of the sample
design. This is true evep though these lists
have undercoverage snd do not comprise a
complete within-PSU sampling frame.

Constructing the NBECS Linear Estimator

Supplementing an area probability sample with a

sample from 1list frames requires special
treatment for the frame overlap, to avoid
double counting and produce unbiased survey
estimates. The most theoretically straight-
forward way to create unblased linear
estimators is to compute (with great
difficulty) the joint  probabilities  of

selection for those sample units that can be
selected into either the area sample or the
list sample.

Another way to handle the overlap between the
area sample and the list frame is simply to
delete any cases from the area sample found to
be on the list frame. This is the "screening”
estimator approachk wused by the National
Agricultural Statistics Service (NASS) in its
surveys of crops and liverstock (Bosecker and
Ford 1976). For the NBECS, though, simply
eliminatirg the intersection cases (unless also
sampled from the lists) would be an inefficient
use of resources. The information required to
determine that an area—-sample building is op
the list frame is typically not obtained until
the time of interview. At that point, the
incremental cost of completing the interview
information is small
already incurred of

and obtaining usable
compared to the cost
getting to the building.

estimators offer an alternative
approach, and are currently in use by NASS
(Hartley 1962, and Bosecker and Ford 1976).
Two independent estimates of the list-frame
universe are cbtained, one from the area
sample, using area-sample weights, and one from
the list sample, using list-based weights. An
overall estimate of the list—frame universe is
then constructed as the linear combination cof
these two separate estimates, with weights in
inverse propertion teo the variances of the two
estimates. In principle, this would be the most
efficient way to conbine the information from
the intersection and 1list samples. However,
this appreoach 3Js impractical for the NBECS,
which is a multi-purpose survey used to produce
extensive tabulations of population aggregates.
The increased computational complexity is
unlikely tc be justified by the improvement in
resulting estimates.

Composite



A simpler unbiased prccedure in current use for
NBECS is formulated in terms of weighting rules

as follows:

1) Area-sampled selections that are not
included in any of the list frames
are giver the appropriate area-sample
weights. These sample selections
thus provide an estimate of only that
portion of the total population that
does not appear on any list frames.

2) All area-sampled buildings that are
included on a list frame are assigned
a within-PSU weight of 1. That is,
they represent only themselves within
the PSU.

3) List-sampled selections that are not
also taken Into the area sample are
assigned the appropriate list-
sample weights. These buildings
provide an estimate of that portion
of the list frames that did not also
come into the ares sample.

The resulting estimator x' is the sum of three
components,

x'= A + I + N,

where A is a lirear combination of attributes
of sample units from the area sample, excluding
buildings appearing on any list frame; I is a
linear combination of units from the inter-
section sample, consisting of buildings on the
list frame that were also selected into the
area sample; and N 1is a linear combination of
units from the nonintersection list sample,
consisting of buildings on the list frame and
sampled only in the list sample.

This estimator was originally proposed by Jack
Ogus, a consultant to the 1979 NBECS contractor.

It can be shown {(Chu, 1987) that for any
PSU-level aggregate X, the linear estimator
(x') resulting from this weighting procedure is
unbiased.

As illustrated in Figure 1, the components I

and N together estimate the list-frame
aggregate, while the component A estimates
the aggregate for the population excluded
from the list frame. The present paper explores
the contributions of each of the three
components A, I, and N to the variance of
x', and the relationships among these

contributions.

Estimating the Variance of the Linear Estimator

To estimate variances of survey statistics in
NBECS, the first-stage sampling strata were
collapsed to form pseudostrata, and the sampled
PSU's paired in this way were used in a
jackknife replication technique (McCarthy, 1966
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Figure 1. NBECS Overlap Adjustment Scheme
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tion List Area Sample
and 1969). One goal of the present work is to
determine the appropriate treatment of the
intersection buildings in constructing

variance-estimation pairs (or pseudostrata). It
has been the convention in the past to treat
these buildings as certainty units (since they
have weights of 1), and include them in all
replicates, rather than placing them into
variance-estimation pairs so that they would be
left out of some replicates and included in
others. This convention implies that these
intersection buildings have zero contribution
to the variance of x'. This is actually not
the case. The main conclusion of the
developments described below is that the
convention results in a slight overestimate of
variance, but is adequate for present
applications. Alternative methods have been
considered, and may be used in future surveys.

Before proceeding to the main results, some
general principles of constructing variance-
estimation pairs, and the application of those
principles to the NBECS sample, are reviewed.

General Principles for Constructing Variance
Estimation Pairs

The variance and covariance relationships
developed here are for linear estimators, which
are linear combinations of sample values.
Linear estimators include weighted sums of
sample-building attributes, provided the
weights are nonrandom. Variance estimation
pairs are constructed to provide unbiased
estimates of variance for such statistics.



Within each stratum, tbis construction pairs
together two samplirng units at the earliest
stage of sampling, in such a way that the two
members represent two independent samples, each
of which incorpeorates all subsequent stages of
random selection. Restricting calculations to
the initial stage of the sample is called the
"Ultimate Cluster" technique (Wolter, 1985).
In practice, ultimate clusters cften refer to
noncertainty PSU's, and tc SSU's within
certainty PSU's, The difference between
estimates based on these twe ultimate clusters
then gives an estimate, with one degree of
freedom, of the variance of the component of
the statistic contributed by the initial
sampling stage.

If only one first-stage unit was sampled from
each of the original first-stage strata, the
variance-estimetion pairs must be constructed
by collapsing the original strata into pseudc-
strata. Only similar strata are collapsed
together, in order to minimize bias in the
variance estimates due to Dbetween-strata
components. Stratum similarity must be judged
using only pre-sampling information, to avoid
further bias.

Sets of ultimate clusters that were drawn
independently of each other can be split into
pairs separately to represent independent
variance components., But sets whose
contributions to the aggregate estimate have
nonzero covariance need to be combined into a
single pair 3Jf this covariance is to be
correctly reflected in the variance estimate.

More specifically, if the variances of B and
C, respectively are estimated by

(81 - B2)® and (c1 - c2)2,

then the combined pair

(1 + c1) - (82 + c2)? = (81 - B2)?

+ (Cl-c0? +2 (Bl - B2)(CL - €2)
represents the variance of the sum B + C,

with the cross-product of differences estimating
the covariance of B and C. Xf B and C

are kept as separate pairs, this covariance

term will not be represented in the resulting

variance estimate, resulting in a bias if the

covariance is nonzero.

If, on the other hand, the covariance is zero,
then keeping B and C as separate pairs gives
a more accurate estimate of the total variance.
If the pairs are merged, the cross~product term
will have zero expectation, but will contribute
to the variance of the variance estimate.
Pseudostrata were formed for the 1986 NBECS in
such a way as to minimize the additional
variance of the variance estimate that would
result from cross-product terms with zero
expectation.
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Application of General Principles to the NBECS
Sample

For the NBECS noncertainty PSU's,
stage of sampling is the selection of PSU's
themselves. Preliminary  pseudostrata were
formed in this group by pairing one PSU (one
ultimate cluster) against another. All stages

the first

cf sampling within each PSU were conducted
independently of the sampling in other PSU's.
Thus, the difference bhetween PSU's correctly
reflects the variance of the entire selection
and estimation process involving noncertainty
PSU's. This process included the selection of
some intersection cases, and the setting of
their within-PSU weights to one. Thus, it is
appropriate to keep these intersection cases
with the rest of their PSU for the pairing;
this has been done for the NBECS.

Construction of variance-estimation pairs for
certainty PSU's is the subject of the remainder
of this paper. For the NBECS certainty PSU's,
the first ssmpling stage is the secondary
sampling unit or SSU., Fach SSU selection for
the sample is independent of any other SSU
selection. A single segment is selected within
each of the independently selected SSU's.

Variances and Covariances of the Linear

Estimator Components

The derivations that follow are for segment-—
level variance and covariance relationships.
All these results hold also for the PSU-level
variances and covariances, which, under
independence assumptions, are the corresponding
sume of the segment-level terms.

Lemma 1 establishes the validity of
partitioning the total variance of an aggregate
estimate into a component due to the area-only
sample and a component due to the list—frame
buildings. Formulas for these separate variance
components have been derived, in terms of
selection probabilities at different stages
(Goldberg, 1988). These formulas offer some
insight into the components of variance, but
give no direct guidance for variance-pair
construction. Lemmas 2 and 3 and their
corollaries show relationships among the
components of the list-frame variance. These
relationships do have direct implications for
the construction of variance estimation pairs.
Lemma 4 summarizes the results of Lemmas 1, 2,
and 3 to express the total variance of the
within-PSU aggregate in terms of the variances
of the components A, I, and N.

estimator of a PSU-level population

is given (Chu, 1987) as

The
attribute X



Xy 9

' =

x'ygos D+ 20 Ry dyy
Pas J

1 - dij) gij/PLij

+ jzxLij

X = population value of an aggregate
attribute within the PSU
x! = sample-based estimate of population
aggregate X
XAi = value of aggregate in ith segment
Xy < sample—based estimate of aggregate
XAi
XL" = value of the attribute for the jth
1J list-frame building in the ith
segment
d; = indicator variable (0/1) for inclusion
of segment i in the area sample
d,., = indicator variable for inclusion of
1 list—frame building j from segment
i in the area sample
&3 = indicator variable for inclusion of
v list-frame building j from segment
i in the list sample
P = probability that segment i is included
Al in the sample (i.e. probability
that d, = 1)
i
PLij = probability that list-frame building

j from segment i is included in

the list sample
= probability that gy: = 1
o
Define also

P =

A1 conditional prcbability that list-—

frame building i from segment i is
included in the area sample, given
that segment i is included in the

area sample

= conditional probability that d,, =1
given that di =1 +J

indicator variable for inclusion of
list~frame building j from segment
i in the area sample, conditional
on inclusion of segment i in the
area sample.

ij

That is, d,. = (d,)(h,.), where d. and
ij i’ ] i

are independent, and P is the

Byij Al
probability that hi4 = 1. We assume that the
J

random variables di’ h.., g,.
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¥Ai (which contains the random estimation

error for segment i) are all mutually
independent, across all i and j.

The estimator (x',) can be expressed as the sum
of three pieces

x'.= A, + I, + N
i i i

where

Al B xAl di / PAl

I =

i JZ: XLij di hij

4
1l

i 2. X113

(1-4,h,)g. ./ P ,..
j 1 1]

ij Lij

In this break-down, Ai represents the
contribution from the area sample exclusive of
the portion that intersects the list frame, I,
represents the contribution from that inter-
section, ard Ni represents the contribution

from the list frame not intersected by the area
sample. The total list—frame contribution is
denoted by

L, = I, + N,.

i i i
relationships are established
and

As noted above,
here among the within-segment variances
covariances cf the components Ai’ Ii’ Ni’

and L,. Under the assumption of independence
among~ segments, all these relationships hold
also for summations of these components over
the segments, where the summations are denoted
respectively as A, I, N, and L.

L,) = 0.

Lemma 1: 1

Cov(Ai,
Proof:
Since Xps is independent of all random
terms in L,,
i

Cov(a;, L) = E(xAi/PAi) Cov(d,, Li)

(XAi/PAi) Cov(di, Li)'

Combining the expressions for Ii and Ni
gives -
L, = ? XLij N hij (1 - gij/PLij)
+ .
glj /PLij )
Since h,, and g,, are independent of
13 ij

di and of each other,



E(L, |4 = JZ Xps 5 (d; Paij
Q PLij/PLij) + PLij/PLij)
= Z X
> Xpgs
i
= E(L,).
1
Therefore Cov(di, Li) 0, and
Cov(Ai, Li) = 0.
Q.E.D.

Thus, the component of the linear estimate due
to the area-sample buildings excluding those on

the 1list frame is wuncorrelated with the
component due te all list-frame buildings,
including both intersection and non-

intersection buildings. That is, the estimates

of the list—frame aggregate and its
complementary pepulation aggregate are
uncorrelated.

Corollary 1: Var (x'i) = Var(Ai) + Var(Li).

Lemma 2: Cov(A,, I.)
1 1
= Xy - By ?—-: X113 Paij
Proof:

By the independence of INE di’ and hij’

Cov(A,, I.)
i* 71

- v
Cov(xAi di/PAi’ %J XLij di hij)

E(xAi/PAi) Var(d, %:: xLij E(hij)

Xpq (17 Byyd Z Xij Paij
o

Q.E.D.
Corollary 1: Cov(a,, Ii) > 0
(with equality only if)
Py T L Xy 50
or %: XLij PAij =0).
Corollary 2: Cov(A,, N.) = - Cov(a,, I,) <0
i i i’ Ti7 =

(with equality under the same conditions as for
Corollary 1).

Thus, except in trivial conditions, the area-
only component has nonzero covariance with the
intersection component. As a consequence cf
Lemma 1, the covariance between the area-only
and nonintersection components is of the same
magnitude, but opposite sign.
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Lemma 3: E(Ni { 11) = E(Li) -1

Proof:

E(N, 1) = E(jZ Xy A -d; b))
gij/PLij { %:‘ Xpi; 9 Byy )

= 37X .. (l~-4d, h )
3 Lij i ij

E(gij/PLij

' jZ:XLij di hij )

by the independence of all 844 from di and
J

all hij' This independence also means that the

1

expectations of the gij s are not dependent

on any function of d, and the h,.'s. Hence
i ij ?

E(N, | I,) jZXLij 1-d; by )

= J.Z:XLij —jZ:XLij d; By

= EL,) - 1I,.
i = Q.E.D

Corollary 1:
E(L, § I,) E(N, § I,) + E(, } I,)

Y = e@d. ? *

i
Corollary 2: Cov(Li,Ii) = 0.
Corollary 3:
Cov(Ni,Ii) = COV(Li’Ii) - Cov(Ii,Ii)
= -Var(l,).
i

That is, the covariance between the inter-

section and nonintersection list components 1is

the negative of the variance of the
intersection component.
Corcllary &: Var(Li) = Var(Ni) - Var(Ii).

Lemmas 1 through 3 and their corollaries lead
directly to the main result: the total variance
is equal to the sum of the area-only variance

and the rnonintersection variance minus the
intersection variance. Formally, we have
Lemma 4:
Var(x'.) = Var(a,) + Var(N,) - Var(I,).
i i i i



Proof:

Var(x'.) = Var(a,) + Var(L,)
i i i
= var(A,) + Var(N,) - Var(I,).
+ . = Q.E.D.

Implications of the Variance~Covariance

Relationships

1. The corollary to Lemma 1 means that the
area-only sample can be split into pairs
separately from the list sample. This has been
the standard practice for NBECS.

2., Lemma 4 implies that treating intersection
buildings as having zero contribution to the
variance amounts to omitting a negative
contribution to the variance, resulting in an
overestimate of variance. Because the total
number of intersection buildings is expected to
be small in each sample, this overestimate is
slight. This treatment of conditional certainty
buildings has been used in the past for NBECS,
and is in current use.

3. Corollary 1 to Lemma 2 means that including
the intersection buildings with the area-only
pairs according to the segments the inter-
section cases came from would result in a
greater overstatement of variance, because this
would add the positive covariance between the
area-only and intersection, while omitting the
negative covariance between area-only and
nonintersection, and still omitting the
negative covariance between intersection and
nonintersection. Treating intersection cases
this way was thus rejected.

4, Lemma 4 shows that an unbiased estimate of
the total variance could be constructed by
subtracting an wunbiased estimate of the
intersection variance from the sum of unbiased
estimates of variance for the other two
components. The estimate of intersection
variance could be obtained by pairing
intersection segments in the same way the
area-only segments were paired, but not merging
the intersection pairs with the area-only
pairs. This approach is not recommended,
because of two computational problems. First,
the variance estimate could be negative in some
cases, particularly for cells with small sample
sizes. Second, it is mnot clear how to adapt
either the mechanics or the theory of variance
estimation by Balanced Repeated Replications or
Jackknife to a variance estimator that requires
the subtraction of a variance component.

An unbiased estimate of the total variance
could also be formed, avoiding the problems
just noted, by forming within each PSU a single
stratum combining the intersection and
nonintersection 1list samples. This combined
stratum would correctly incorporate the
covariance between the two into the total
variance estimate. A procedure for implementing
such an approach has ©been explored. The
approach is not in use at this time because the
list-sample pairing was constructed based on
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other confident~

jality.

considerations, including

5. Lemma 3 suggests that the current pairing
of the nonintersection list buildings, treating
all these buildings as independent selectioms,
is not quite appropriate for estimating the
variance of the nonintersection component.
Because buildings are selected for the
intersection sample in clusters in each PSU,
and these clusters are ineligible for the
nonintersection sample, there is some negative
covariance among the selections made for the
nonintersection sample. A theoretically
correct, but more complicated method has been
considered for estimating the variance of the
nonintersection sample. Consideration of this
method indicates that it would yield variance

estimates negligibly different from those
obtained under the current scheme.
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